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ABSTRACT

Automated visual-tracking systems of stem cell populations
in vitro allow for high-throughput analysis of time-lapse
phase-contrast microscopy. In these systems, detection of
mitosis, or cell division, is critical to tracking performance
as mitosis causes branching of the trajectory of a mother cell
into the two trajectories of its daughter cells. Recently, one
mitosis detection algorithm showed its success in detecting
the time and location that two daughter cells first clearly ap-
pear as a result of mitosis. This detection result can therefore
helps trajectories to correctly bifurcate and the relations be-
tween mother and daughter cells to be revealed. In this paper,
we demonstrate that the functionality of this recent mitosis
detection algorithm significantly improves state-of-the-art
cell tracking systems through extensive experiments on 48
C2C12 myoblastic stem cell populations under four different
conditions.

Index Terms— Mitosis detection, Stem cell tracking,
Cell image analysis, Cell lineage construction

1. INTRODUCTION

Automated systems for visual-tracking of cell populations
in vitro have enormous potential for stem cell biology and
stem cell engineering because these systems allow for high-
throughput analysis of time-lapse microscopy images [1, 2,
3], whereas manual analysis is often intractable. In particular,
cell tracking systems adopting phase-contrast microscopy are
attractive due to its non-destructivity so that such systems
enable continuous monitoring of live and intact cells. These
tracking systems can provide quantitative analysis of stem
cell behavior such as proliferation and migration, discovery
of optimal conditions for stem cell expansion, as well as
quality assurance/control measures of stem cell expansions.

Mitosis is the process whereby the genetic material of a
eukaryotic cell is equally distributed between daughter cells
through nuclear division. In automated cell tracking systems,
mitosis detection is critical for tracking performance because
cell division, which leads to the branching of tracking trajec-
tories, is a major cause of tracking failure. Mitosis detection
compensates for the failure of cell region segmentation due to

the changes in cell shape, size, and brightness during mitosis
as well. With precise mitosis detection, quality cell lineage
construction can also be achieved since the spatio-temporal
information on cell birth helps to reveal the relation between
mother and daughter cells.

Existing mitosis detection methods based on computer vi-
sion techniques that adopt phase-contrast microscopy time-
lapse microscopy images can be categorized into two groups:
tracking-based methods [4, 5, 6, 7] and tracking-free meth-
ods [8, 9, 10, 11]. Tracking-based methods typically first
track cells in the field of view; their morphological changes
are then examined along the trajectories to detect mitosis [4,
5]. In other tracking-based methods, mother and daughter
cell regions or their trajectories are first obtained; while they
are linked to each other, mitotic events are implicitly or ex-
plicitly detected [6, 7]. Tracking-free methods often involve
the learning of visual characteristics of mitotic cells based on
human-annotated samples [8, 10, 11]. To reduce search space
without tracking from large-sized original image sequences
to small-sized patch sequences, several patch sequence con-
struction schemes were also developed [9, 10, 11].

Recently, Huh et al. [11] proposed a mitosis detection
approach for stem cell populations in phase-contrast mi-
croscopy images and demonstrated success in detecting birth
event, which is defined as the time and location at which two
daughter cells first clearly appear as a result of mitosis. After
constructing candidate patch sequences based on brightness,
a probabilistic model named Event Detection Conditional
Random Field (EDCRF) was applied to determine whether
and at which patch each candidate sequence contains a birth
event. Experimental results on C3H10T1/2 and C2C12 stem
cell populations showed that the effectiveness and efficiency
of this approach.

In this paper, we present a cell tracking algorithm that
incorporates the functionality of this mitosis detection algo-
rithm. The birth event information provided by the mitosis
detection can significantly improve the performance of cell
tracking, resulting in more quality cell lineage construction.
In experiments, we compare the systems involving and not
involving the mitosis detection on 48 C2C12 myoblastic stem
cell populations under four different conditions. These exten-
sive experiments show that the precise birth event detection



Fig. 1. Summary of the mitosis detection procedure [11]. (a) Candidate patch sequence extraction from consecutive phase-
contrast microscopy image frames based on brightness. (The original images are much larger than these examples.) (b) Exam-
ples of candidate patch sequences. (c) Unique scale gradient histograms computed for each patch in candidate patch sequences.
(d) Identification of mitosis occurrence and temporal localization of a birth event using Event Detection Conditional Random
Field (EDCRF) [11].

considerably reduces false branching as well as more accu-
rately identifies mother-daughter relations.

The remainder of this paper is organized as follows. We
summarize the process of the mitosis detection algorithm [11]
in Section 2. We then present a cell tracking system incorpo-
rating the functionality of this mitosis detection algorithm in
Section 3. The experimental setup and results with discus-
sions are presented in Sections 4 and 5, followed by conclu-
sions in Section 6.

2. MITOSIS DETECTION

In this section, we briefly review the mitosis detection
method [11], the functionality of which is adopted for our
cell tracking system. For more details, we refer to [11].

Given a phase-contrast microscopy image sequence, the
background of the images, which is simply computed as the
average image of all images in the sequence, is subtracted
from each image in order to correct intrinsic illumination
variation in phase-contrast microscopy images. After back-
ground subtraction, candidate patch sequences, which may
contain birth events, are extracted from the images as shown
in Figures 1(a) and (b); as a result, mitotic events are spatially
localized as well as the search space is significantly reduced.
Specifically, bright square patches are first extracted from
each image since mitotic cells are typically much brighter
than non-mitotic cells. Candidate patch sequences are then
constructed by linking spatially overlapped bright patches in

consecutive frames. The threshold of brightness for candidate
patches is empirically set not to miss actual mitotic events.

After patch sequence construction, unique scale gradient
histograms are computed as visual features for each candi-
date patch in the sequences as shown in Figure 1(c). Unique
scale gradient histograms reflect the characteristics of phase-
contrast microscopy images, resulting in good performance
of mitosis detection. In detail, after dividing each patch into
4×4 subregions, gradient magnitudes weighted by a Gaussian
function are accumulated into 4 bins along the orientations at
each subregion. After 4×4×4=64 features are computed for
each patch, L2 normalization is applied to the feature vectors.

Now, the problem reduces to determining whether each
candidate contains a birth event and which frame the birth
event is located in. For these two decision tasks, a probabilis-
tic model named Event Detection Conditional Random Field
(EDCRF) was proposed. The graphical representation of ED-
CRF is illustrated in Figure 1(d).

Suppose that x = (x1, x2, · · · , xm) is a candidate patch
sequence that consists ofm patches where xj denotes the j-th
patch (m can be varied for different sequences.). y is defined
as the label of x:

y =

{
p if the p-th patch of x contains a birth event
0 if there exists no birth event in x

(1)

We assume hidden variables h = (h1, h2, · · · , hm) and
sub-labels s = (s1, s2, · · · , sm) where hj and sj correspond
to xj . When a sequence label y is given, the sub-labels



s1, s2, · · · , sm are defined as

sj =


N if y = 0 · · · no event
B if y > 0 and j < y · · · before event
A if y > 0 and j ≥ y · · · after event

(2)

Under these definitions, we define a latent conditional
model for sequence x:

P (y|x, θ) = P (s|x, θ) =
∑
h

P (s|h,x, θ)P (h|x, θ) (3)

where θ is a set of parameters of the model. This model can
be further simplified by restricting that each sub-class label s
is associated only with hidden states in a disjoint set Hs as
follows:

P (y|x, θ) =
∑

h:∀hj∈Hsj

P (h|x, θ) (4)

where P (h|x, θ) is defined using the typical conditional ran-
dom field (CRF) formulation [12] with state and transition
functions. We refer to [11] for the details.

Given n candidate patch sequence and label pairs {(x1, y1)
, (x2, y2), · · · , (xn, yn)} as training samples, the following
regularized log-likelihood function is maximized for learning
parameters,

L(θ) =
n∑

i=1

logP (yi|xi, θ)−
1

2σ2
||θ||2 (5)

where θ is a set of model parameters and σ is the variance of
a Gaussian prior.

Given a new patch sequence x consisting of m patches,
conditional probabilities with all possible y, i.e., P (y =
0|x, θ∗), · · · , and P (y = m|x, θ∗), can be computed as

P (y = 0|x, θ∗) = P (s1 = N |x, θ∗) =
∑

h1∈HN

P (h1|x, θ∗),

P (y = 1|x, θ∗) = P (s1 = A|x, θ∗) =
∑

h1∈HA

P (h1|x, θ∗),

P (y = j|x, θ∗) for j = 2, ...,m,
= P (s1 = B, · · · , sj−1 = B, sj = A, · · · , sm = A|x, θ∗)

=
∑

hj−1∈HB

P (hj−1|x, θ∗)−
∑

hj∈HB

P (hj |x, θ∗) (6)

where θ∗ is the optimal model parameter obtained from the
training samples. Based on these probabilities, EDCRF si-
multaneously determines the occurrence of mitosis and the
temporal location of the birth event as follows:

y∗ =

{
0 if P (y = 0|x, θ∗) > 0.5
arg maxy=1,··· ,m P (y|x, θ∗) otherwise

(7)

3. CELL TRACKING SYSTEM

In this section, we present a tracking system that incorporates
the functionality of the mitosis detection algorithm described
in the previous section1. For each phase-contrast microscopy
image, blobs that are likely to correspond to cells are first seg-
mented by a recently developed cell segmentation algorithm
for phase-contrast microscopy [13].

Based on the segmented blobs, frame-by-frame data as-
sociation is performed by considering hypotheses reflecting
stem cell behaviors: migration, exit, entrance, clustering, and
mitosis. More formally, let ai be the i-th detected cell in the
previous frame and bj be the j-th blob in the current frame.
Then, likelihoods of the five cases are computed as follows:

• one-to-one: a cell migrates in the field of view.

`1→1(ai, bj) = e−
||f(ai)−f(bj)||

σ (8)

• one-to-none: a cell exits from the field of view.

`1→0(ai) = e−
d(ai)
λ (9)

• none-to-one: a cell enters the field of view.

`0→1(bj) = e−
d(bj)
λ (10)

• many-to-one: multiple cells overlap.

`n→1(ai1 ,· · ·, aiK , bj) = e−
||f(

⋃K
k=1 aik

)−f(bj)||
σ (11)

• one-to-two: a cell divides into two cells.

`1→2(ai, bj1 , bj2) = e−
||f(ai)−f(bj1∪bj2 )||

σ (12)

where f(a) is a feature vector extracted from blob a, which
consists of the center position of the blob, the Fourier de-
scriptors of the blob contour, and the intensity histogram of
the blob region; d(a) is the distance between the center of
blob a and the image boundary; and σ and λ are free parame-
ters. In order to reduce the number of hypotheses considered
in frame-by-frame data association, we compute the likeli-
hoods between the cells in the previous and current frames
only when their distance is less than a certain threshold. Sim-
ilarly, the hypotheses regarding cell exit and entrance are con-
sidered only for the cells which are located closely to the im-
age boundary.

The birth event information detected by the mitosis detec-
tion algorithm [11] is used to establish hypotheses as follows.

1It is worth mentioning that this system is an improved version of the cell
tracking system developed by our group, which was recently introduced in
[14], in that birth events are more accurately detected using EDCRF. In this
paper, we describe our tracking system focusing on how mitosis detection
contributes to cell tracking, which was not sufficiently analyzed nor discussed
in [14].



The last hypothesis regarding mitosis often produces a high
likelihood of cell division although no mitosis occurs, e.g.,
when a lost cell from cell detection/tracking appears closely
to another cell or more than one blob region are detected
within one cell during segmentation. On the other hand, the
likelihood may sometimes be too low even though mitosis oc-
curs, e.g., when cell region segmentation fails during mitosis
due to the changes in cell shape, size, and brightness and de-
tects daughter cell regions after the cells move away from the
birth event location. To resolve these confusions, we first ex-
plicitly detect birth events using the mitosis detection algo-
rithm. For each birth event, we then find the nearest cell from
the birth location and change its status as potentially mitotic
in several following frames. The mitosis hypothesis is consid-
ered only for these potentially mitotic cells. The several frame
delay is allowed because daughter cells are often attached to
each other in several frames right after the birth event; auto-
mated detection and segmentation methods can hardly sepa-
rate individual cells in such a case.

After obtaining all hypotheses between two consecutive
frames, we find the best combination of hypotheses as fol-
lows. Suppose that there are N1 cells and N2 blobs in the
previous and current frames, respectively, and M hypotheses
are established between the two frames. We build a matrix
C = [Cij ], which is an M × (N1 +N2) binary matrix where
Cij = 1 if and only if the i-th hypothesis is involved with the
j-th element of the union of N1 cells and N2 blobs. We then
solve the following integer programming problem.

arg max
x

pTx (13)

s.t. (CTx)i ≤ 1 for i = 1, · · · , N1 +N2

xj ∈ {0, 1} for j = 1, · · · ,M

where p is an M × 1 vector containing all the likelihoods and
(CTx)i is the i-th element of CTx. Solving this optimization
problem yields an M × 1 binary vector x where xi = 1 indi-
cates that the i-th hypothesis is selected as an element of the
best combination. Note that each cell or blob can be selected
at most once due to the constraint (CTx)i ≤ 1.

After the best association is found, if there are remaining
cells in the previous frame, the cells are considered again for
the association between the next two frames. In other words,
the cells are assumed to be undetected in the current frame
and expected to be detected in the following frame. If a track
is continuously not linked with a cell for 10 frames, the track
is eliminated. As to each of the remaining cells in the current
frame, we investigate its neighboring cells. If there is a poten-
tially mitotic cell nearby, the remaining cell is linked with the
potentially mitotic cell as a daughter cell; otherwise, a tempo-
rary track initiates from the remaining cell. Each temporary
track is confirmed as a real track after 10 frames if the track
is linked with cells in most of the 10 frames.

4. EXPERIMENTS

4.1. Data and Ground truth

During the growth of stem cells, phase-contrast microscopy
cell images were acquired every 5min using a Zeiss Axiovert
T135V microscope (Carl Zeiss Microimaging, Thornwood,
NY) equipped with a 5X, 0.15 N.A. phase-contrast objective,
a custom-stage incubator, and the InVitro software (Media
Cybernetics Inc., Bethesda, MD).

In order to obtain training samples of birth events, one
phase-contrast microscopy image sequence of C2C12 cells
consisting of 1013 images (approx. 84.4hrs) was acquired
under control condition. For evaluation of tracking per-
formance, twelve image sequences of C2C12 cells were
acquired under each of four different conditions: control,
FGF2, BMP2, and FGF2+BMP2; as a result, total 48 image
sequences, each of which consists of 600 images (50hrs),
were acquired. Each of these images contains 1392×1040
pixels with a resolution of 1.3µm/pixel.

Manual annotation of birth events was performed on the
first long C2C12 image sequence; as a result, total 673 birth
event samples were obtained. For each birth event, the center
of the boundary between the two daughter cells was marked
when the boundary is first clearly observed. In order to evalu-
ate tracking performance, for each of 48 sequences, three cells
are randomly selected in the initial frame and the cells and
their progeny cells are manually tracked. For manual track-
ing, the center of each cell is marked.

4.2. Evaluation

To measure the contribution of the mitosis detection to cell
tracking, we compare the performances of two tracking sys-
tems: tracking systems without and with the mitosis detec-
tion. For the tracking system without mitosis detection, the
hypothesis regarding mitosis is considered for every cell and
a temporary track initiates from every remaining cell in the
current frame after association due to the absence of informa-
tion on mitosis occurrence and location.

To evaluate the performance of tracking systems, we mea-
sure how much effort is required to obtain the perfect cell lin-
eage tree from the lineage tree constructed by tracking algo-
rithms; lineage tree construction is one of the most important
goals of cell tracking. To quantitatively calculate this effort,
we consider four types of errors: missed mother-daughter re-
lations, switched tracks, untracked frames, and mistracked
frames. Figure 2 illustrates these four types of errors. To ob-
tain the perfect cell lineage from tracking results, all of these
errors are required to be fixed.

Among these errors, we count the occurrences of the first
two errors, missed mother-daughter relations and switched
tracks, since they are related to mitosis detection. If actual mi-
tosis is not detected, the trajectory of the mother cell does not
branch and thus the relation between mother-daughter cells



Fig. 2. Illustration of four types of errors that need to be fixed
to obtain the perfect lineage tree from tracking results: (a)
missed mother-daughter relations (1-2 and 1-4), (b) switched
track (from 2 to 3), (c) untracked frames (between two 4s),
and (d) mistracked frames. The lineage tree consisting of
black thin lines represents ground truth. The red thick lines
above the ground truth lineage tree represent tracking results.
The numbers above tracks indicate track IDs. Among these
errors, the errors (a) and (b) are related to mitosis detection.

is not captured. On the other hand, if mitosis is incorrectly
detected when no mitosis occurs, the trajectory of the cell
wrongly branches and thus the track of the cell is switched.
When considering mother-daughter relations, we allow ten
frame delay because the regions of two daughter cells are hard
to be separately identified right after cell division. In other
words, mother-daughter relations are considered to be missed
if they are not discovered within ten frames after the daughter
cells are born. The other two errors, untracked frames and
mistracked frames, are not relevant to mitosis detection, but
to cell region detection and segmentation; thus, these errors
remain regardless of mitosis detection. Since the objective of
this paper is to show the contribution of mitosis detection to
cell tracking systems, we do not report these errors.

5. RESULTS AND DISCUSSIONS

Cell tracking accuracy significantly increased after incorpo-
rating the birth event information provided by the mitosis
detection algorithm [11]; the numbers of missed mother-
daughter relations and switched tracks were considerably
reduced as shown in Figure 3 and Table 1. Compared to
the tracking system without mitosis detection, the system
with mitosis detection achieved on average 39%, 28%, 51%,
and 46% improvements in detecting mother-daughter cell
relations and 16%, 11%, 30%, and 26% improvements in
reducing switched tracks for control, FGF2, BMB2, and
FGF2+BMP2 conditions, respectively. In total, 42% and

21% improvements were achieved in terms of these two mea-
sures. The p-values obtained by ratio paired t-tests confirm
that these improvements are statistically significant. The per-
formance improvement in terms of missed mother-daughter
relations is greater than that of switched tracks because track-
ing switching is only partially related to mitosis detection in
that it can occur in other situations, such as cell overlapping.

The advantages of precise mitosis detection in cell track-
ing systems can be summarized as follows. First, precise mi-
tosis detection reduces the numbers of undetected mitosis as
well as mitosis candidates. Without mitosis detection, much
more hypotheses regarding mitosis may be established, which
degrades the efficiency of cell tracking systems, particularly
when cells are clustered together. In addition, mitosis which
is not captured by the association with the mitosis hypothe-
sis can be detected in the track maintenance step if mitosis
detection is involved. Second, mitosis detection is helpful to
correctly identify a mitotic cell and the mother-daughter re-
lations. Without mitosis detection, a neighboring cell is of-
ten determined as a mother cell particularly when the cell is
in contact with one of the daughter cells; on the other hand,
precise information on birth location identifies a real mitotic
cell. Lastly, mitosis detection makes cell tracking more robust
to incorrect segmentation. In segmentation, artifacts or parts
of background are often detected as cell regions; in addition,
one cell is sometimes detected by more than one cell region.
If either case lasts for several frames, a mitosis hypothesis is
generally considered with a high likelihood to handle addi-
tional cell regions. Mitosis detection avoids track switching
by excluding the mitosis hypothesis in such situations.

The lineage tree in Figure 4(a) clearly demonstrates that
undetected and incorrectly detected mitosis are major causes
of tracking failure. The precise birth event detection reduces
missed mother-daughter relations due to undetected mitosis
as well as false branching due to incorrectly detected mitosis,
resulting in more accurate tracking and lineage construction
as shown in Figure 4(b). Figure 5 shows sample images il-
lustrating the tracking results of the systems without and with
mitosis detection. As shown in the figure, the tracking system
with mitosis detection correctly reveals mother-daughter rela-
tions when another cell is located nearby and cell segmenta-
tion is incorrectly performed while the tracking system with-
out mitosis detection fails.

6. CONCLUSIONS

In this paper, we show that cell tracking systems can be con-
siderably improved by the mitosis detection that precisely lo-
calizes the time and location of cell birth. Extensive experi-
ments on 48 C2C12 stem cell populations clearly demonstrate
that mitosis detection helps to avoid false branching of cell
tracking as well as more accurately reveal mother-daughter
relations, significantly improving tracking performance and
reducing human effort to construct quality stem cell lineages.



Fig. 3. Tracking performance comparison between tracking systems without (x-axis) and with (y-axis) mitosis detection in
terms of the numbers of missed mother-daughter relations (left) and switched tracks (right). The points below the diagonal lines
indicate that tracking is improved through the mitosis detection. After the mitosis detection is incorporated, missed mother-
daughter cell relations and switched tracks were reduced in 47 out of 48 sequences and in 37 out of 48 sequences, respectively.

Error (a): missed mother-daughter relation
Control FGF2 BMP2 FGF2+BMP2 Total

Geometric mean of error ratios (B/A) 0.61 0.72 0.49 0.54 0.58
Geometric STD of error ratios (B/A) 1.37 1.23 1.87 1.60 1.58

p-value 0.0002 0.0001 0.0014 0.0006 <0.0000
Error (b): switched track

Control FGF2 BMP2 FGF2+BMP2 Total
Geometric mean of error ratios (B/A) 0.84 0.89 0.70 0.74 0.79
Geometric STD of error ratios (B/A) 1.41 1.19 1.28 1.35 1.33

p-value 0.0560 0.0209 0.0003 0.0035 <0.0000
A: number of errors without mitosis detection, B: number of errors with mitosis detection

Table 1. Tracking performance comparison between tracking systems without and with mitosis detection in terms of the
geometric mean and STD of the error ratios. When the mitosis detection is incorporated, the number of missed mother-daughter
relations was reduced on average by 39%, 28%, 51%, and 46%; the number of switched tracks by 16%, 11%, 30%, and 26%
in control, FGF2, BMP2, and FGF2+BMP2 conditions, respectively; in total, 42% and 21% performance improvements were
achieved in terms of the numbers of errors (a) and (b), respectively. The p-values obtained by ratio paired t-tests show that these
performance improvements due to the mitosis detection is statistically significant.
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