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Abstract. This paper proposes a new image restoration method for
phase contrast microscopy as a mean to enhance the quality of images
prior to image analysis. Compared to state-of-the-art image restoration
algorithms, our method has a more solid theoretical foundation and is
orders of magnitude more efficient in computation. We validated the
proposed method by applying it to automated muscle myotube detec-
tion, a challenging problem that has not been tackled without staining
images. Results on 300 phase contrast microscopy images from three
different culture conditions demonstrate that the proposed restoration
scheme improves myotube detection, and that our approach is far more
computationally efficient than previous methods.

1 Introduction

Vision-based analysis adopting phase contrast microscopy often has advantages
over the use of fluorescent microscopy for the task of cell behavior and fate
analysis; it enables continuous monitoring of intact cells in culture and it reduces
the expenditure of consumable reagents as well as human labor. However, the
analysis of phase contrast microscopy is not trivial because of the properties
of the images: cells often lack distinctive textures, and artifacts, such as bright
halos, often appear when cells form a cluster or undergo a certain process.

To address these issues, several image restoration methods have been proposed
based on the image formation process of a phase contrast microscope [1,2,3].
These methods were devised to restore phase retardations at each point of a
given image, based on which image analysis, such as cell region detection, can
be more effectively performed. However, these restorations are often inaccurate
due to the strong assumptions [1,2] or unable to generate restored images but
can only produce features used for image analysis [3]. Furthermore, the high
computational cost limits their applicability.

In this paper, we propose a new phase contrast microscopy image restoration
algorithm that has a more solid theoretical foundation and is far more efficient
than previous methods. More specifically, our method does not introduce any
assumption in the modeling step and minimizes the computation complexity
by employing the Wiener deconvolution algorithm [4]. As a result, our method
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produces more accurate restored images—not just features—and significantly
outperforms previous methods in terms of computational efficiency.

We validated the restoration method by applying it to muscle myotube de-
tection. Detection of muscle myotubes is important in two folds. First, it helps
better understanding on the mechanism of muscle differentiation, which is re-
quired to improve the treatment of various muscular disorders associated with
muscle loss, such as spinal muscular atrophy and muscular dystrophy [5]. In ad-
dition, precise detection of muscle myotubes that result from cell differentiation
can automate the process of finding the optimal condition to keep stem cells
from differentiating and thus losing self-renewal capability. To the best of our
knowledge, there has not been published work on vision-based muscle myotube
detection in phase contrast microscopy images.

2 Previous Work

Phase contrast microscopy is a popular optical microscopy technique that en-
hances the phase shift in light passing through a specimen and converts it into
brightness change in images. According to [1], phase-contrast imaging can be
modeled by two waves: the unaltered surround wave lS(x) and the diffracted
wave lD(x), computed as

lS(x) = iζpAe
iβ (1)

lD(x) = ζcAe
i(β+θ(x))δ(R) + (iζp − 1)ζcAe

i(β+θ(Rx)) ∗Airy(R) (2)

where i2 = −1; A and β are the illuminating wave’s amplitude and phase before
hitting the specimen plate, respectively; ζp and ζc are the amplitude attenuation
factors by the phase ring and the specimen, respectively; θ(x) and θ(Rx) are the
phase shifts caused by the specimen at location x and its neighboring region Rx

with size R, respectively; δ(·) is a 2D Dirac delta function; and Airy(R) is an
obscured Airy pattern [6] with size R. A phase-contrast microscopy image g can
then be analytically modeled as a function of θ:

g(x) = |lS(x) + lD(x)|2 (3)

= |(iζpAeiβ + ζcAe
i(β+θ(x)))δ(R) + (iζp − 1)ζcAe

i(β+θ(Rx)) ∗Airy(R)|2.

To restore θ from g, so as to use θ instead of g for image analysis, [1] applied
the approximation eiθ(x) ≈ 1 + iθ(x) on the assumption that θ(x) is close to
zero. Since this assumption is not valid for thick (and thus bright) cells, cells
undergoing mitosis or apoptosis are often missed in the restored images [2]. Later,
[2] generalized this model by assuming that θ(x) is close to a constant, which
is not necessarily zero. This method is useful for the detection of particular cell
regions, e.g., bright cell regions or dark cell regions; however, it cannot precisely
restore phase retardations because the assumption that all phase retardations
are close to one value is still generally not true.
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Recently, [3] applied the approximation

eiθ(x) ≈
K∑

k=1

ψk(x)e
iθk (4)

and showed that a phase contrast microscopy image g can be modeled as a linear
combination of K diffraction patterns after flat-field correction, as follows:

g =

K∑

k=1

Ψk ∗
(
sin θkδ(R) + (ζp cos θmk

− sin θk) ∗Airy(R)
)

(5)

where θk is the k-th representative phase retardation, which is one of the M

equally distributed phases within 2π, i.e., {0, 2πM , · · · , 2(M−1)π
M }. Given a phase

contrast image g, by solving Eq. (5), K coefficient matrices (Ψ1, · · · , ΨK) are
obtained. Although these coefficients can be used for image analysis, actual phase
retardations may not be accurately estimated because solving for θ in Eq. (4)

with obtained coefficients does not yield a right answer unless |
K∑

k=1

ψk(x)e
iθk | =

1, which is not guaranteed. In addition, Eq. (5) is an overdetermined system with
K times as many unknowns as equations. These unnecessarily many unknowns
make the optimization problem difficult, but with little benefit.

3 Restoration of Phase Contrast Microscopy

In this section, we propose an effective and efficient restoration method for phase
contrast microscopy and discuss the advantages of our method over the previous
methods.

3.1 Modeling of Phase Contrast Microscopy Imaging

Eq. (3), the original phase-contrast model, can be expanded as follows:

g(x) =|lS + lD|2 = (lS + lD) · (lS + lD)∗ (6)

=A2
[
(ζp

2 + ζc
2)δ(R)− 2ζ2cAiry(R) + (ζ2p + 1)ζ2cAiry(R) ∗Airy(R)+

iζpζc(e
−iθ(x)−eiθ(x))δ(R)+ζpζc

(
(ζp−i)e−iθ(Rx)+(ζp+i)eiθ(Rx)) ∗Airy(R)

]

=C1+C2

[
i(e−iθ(x)−eiθ(x))δ(R)+

(
(ζp−i)e−iθ(Rx)+(ζp+i)eiθ(Rx)

) ∗ Airy(R)
]

where C1 and C2 are values that are not relevant to θ(x). Since eiθ(x) = cos(x)+
i sin(x), eiθ(x) can be replaced with α(x)+iβ(x) on the condition α(x)2+β(x)2 =
1, and then g is reexpressed as:

g(x) = C1 + C2

(
2β(x)δ(R) + 2

(
ζpα(Rx)− β(Rx)

) ∗Airy(R)
)

(7)

s.t. α(x)2 + β(x)2 = 1.
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After flat-field correction, we obtain the following model for the entire image.

g = C
(
ζpα ∗Airy(R) + β ∗ (δ(R)−Airy(R))

)
s.t. α⊗ α+ β ⊗ β = � (8)

where α and β are matrices with the same size of g whose values at position
x are α(x) and β(x), respectively, ⊗ is the element-wise matrix multiplication
operator, � is the matrix with all 1, and C is a constant.

3.2 Optimization Process for the Restoration

Given g, in order to infer α and β from this equation, we minimize the following
objective:

min
α,β,C

||g − Cf ||2F , f = ζpα ∗Airy(R) + β ∗ (δ(R)−Airy(R)) (9)

s.t. α⊗ α+ β ⊗ β = �

where || · ||F denotes the Frobenius norm. Note that we also infer C rather than
manually setting it because all the parameters that required to determine C are
often not given. Once α and β are obtained, phase retardation θ can be computed
based on eiθ(x) = α(x) + iβ(x).

In order to solve this optimization problem, we propose an iterative scheme us-
ing the Wiener deconvolution algorithm [4], which is an efficient way to perform
deconvolution and has been popularly used for image deconvolution applications.
The optimization procedure is as follows:

– Step 1. Initialize α and β at random to satisfy α⊗ α+ β ⊗ β = �.
– Step 2. Update α to minimize ||g−Cf ||2F with fixed β by solving the following

deconvolution problem via Wiener deconvolution.

g − β ∗
(
C
(
δ(R)−Airy(R))

)
= α ∗ (CζpAiry(R)

)
. (10)

– Step 3. Project α and β onto the constraint space by multiplying 1/
√
α2 + β2.

– Step 4. Recalculate C to minimize ||g − Cf ||2F .

C ← vec(f) · vec(g)
vec(f) · vec(f) . (11)

where vec(·) is the vectorization operator.
– Step 5. Update β to minimize ||g−Cf ||2F with fixed α by solving the following

deconvolution problem via Wiener deconvolution.

g − α ∗ (CζpAiry(R)
)
= β ∗

(
C
(
δ(R)−Airy(R))

)
. (12)

– Step 6. Project α and β in the same way as Step 3.
– Step 7. Recalculate C in the same way as Step 4.
– Step 8. Repeat Steps 2 through 7 until ||g−Cf ||2F is not reduced any more.

Wiener deconvolution requires a parameter that indicates the signal-to-noise
ratio of the original data [4]. In our experiments, we tested several values, namely
{0, 0.01, · · · , 0.05}, and determined the parameter as the one that minimizes the
final objective function value simply on the first image.
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Fig. 1. The process of myotube formation: (a) single-nucleated myoblasts; (b,c) nascent
and mature myotubes formed by the fusion of myoblasts, respectively

3.3 Discussion on the Proposed Restoration Method

The advantages of our method over the previous methods are in three folds:
First, our method can precisely restore phase retardations caused by cells

without introducing any unreasonable approximation. On the other hand, pre-
vious methods either assume that phase retardations are close to a certain
value [1,2] or adopt a linear approximation without appropriate constraints [3].

Second, our method is far more efficient than the previous methods in terms of
computation time (time complexity of Wiener deconvolution vs. that of iterative
deconvolution; in practice, a few seconds vs. several minutes for processing one
image in a typical setting) and memory use (a few MB vs. a few GB). This is an
important quality towards enabling real-time processing of time-lapse images.

Third, our method is theoretically more sound than the previous methods,
particularly [3]. Since the model involves a lot more unknowns than equations,
it might not be theoretically sound to infer the model via an iterative greedy
scheme that alternates basis selection and coefficient calculation. In fact, the
greedy scheme often selects different sets of bases in a different order (with
repetition) for different images, when they do not show similar levels of cell
density and maturity, so that feature sets from different images may not be
consistent. On the other hand, our optimization is conducted in a standard
manner.

One drawback of our method lies in fact that Wiener deconvolution cannot
explicitly handle spatial or temporal smoothness terms incorporated into the
objective function, unlike iterative deconvolution methods. This issue might be
implicitly dealt with by applying smoothing during iterations.

4 Muscle Myotube Detection

This section introduces muscle myotube detection task as a testbed of our
restoration method. During the differentiation of muscle stem cells, muscle my-
otubes are formed by the fusion of mononucleated progenitor cells known as
myoblasts (See Fig 1.). Given a phase contrast image containing both myoblasts
and myotubes, the goal of muscle myotube detection is to identify the area
where myotubes are located. This information is useful for measuring how far
differentiation has proceeded and provides guidance for human intervention.
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4.1 Myotube Detection Algorithm

We examined two methods: pixel- and superpixel-based methods.
For the pixel-based method, after image restoration, we extract visual feature

around each pixel in the restored image. We use rotation invariant local binary
pattern (LBPriu2) [7], which is one of the most popular and effective texture
features at present. For each pixel, we compute the distribution of different
LBPriu2 in its neighboring region and use it as visual features of the pixel.

For the superpixel-based method, after image restoration, we perform super-
pixel segmentation using the entropy rate superpixel segmentation method [8].
Then for each superpixel, we compute the visual feature vector by computing
the distribution of different LBPriu2 within the superpixel.

After feature computation, we train a linear support vector machine over
pixels or superpixels. For the superpixel-based method, given ground truth, the
superpixels that contain more positive pixels than negative ones are used as
positive samples and the rest as negative samples in the training phase. Testing is
also conducted over superpixels; i.e., the pixels belonging to the same superpixel
are determined to have the same label.

5 Experiment

5.1 Data and Comparison

Three sets of phase contrast images of mouse C2C12 myoblasts were acquired
under culture conditions with different amount (100, 500, and 1000ng/mL) of
IGF2, which accelerates differentiation. Each set contains 100 images; i.e., 300
images were obtained in total. Each image contains 640× 640 pixels.

For comparison, immunofluorescence staining images capturing myotubes were
acquired. Each staining image was reduced to a binary image by intensity thresh-
olding. Note that binarized images include most of information on cell differenti-
ation that biologists currently want to obtain via high-throughput screening. It
is also worth mentioning that staining images are not the ground truth in that
nuclei of myotubes are often not stained and the myotube boundary is not pre-
cise. Although imperfect, using staining images is a standard way for comparison
since manual annotation is too time-consuming and often subjective.

The data and staining images will be available on the first author’s home page
(www.cs.cmu.edu/∼seungilh).

5.2 Experiments and Results

We compare results of our myotube detection methods with those of the methods
that do not adopt the restoration process. In these baseline methods, feature
extraction was performed on phase contrast images, not the restored images. We
perform 10-fold evaluation; for each set of images, we used 1 fold of images (10
images) for testing in turn and the rest for training. For each image, we compare
the detection result with the staining image to compute precision and recall.
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Table 1. Myotube detection results in terms of F-measure. Our restoration method
enhances myotube detection accuracy.

IGF2-100 IGF2-500 IGF2-1000

Phase contrast image+pixel 0.32±0.06 0.53±0.11 0.67±0.10

Restored image+pixel 0.44±0.08 0.68±0.09 0.79±0.07

Phase contrast image+superpixel 0.61±0.07 0.73±0.08 0.80±0.08

Restored image+superpixel 0.65±0.06 0.76±0.04 0.86±0.05

Table 2. Performance comparison between our restoration method and the previous
restoration method [3]. Computational time is computed for restoration methods.

IGF2-100 IGF2-500 IGF2-1000 Time

Our restoration+superpixel 0.65±0.06 0.76±0.04 0.86±0.05 2 sec

Restoration [3]+superpixel 0.63±0.08 0.76±0.07 0.86±0.06 262 sec

Fig. 2. Phase contrast images (1st column), restored images (2nd column), thresholded
staining image (3rd column), and myotube detection results with the restoration and
superpixel segmentation (4th column)

Over the entire 100 images for each set, we compute the average F-measure,
which is the harmonic mean of precision and recall.

As shown in Table 1, when compared with the staining image, the method
adopting both the restoration and superpixel segmentation achieves 65% to 86%
accuracy in terms of F-measure.1 Myotube detection is more accurate under the

1 It is reasonable to expect increased performance when the ground truth is used rather
than staining images, which are imperfect so can possibly confuse the training model.
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condition with more amount of IGF2 because additional IGF2 leads to more
mature myotubes the texture of which is more distinct from that of myoblasts.
Applying the restoration scheme results in 12% to 15% gain in accuracy for the
pixel-based method and 3% to 6% gain in accuracy for the superpixel-based
method compared to the baseline methods. Fig. 2 shows examples of restoration
images and myotube detection results.

Table 2 demonstrates that the proposed restoration method is considerably
more efficient than the state-of-the-art restoration method [3]. Although the per-
formances for myotube detection are comparable on these data sets, our method
has advantages over the previous method including computational efficiency,
capability to obtain restored images, and a more solid theoretical foundation.

6 Conclusions

In this paper, we propose a new image restoration method for phase contrast
microscopy, which is theoretically more sound and computationally more efficient
than previous methods. We also present a method for myotube detection that
adopts the proposed restoration scheme and empirically validate the effectiveness
and efficiency of the proposed restoration and myotube detection methods.

The next goal will be to monitor myotube formation over time. Though in
this work, we focused on individual images, temporal information can be incor-
porated in several ways and it will result in a better performance for continuous
monitoring of cell fate. We leave the empirical validation as future work.
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