
Interfacing Reconfigurable Logic with a CPU

1 Introduction

Kip Walker, Mihai Budiu, Seth Copen Goldstein
{kwalker,mihaib,seth} @cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Reconfigurable computing devices have achieved sub-
stantial performance improvements over conventional pro-
cessors on some computational kernels. These benefits
derive from hardware customization which avoids the mis-
match between the basic requirements of the algorithms
and the architectures of the processors. A reconfigurable
fabric alone is not sufficient for general-purpose computing
since it can be ill-suited to executing entire programs due
to space limitations, dataflow-centricity, and inefficiency at
implementing some operations (e.g. floating-point arith-
metic). These observations have led to the appearance of
numerous designs which place some form of reconfigurable
logic under the control of a general-purpose processor.

In this abstract we explore the ways in which a reconfig-
urable fabric can be interfaced with a general-purpose pro-
cessor. While off-chip reconfigurable fabrics have proven
to be quite effective at performing streaming, data-intensive
computations, they require large streams of data to over-
come the latency between the devices. Here we explore
the design space for an on-chip fabric, i.e., a reconjigurable
function unit(RFU). An RFU allows smaller portions of ap-
plication to be mapped to the fabric in the form of custom
instructions. Though the speedups achieved for stream-
based computations will in general be much larger than
those for custom instructions, they are limited to a smaller
class of applications. Custom instructions, however, can
be found in a larger class of programs, and compiler tech-
niques can automatically create them.

The basic tradeoff in augmenting a processor with a
reconfigurable function unit is to maximize both the oppor-
tunity for customization and the speedups possible while
minimizing hardware costs and runtime overheads. To
broaden the range of computations that may be mapped
to the fabric, many features are worth considering such
as maintaining state in the fabric, supporting simultaneous
direct access to many registers, and making memory acces-
sible to the RFU. However, each of these options carries an
associated cost in terms of implementation and overhead:
saving fabric state on context switches, increasing the num-
ber of ports on the register file, and dealing with memory
consistency between the processor and the fabric.

Several designs have proposed the integration of a given
reconfigurable fabric with a general-purpose fixed proces-
sor and have reported some exciting performance results.

Some important questions have not been answered by these
projects, such as: Are there enough opportunities for cus-
tom instructions to warrant including them in a hybrid pro-
cessor design? Which fabric features are essential to attain-
ing speedups for different benchmarks? How many inputs
and outputs are needed to support useful custom instruc-
tions?

2 The RFU Design Space

The designer of a hybrid processor faces numerous de-
cisions. In this abstract we outline the major axis of the
design space. Table 1 shows the design choices made in
previous work.

Access method Access to data is one of the fundamen-
tal considerations in any function unit. Primary sources
and sinks of data are the register file and main memory
or the first-level data cache. While streaming operations
obviously need efficient access to memory, there are many
opportunities for finding custom instructions (CIS) that read
and write only data from a register file. Register ports are
an expensive component of processors; one way to avoid
overloading the main register file(s) is to employ a shadow
registerjile. Alternatively a designer may choose to require
explicit moves of the data using coprocessor instructions.

Number of I & Os In order to increase the opportunities
for creating custom instructions a designer can choose to
increase the number of inputs and outputs allowed for a
custom instruction. RFus which require explicit moves
allow unlimited numbers of inputs and outputs, without
requiring additional register ports.

Input selection When inputs come from the register file,
the registers may be read by the processor and passed to
the fabric, or the configuration might hard-code the indices
of the inputs. The latter can be attractive since minimal
control overhead is required from the CPU to invoke the
custom instruction. However, it complicates the job of the
code scheduler and register allocator.

Input width The width of the input and output buses are
critical to accessing the power of a reconfigurable logic
array. Many of the existent designs include a fabric that
is closely matched to the CPU’s natural word size. While
wider inputs to the RFU increase flexibility, they require
extra hardware to arrange the data.

3 17
0-7695-0871-5/00 $10.00 0 2000 IEEE

mailto:cs.cmu.edu

Transactions A direct-style invocation appears as an
atomic operation in the instruction stream, although the
latency may be large and other instructions may execute
concurrently. The coprocessor-style invocation serves as a
split-transaction model. This model would favor the im-
plementation of software-pipelined operations.

Autonomy A truly datapath-centric RFV requires the
core to handle all control flow. A more autonomous design
would allow for the loop control to be executed by the fabric
itself, freeing the CPU to execute independent instructions.
A more complex design would allow for completely au-
tonomous RFU.
Clocking It has been argued that to be useful, the RFU
must run at a rate that is reasonably matched with that of the
processor core. Whatever clock rate is chosen for the fabric,
there is a choice between synchronous and asynchronous
clocking.

Exit method Mapping larger sections of program code
to the RFW may require support for hyperblocks: code
segments with a single entry point and multiple exits. When
the RFU completes, the CPU must determine which exit
was taken in order to continue executing.

One solution is for the RFU to set a condition value
for the CPU to check. The processor can switch on this
value and jump to the correct continuation code. A simpler
implementation option is to always fall-through to the next
instruction, but have the fabric return a continuation address
which the CPU jumps to.

Pipelining Efficient mapping of small loops without fab-
ric autonomy requires the ability to pipeline RFU opera-
tions.

State Some of the fabrics need to keep internal state in
registers: for instance loop-carried dependencies and for
double-pipelining. Allowing state, however, can cause run-
time overheads when the configuration needs to be switched

out.

3 Conclusion

Closely coupling a reconfigurable fabric with a conven-
tional processor enables application speedups through both
stream-based computations and custom instructions. While
more potential speedup is available from streaming instruc-
tions, the custom instructions can easily be synthesized au-
tomatically from unannotated C code, and can applied to a
wider range of applications. If the RFU can be designed to
provide even a modest speedup for all applications through
custom instructions, then it will be available to bring the
tremendous speedups shown for streaming functions.

Acknowledgements

This work was supported by DARPA contract DABT63-
96-C-0083 and an NSF CAREER award.

References

[l] S . Hauck, T. W. Fry, M. M. Hosler, and J. F? Kao. The Chimaera
reconfigurable functional unit. In IEEE Symposium on FPGAs for
Cusrom Computing Machines(FCCM '97). pages 87-96, April 1997.

[2] John R. Hauser and John Wawrzynek. GARP: A MIPS processorwith
a reconfigurable coprocessor. In J. Arnold and K. L. Pocek, editors,
Proceedings of IEEE Workshop on FPGAs for Cusrom Computing
Machines, pages 12-21, Napa, CA, April 1997.

[3] R. Razdan and M. D. Smith. A high-performance microarchitecture
with hardware-programmable functional units. In Proceedings ofrhe
27rh Annual Inrernational Symposium on Microarchitecture, pages
172-80. IEEE/ACM, November 1994.

141 C. Rupp, M.Landguth, T. Garverick,E. Gomersall, H. Holt, J. h o l d ,
and M. Gokhale. The NAPA adaptive processing architecture. In IEEE
Symposiumon FPGAs for Custom computing MachinesfFCCM '98),
April 1998.

[5] R. Wittig and P. Chow. OneChip: An FPGA processor with reconfig-
urable logic. In IEEE Symposium on FPGAs for Cusrom Computing
Machines, 1996.

318

