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Abstract. Many important applications fall into the
broad class of iterative convergent algorithms. Paral-
lel implementation of these algorithms are naturally ex-
pressed using the Bulk Synchronous Parallel (BSP) model
of computation. However, implementations using BSP
are plagued by the straggler problem, where every tran-
sient slowdown of any given thread can delay all other
threads. This paper presents the Stale Synchronous Paral-
lel (SSP) model as a generalization of BSP that preserves
many of its advantages, while avoiding the straggler prob-
lem. Algorithms using SSP can execute efficiently, even
with significant delays in some threads, addressing the
oft-faced straggler problem.

1 Introduction

Machine learning algorithms have become an important
part of many applications, including document classifica-
tion, movie recommendations, bioinformatics, and more
(Table 1). For instance, collaborative filtering algorithms
are used to recommend movies, songs, and other prod-
ucts to users based on their previous taste, purchases,
and browsing history. Sparse regression models are ap-
plied to genomes to determine which genes are most
likely to be responsible for the traits being examined (e.g.,
Alzheimer’s).

With increased use, increasingly complex algorithms
are being deployed on larger data sets, leading to per-
formance problems. A state-of-the-art document topic
modeling algorithm may take many hours to analyze a
large corpus. For instance, running a Latent Dirichlet
Allocation [9] (LDA) algorithm over a corpus of 300,000
documents [2] takes about 10 days [18].

To reduce computational time, application and algo-
rithm designers are turning to parallel and distributed im-
plementations running on clusters of servers [18]. While
the diversity of these algorithms and applications makes
it difficult to create a general-purpose method of paral-
lelizing them, many of them share some important traits.
In this paper we examine iterative convergent algorithms,
the class of algorithms that start with some guess as to the
problem solution and proceed through a number of itera-
tions that each improve this guess. The key property that
makes this approach work is convergence, which allows

Algorithm Example applications
Latent Dirichlet Allocation (LDA) News classification
Low-rank matrix factorization Movie/music recommendations
Sparse regression Genome-wide analysis
Conjugate gradient Linear system solvers
Principal eigenvector Web search/page rank
All-pairs shortest path Mapping and route planning

Table 1: Examples of iterative convergent algorithms, and
some of their applications.

such algorithms to find a good solution given any starting
state.

Distributed implementations of iterative convergent al-
gorithms tend to follow the Bulk Synchronous Parallel
(BSP) computational model. In this model, the applica-
tion operates on a snapshot of the data that was produced
by the previous iteration. To do this, all threads must exe-
cute the same iteration at the same time. This per-iteration
barrier synchronization is the cause of the straggler prob-
lem, which can significantly reduce the performance of
these algorithms.

Succinctly, the straggler problem occurs when a small
number of threads (the stragglers) take longer than the
others to execute a given iteration. Because all threads
must be synchronized, all threads will proceed at the
speed of the slowest thread in each iteration. This problem
is only expected to get worse with increased parallelism:
as the number of servers increases, the probability of
having a straggler in any given iteration also increases.

Existing systems try to avoid the straggler problem
in a number of ways. Some systems, typical in High-
Performance Computing, avoid using any hardware or
software components that may introduce “jitter”. Other
systems restrict the communication patterns and interde-
pendence between threads. Yet other systems allow the
threads to run asynchronously, avoiding stragglers but
potentially complicating the algorithm.

We propose a middle ground between full synchroniza-
tion and no synchronization: allowing some threads to
proceed ahead of others, by a certain amount. The Stale
Synchronous Parallel model (SSP) relaxes consistency
and freshness guarantees without completely eliminating
them. In many cases an SSP-based system can behave,
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and perform, like a best-effort system. However, it will
detect when data becomes too unsynchronized, and will
partially synchronize threads to avoid unbounded data
staleness.

This paper makes several contributions. It introduces
the Stale Synchronous Parallel computational model and
contrasts it with Bulk Synchronous Parallel. It shows how
SSP can mitigate transient straggler effects, including
via initial experiments with a prototype system called
LazyTables.

2 Background

This section describes iterative convergent algorithms, the
types of applications that use them, and current models
for running these algorithms in parallel.
2.1 Iterative convergent algorithms

Iterative convergent algorithms are an important class
of algorithms with applications in natural language pro-
cessing, genomics, scientific computing, and Internet ser-
vices (Table 1). Often they have some space of potential
solutions to search (e.g. N-dimensional vectors of real
numbers), and an objective function that evaluates how
good a potential solution is. The goal of these algorithms
is to find a solution with a large (or in the case of mini-
mization, small) objective value. Two of the listed exam-
ples – eigenvector and shortest path – are exceptions to
this rule. The objective function is not explicitly defined
or evaluated. Rather, they continue to iterate until the
solution does not change (significantly) from iteration to
iteration.

These algorithms start with an initial state S0 with some
objective value f (S0). They proceed through a set of
iterations, each one producing a new state Sn+1 with a
potentially improved solution (e.g. greater objective value
f (Sn)> f (Sn+1)). Eventually they reach a stopping con-
dition and output the best known state.

A key property of these algorithms is that they will
converge to a good state, even if there are minor errors in
their intermediate calculations.
2.2 Bulk synchronous parallel

These algorithms are often parallelized with the Bulk
Synchronous Parallel model (BSP). As in the sequen-
tial version of the algorithm, BSP applications proceed
through a series of iterations. In BSP the algorithm state is
stored in a shared data structure (often distributed among
the threads) that all threads update during each iteration.

A single iteration of BSP consists of three steps. In
the computation phase, all threads compute on the previ-
ous iteration’s output in parallel. In the communication
phase, threads produce new output, sharing it either by
explicit communication, or by writing to a shared data
structure. Lastly, in the synchronization phase, threads

execute a barrier to ensure that they don’t begin the next
computation step until all other threads have finished the
communication step.

BSP provides a simple and easy-to-reason-about model
for parallel computation, and can be easily applied to
most iterative convergent algorithms. However, a well-
known problem with BSP is the straggler problem, where
each iteration proceeds at the speed of the slowest thread.
This problem only gets worse as the level of parallelism
is increased.

2.3 Stragglers in BSP
Because of the frequent and explicit synchronization,

each iteration proceeds at the pace of the slowest thread,
leading to the straggler problem. Because of random vari-
ations in execution time, with a large number of threads
there is a high probability that one of them will run un-
usually slowly in any iteration. This causes delay in the
entire application for every iteration.

Stragglers can occur for a number of reasons includ-
ing heterogeneity of hardware [14], hardware failures [6],
imbalanced data distribution among tasks, garbage collec-
tion in high-level languages, and even operating system
effects [4, 19]. Additionally, there are sometimes algorith-
mic reasons to introduce a straggler. Many algorithms use
an expensive computation as a stopping criterion. Even
if this computation is only run on a single thread, other
threads will have to wait for it to finish before they can
start the next iteration.

2.4 Existing solutions
The High Performance Computing community – which

frequently runs applications using the BSP model – has
made much progress in eliminating stragglers caused by
hardware or operating system effects [19, 12, 22, 11].
While these solutions are very effective at reducing “op-
erating system jitter”, they are not intended to solve the
more general straggler problem. For instance, they are
not applicable to applications written in garbage collected
languages, nor do they handle algorithms that inherently
cause stragglers during some iterations.

Another class of solutions attempts to reduce the need
for synchronization by restricting the structure of the com-
munication patterns. GraphLab [16, 17] programs struc-
ture the computation as a graph, where data can exist on
nodes and edges. All communication occurs along the
edges of this graph. If two nodes on the graph are suffi-
ciently far apart they may be updated without synchroniza-
tion. This model can significantly reduce synchronization
in some cases. However, it requires the application pro-
grammer to specify the communication pattern explicitly.

Lastly, it is possible to ignore consistency and synchro-
nization altogether, and rely on a best-effort model for
updating shared data. Yahoo! LDA [5] as well as most
solutions based around NoSQL databases rely on this
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model. While this approach can work well in some cases,
it may require careful design to ensure that the algorithm
is operating correctly.

3 Stale Synchronous Parallel

To address the straggler problem without giving up the
benefits of synchronization, we propose a new compu-
tational model based on BSP, which we call Stale Syn-
chronous Parallel (SSP). Like BSP, SSP assumes that the
program consists of a number of threads, each proceed-
ing through the same number of iterations. During each
iteration each thread reads and updates some shared state.

Programs using the SSP model are similar to those us-
ing BSP, however, they must be aware of some crucial
differences in the consistency model which can affect al-
gorithm design as well as performance. These differences
can be described in terms of the following properties. [21]

Bounded staleness Data that is read by a thread may
be stale (missing some recent updates). In other words,
there is a delay between when an update operation com-
pletes, and when the effects of that update are visible. An
application can put an upper bound on how stale the result
of each read() operation may be. In SSP, this bound is
expressed in terms of the number of iterations that have
elapsed.

Read-my-writes If a thread updates a value, all sub-
sequent read() operations by that thread will see the
update (unless it is overwritten by a later update). In other
words, threads see their own updates immediately, even if
updates from other threads may be delayed (staleness).

Soft synchronization At the end of each iteration,
threads execute a “soft barrier”. Unlike a full barrier
(as in BSP) which blocks until all threads are at the same
iteration, a soft barrier blocks the thread until all threads
are within a specified range of the current iteration. For
instance, a soft barrier with a parameter of “1” finishes
when no thread is more than 1 iteration behind the calling
thread.

The Stale Synchronous Parallel computational model
can be thought of as BSP with the addition of bounded
staleness, read-my-writes, and soft synchronization. It is
important to note that these are not historical queries: the
system may return fresher data than the specified bound.
In fact, it may return fresher updates from some threads,
and stale updates from others. Specifically, the system
must incorporate all updates from the current thread to
implement read-my-writes.

Figure 1 depicts these freshness properties graphically.
The diagram on the left represents an application with 4
threads using the BSP model. In this diagram, threads
2 and 4 are executing in iteration 3, while threads 1 and
3 are blocked waiting for them to finish. When these

threads read data, they are guaranteed to see all updates
up to the end of iteration 2.

The diagram on the right shows the same application,
but using the SSP model with a fixed staleness of 1. In this
diagram, threads 2 and 4 are still executing in iteration
3. However, because they are willing to use stale data,
threads 1 and 3 did not have to wait for the other threads
to complete that iteration. Thread 1 is currently executing
in iteration 4. Thread 3 is blocked at the start of iteration
5 because it requires data from iteration 3 to continue.
3.1 Test Implementation

We built a prototype system called LazyTables that im-
plements the Stale Synchronous Parallel model to support
distributed machine learning applications. LazyTables is
a “parameter server” that provides the abstraction of a set
of shared sparse matrices that all processes can access.
These matrices are stored in memory, distributed across a
set of servers.

LazyTables provides an API similar to the Piccolo [20]
system. It provides read and update operations including
get(), get row(), put() and increment(). While
Piccolo provides support for a generic update() opera-
tion, LazyTables currently supports only increment(),
which is sufficient for our test cases. Generic updates
are necessary for some other algorithms such as all-pairs
shortest-path, which uses “min” as the update operator.

4 Experiments with masking stragglers

The main goal of our initial experiments is to demonstrate
that the Stale Synchronous Parallel model can mask the
effects of stragglers on performance. Additionally, we
show example algorithms that are “staleness tolerant”,
and exploiting staleness can improve their convergence
behavior. However, a detailed examination of these latter
points is left as future work.

Our LazyTables prototype is written in C++, using Ze-
roMQ [3] for asynchronous communication. Data, on
both the servers and the client caches, is stored in RAM
using the C++ standard template library. All experiments
are conducted on virtual machines in the CMU OpenCir-
rus [8] cluster. These VMs are configured with 8 cores
and 15GB of RAM. No other applications or virtual ma-
chines are running on the hosts concurrently with the
experiments.
4.1 Stragglers

To demonstrate the effect of stragglers, we modified
the LazyTables client to insert arbitrary delays. At the
end of each iteration, one thread executes a sleep() call
for a configurable number of seconds. For instance, in
iteration 0, thread 0 sleeps, in iteration 1 thread one sleeps,
etc. We ran 50 iterations of our LDA application on the
aan short [13] data set, and measured the total time. This
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Figure 1: Diagram of Bulk Synchronous Parallel and Stale Synchronous Parallel execution state. The thick black bars
indicate data that is visible to all threads. The gray bars indicate data that may be visible, but is not guaranteed. The
lines indicate thread progress: arrows are runnable threads, while blocked threads are terminated with vertical lines.
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Figure 2: Time to execute 50 iterations of LDA using the
aan short data set.

experiment was performed with 8 application threads all
running within the same process on a single machine.
With this configuration, a single iteration takes between 6
and 9 seconds.

Figure 2 shows the results of this experiment. Observe
that with a staleness bound of 0 (first group of bars), a
4s delay slows down the application by about 180s, and
a 12s delay slows down the application by about 590s.
This is expected when a single slow thread can block all
others: 4s per iteration for 50 iterations is 200s, and 12s
per iteration for 50 iterations is 600 seconds.

When the staleness bound is increased to 1 (second
group of bars), a 4s delay no longer has a significant
impact on overall execution time. However, a 12 second
delay causes an overall delay of about 230s, or 4.6s per
iteration. Again, this is expected: a staleness bound of
1 can mask about 1 iteration’s worth of delay. In this
application an iteration takes 6 to 9 seconds. This means
that a 12 second delay is only partially masked, leaving
3-6 seconds of actual delay per iteration.

With a staleness bound of 2 (third group of bars), even
a 12 second delay causes little increase in execution time.
However, in this case the overall amount of work added
by the delay is significant. 12 seconds, averaged over 8
iterations gives a delay of 1.5 seconds per iteration, or 75

seconds for 50 iterations. Indeed, the actual difference
between the no delay and 12s delay times is 77 seconds.

Figure 3 shows a “swimlane diagram” of the first 100s
of this experiment for four different configurations. (a)
shows a synchronous execution (staleness 0) with no de-
lay. The vertical alignment of the bars is caused by threads
executing the same iteration at the same time. (b) rep-
resents a synchronous execution with a 4s delay. Like
in the previous diagram, all threads begin executing an
iteration at the same time. However, one thread is delayed
in each iteration, visible by the diagonal (upper-left to
lower-right) pattern of elongated bars. Other threads must
wait for the delayed thread to finish before they can start
their next iteration. As a result, fewer iterations are com-
pleted in the 100s window shown, as seen in the smaller
number of stripes.

The bottom two diagrams show the asynchronous case
(staleness 1). (c) is the case with no delay. Unlike in the
synchronous case, threads are not waiting for one another
to finish before starting their next iteration. This is visi-
ble in the raggedness of the vertical lines in the diagram.
Even without the artificial staleness, the reduced synchro-
nization improves iteration speed. Lastly, (d) shows the
asynchronous execution with a 4s delay. In this case,
each thread can proceed at its own pace, within the stal-
eness bounds, significantly reducing the impact of the
stragglers.

4.2 Performance and convergence
Figure 4 shows the convergence behavior of the LDA

algorithm over time. These results were generated using
a cluster of 32 machines with 8 cores each, processing
the “20 Newsgroups” data set [1]. These results demon-
strate that LDA will converge when running partially
asynchronously. Furthermore, increased staleness im-
proves convergence performance: the staleness=3 setting
often takes half the time to reach a particular log likeli-
hood, compared to the synchronous setting. However, the
bounds on staleness are important for the algorithm to
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Figure 3: Swimlane diagram of the first 100s of execution. Alternating gray and black bars indicate progress from one
iteration to the next. The frequency of stripes indicates iteration speed, so more stripes corresponds to faster iteration
execution.

 0

 100

 200

 300

 400

 500

 600

 700

Ti
m

e 
(s

)

Log likelihood

Time to converge for a range of LL

Staleness = 0
Staleness = 1
Staleness = 2
Staleness = 3

Figure 4: Time needed for LDA to converge to a particular
log likelihood value. Log-likelihood measures the prob-
ability of the current solution — a higher log-likelihood
means a higher probability, and thus better, solution.

converge correctly. As the staleness setting was increased
past 4 the convergence behavior began to degrade (not
shown in graph). We ran a similar experiment for a sparse
regression algorithm (LASSO), and saw similar results
to LDA (omitted due to space constraints). We are also
experimenting with low-rank matrix factorization.

5 Open questions

Section 2 lists a number of algorithms that we believe can
tolerate staleness in their computations. Section 4.2 pro-
vides evidence that two of these applications can, in fact,
tolerate staleness, and their performance is improved as
a result. However, this is certainly not an exhaustive list.
A formal classification of staleness tolerant algorithms
would be an important contribution. What properties of
the algorithm (and possibly input data) allow it to find
a correct answer while working with stale data? Is the

convergence property that we alluded to, if formally de-
fined, necessary and/or sufficient for a staleness-tolerant
algorithm?

Another important area of future work is to describe
the Stale Synchronous Parallel model more formally, and
to put it in the context of other relaxed consistency mod-
els. Causal consistency and its variants have attracted
renewed attention lately as a way to avoid latencies in
geographically-distributed systems [15]. Could ideas
from this work be applied to staleness-tolerant algorithms,
or even to SSP itself.

Another interesting question involves the definition
of “staleness”. Due to the nature of the algorithms we
are targeting, SSP defines staleness in terms of iteration
count. However, many algorithms do not proceed in strict
iterations. Even among those that do, other notions of
staleness may be relevant. For instance, an application
may want to read a value, ensuring that the result is no
more than 10% different from the most up-to-date value.
Speculative execution could be used to allow threads to
proceed, while repeating work when values actually did
differ by more than the requested amount.

6 Conclusions

We propose Stale Synchronous Parallel as a new model
for parallel computation. SSP allows applications to spec-
ify a freshness requirement when reading shared data. By
exploiting the application’s tolerance for staleness, a sys-
tem implementing SSP can significantly reduce the effects
of stragglers on execution time. Initial experiments with a
parameter server prototype, called LazyTables, show that
SSP can significantly improve performance and is worth
further development and study.
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