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Abstract—A major obstacle to successful high-level synthesis
(HLS) of large-scale application-specified integrated circuit sys-
tems is the presence of memory accesses to a shared-memory
subsystem. The latency to access memory is often not statically
predictable, which creates problems for scheduling operations
dependent on memory reads. More fundamental is that depen-
dences between accesses may not be statically provable (e.g., if
the specification language permits pointers), which introduces
memory-consistency problems. Addressing these issues with static
scheduling results in overly conservative circuits, and thus, most
state-of-the-art HLS tools limit memory systems to those that
have predictable latencies and limit programmers to specifica-
tions that forbid arbitrary memory-reference patterns. A new
HLS framework for the synthesis and optimization of memory
accesses (SOMA) is presented. SOMA enables specifications to
include arbitrary memory references (e.g., pointers) and allows
the memory system to incorporate features that might cause the
latency of a memory access to vary dynamically. This results in
raising the level of abstraction in the input specification, enabling
faster design times. SOMA synthesizes a memory access network
(MAN) architecture that facilitates dynamic scheduling and order-
ing of memory accesses. The paper describes a basic MAN con-
struction technique that illustrates how dynamic ordering helps
in efficiently maintaining memory consistency and how dynamic
scheduling helps alleviate the variable-latency problem. Then, it
is shown how static analysis of the access patterns can be used
to optimize the MAN. One optimization changes the MAN inter-
connect topology to increase concurrence. A second optimization
reduces the synchronization overhead necessary to maintain mem-
ory consistency. Postlayout experiments demonstrate that SOMA’s
application-specific MAN construction significantly improves
power and performance for a range of benchmarks.

Index Terms—Communication synthesis, dataflow synthesis,
high-level synthesis (HLS), interface design.

I. INTRODUCTION

THE SCALING of microchip fabrication technologies
together with the drive for shortened design cycles

have pushed the productivity requirements on chip designers.
Between 1997 and 2002, the market demand reduced the typ-
ical design cycle by 50%. As a result of larger chip sizes,
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shrinking geometries, and the availability of more wiring layers,
the design complexity increased by 50 times in the same
period [1]. As the increase in design productivity continues
to lag behind increasing application-specific integrated cir-
cuit (ASIC) complexity [2], high-level synthesis (HLS) tools
can play a central role in delivering high-performance low-
power large-scale ASICs from abstract complex behavioral
specifications [3].

With one major caveat, today’s HLS tools can often syn-
thesize efficient high-performance circuits. The caveat is that
specifications must make all memory dependences statically
explicit. Large-scale applications with dynamic memory depen-
dences continue to present an obstacle to HLS for two main
reasons: 1) In a hierarchical memory system, accesses may
have variable latency, e.g., a cache miss. Hence, these cannot be
statically scheduled. 2) More importantly, many natural specifi-
cations include memory-reference patterns whose dependences
cannot be statically determined. For example, even state-of-
the-art sophisticated (and often unscalable) analysis techniques
can only disambiguate 60% of all memory dependences in C
programs [4]. We know of no HLS solutions that can synthesize
memory references with such properties. Although some HLS
tools allow some type of memory abstraction, they all impose
heavy restrictions on the use of these abstractions. For example,
many HLS tools impose a fixed access latency for memory
accesses [3], [5], [6]. This is usually the worst case (and often
unacceptable) latency for a memory access, and, in general, all
of the tools restrict the input specification to statically explicit
memory dependences. Pointer aliasing, for example, is disal-
lowed in System-C [7]. These restrictions severely limit the
class of specifications to which HLS can be applied. Embedded
system-on-a-chip (SoC) design is an example of an application
space that can benefit from the relaxation of these restrictions.
The software specification of many streaming applications in
the Mediabench suite [39], for example, are currently written in
ANSI-C with pointer aliasing. If such applications can be syn-
thesized by an HLS flow without modifications to the source,
then the design cycle time can be greatly reduced.

There are two main contributions in this paper. First, we
describe a synthesis framework (SOMA) that makes HLS
more general by efficiently synthesizing specifications and
systems that include dynamic memory dependences. This
framework, called synthesis and optimization of memory
accesses (SOMA), can be embedded within any HLS flow (e.g.,
System-C), thus expanding the capabilities of the tool.

Second, this paper introduces a highly scalable pipelined
distributed arbitration network architecture [memory access
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network (MAN)] that provides for communication between
the circuit and the shared-memory resource. This architecture,
called MAN, enables higher concurrency among memory
accesses, thus raising the memory-level parallelism (MLP)
of the application at runtime. For a given input specification
(Section III), SOMA synthesizes the MAN, which also im-
plements a dynamic synchronization mechanism that resolves
ordering dependences (Section IV) at runtime.

In addition, we present two optimization techniques that
improve the basic MAN architecture. Concurrency-based (CB)
MAN construction (Section V), performs a static analysis of
the patterns of memory accesses in the source application
to increase concurrency and reduce congestion in the MAN.
The goal of early-token-return (ETR)-based MAN construction
(Section VI) is to reduce the dynamic synchronization overhead
needed to enforce memory-ordering dependences. This over-
head can be large due to conservative design decisions in the
basic architecture. We identify the benefits of each technique
and discuss how they can be combined together in a memory
synthesis flow.

SOMA has been integrated in the HLS toolflow, the compiler
for application-specific hardware (CASH), which synthesizes
unrestricted ANSI-C programs into pipelined clockless circuits
[8]. We use postlayout simulation of CASH-generated circuits
to highlight the usefulness of our concurrency analysis, and the
robustness of the heuristics applied, in improving the MAN
performance (Section VII). The techniques described in this
paper can easily be adapted to HLS flows that use other
design styles, e.g., globally asynchronous locally synchronous
(GALS), clocked synchronous, etc.

II. RELATED WORK

A. Specification Support

There are four broad categories of work that relate to sup-
porting memory references in HLS.

1) Memory-size estimation and mapping: A vast body of
work examines the ideal sizing of memory modules in
order to customize them to the particular application’s
needs [9]–[13]. Séméria et al. [14] described how data
structures in ANSI-C can be allocated into separate mem-
ories. In particular, they present an implementation of the
malloc/free constructs in C used for dynamic memory
allocation.

2) Memory-redundancy elimination: Kolson et al. [15]
uses tree height reduction to consider memory-access
latencies and redundancies in forming a schedule. A
recent study by Stitt et al. [16] shows how words recently
read from memory can be reused.

3) Access ordering and access scheduling: A huge body
of work in HLS systems addresses the problem of sta-
tic scheduling in memory-intensive applications [5], [6],
[17]–[19]. Most of these efforts start with a control
dataflow-graph specification, where memory references
are explicitly marked (i.e., statically disambiguated).
They differ in the static-scheduling algorithm used, and
may even assume that memory accesses incur fixed la-

tencies [5], [6]. There are also some efforts that simul-
taneously consider both memory-access scheduling and
memory allocation [20], [21].

4) Tool support: A number of C-like toolflows [22]–[27]
define synthesizable subsets of C, but they all require
static memory-reference disambiguity. This limitation is
also present in flows that start from System-C [7].

The first two categories contain research that is orthogonal to
the focus of our paper. Methods from these areas can be used in
conjunction with our techniques. The common feature among
all the studies in the last two categories is that they all perform
static scheduling and rely on statically disambiguated mem-
ory references. Static scheduling of dynamically dependent
memory operations results in overly conservative worst case
schedules, and hence, none of the above techniques address
this problem.

Our study differs from all of the above and, to the best of
our knowledge, is the first HLS system that can support in-
put specifications that can include arbitrary memory-reference
patters, i.e., a specification can include memory references
that cannot be disambiguated until runtime. Our tool uses an
explicit memory-dependence representation, which becomes a
runtime synchronization construct. Hence, all memory accesses
are dynamically scheduled once their dependences have been
dynamically resolved.

B. Architecture Support

Although some tools support memory accesses whose or-
dering dependences are statically determinable [3], [13], [19],
[28]–[31], the memory-interface design is quite different from
our solution. Since all memory accesses are always statically
scheduled in these approaches, contention between memory
accesses is statically reduced or eliminated. Further, there is
usually a single centralized memory controller that provides
access to memory. In [19] and [30], memory accesses are bus
based; in [30], memory operations are statically scheduled and
will never contend for the bus, while in [19], a global con-
troller selects memory accesses from several FIFOs in a round-
robin fashion. Luthra et al. [13] allow concurrent accesses to
multiple memory banks, but they place important restrictions
on the input language to be able to partition the memory into
separate banks. Huang et al. [29] rely on a platform-based
architecture that obviates the need for elaborate memory-access
interfaces that must support concurrence. Finally, an interesting
architecture is proposed in [3]: Memory accesses flow through a
flexible FIFO, which communicates with a centralized memory
controller. The FIFO polls the controller to see whether a
memory access is completed or not. However, this solution is
based on the particular networking application implemented in
their paper, and it is not clear how it can be generalized to
arbitrary number of memory accesses and unknown memory
latencies.

In contrast, we take a distributed approach, and our solution
is intended to enable higher concurrence. Our system allows for
a large number of dynamically scheduled potentially concurrent
accesses to be initiated. The major novelty and challenge of
our solution is to provide scalable arbitration between these
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Fig. 1. Code fragment and associated memory may-dependence flow graph.

contending accesses, thereby efficiently sustaining high levels
of memory concurrence.

III. DEPENDENCE REPRESENTATION

The input specification to SOMA is a flow graph in which
nodes represent unique memory accesses in the source program
and edges represent synchronization tokens. A token edge be-
tween two accesses indicates that both may be assigned to
the same memory location at runtime. In other words, a token
edge, or a may-dependence exists between any two references
that cannot be statically proven to be independent. A may
dependence in this compiler representation translates to an or-
dering dependence at runtime. The producer of the token must
perform its memory access before the recipient of the token.
Thus, the token graph explicitly represents a partial ordering of
memory accesses through these tokens. Alias analysis is used
to eliminate false dependences, and assigns memory accesses to
unique location sets [32]. In the worst case, when nothing can
be statically disambiguated, there will exist a single location set
representing the entire memory block.

The transfer of a token along a token edge is also modeled
as a runtime construct. Thus, at runtime, a memory access is
initiated only after it receives tokens along all of its input edges.
After accessing the memory, tokens are released to all its suc-
cessors. Thus, memory accesses are, in essence, dynamically
scheduled, which is a necessary requirement in any efficient
synthesis framework supporting memory-access dependences
that can only be dynamically disambiguated.

Consider the code and its token representation shown in
Fig. 1. In the C code, there are essentially three location sets,
arrays A_arr and B_arr, and the rest of the memory block,
represented as Unknown. Special source and sink nodes rep-
resent the synchronization boundaries with the rest of the appli-
cation. The accesses, lod1 and lod2, reference different location
sets (A_arr and B_arr, respectively), and therefore, there is
no edge between them. Nothing is known about ptr, and
hence, it is associated with Unknown. To preserve memory
consistency, we must assume that ptr can point to either of
the other two location sets. Since lod3, lod1, and lod2 are
all memory reads, there is no need to add edges between
them. Similarly, no synchronization is needed between lod3
and str1 because they occur in different branches of the if−else
statement. However, we do need to synchronize lod1 and lod2
with str1. At runtime, each edge forms an ordering depen-
dence that the synthesized MAN must enforce. Elimination
of redundant dependences results in lesser synchronization at
runtime; this has been addressed in [33], and is orthogonal to

Fig. 2. System architecture.

the focus of this paper. The concept of using tokens to explicitly
represent memory-ordering dependences was first proposed in
the context of compilers [34] for static program analysis. To
our knowledge, we are the first to synthesize these into run-
time constructs.

IV. MAN ARCHITECTURE

This section describes the synthesis of the MAN for a given
token-graph specification. We assume that all accesses are to a
shared monolithic single-ported memory; thus, one of the goals
of the MAN is to sustain concurrence in the face of contention
for this resource. The framework proposed in this paper can,
however, be extended to cover systems with multiported mem-
ories, or multiple distributed memories.

A. Basic Architecture

The system architecture is shown in Fig. 2. The MAN is an
interconnection network that provides communication between
the main shared-memory resource and a number of access
points, distributed throughout the circuit. As indicated in the
figure, one or more caches can be part of the memory hierarchy.
The MAN must:

1) support multiple potentially concurrent accesses to the
memory system;

2) route data read from memory (load-value responses) to
the appropriate destinations;

3) enforce memory-ordering dependences.
The MAN consists of three trees associated with the three
MAN requirements described above: The access tree routes
requests to the memory, the value tree routes values read from
the memory to their destinations, and the token tree enforces
ordering dependences. The challenge of constructing the access
tree is that there are multiple memory-access initiation points
in the circuit, and all of them can potentially initiate an ac-
cess concurrently. Thus, the access tree must arbitrate among
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Fig. 3. Example of MAN synthesis.

a potentially large number of concurrent requests, offering
sequential access to a memory station. The efficient construc-
tion of the access tree is the subject of Sections V and VI.

The interface to memory is implemented by the memory
station. In addition, it also performs some bookkeeping to
remember the route to be taken by load values that return from
memory. Upon arrival at the memory station, a load value is
sent along this route through the value tree.

Memory ordering can be guaranteed if the partial ordering
of memory accesses, as defined by the token edges in the input
graph, is maintained at runtime. In the final circuit, these token
edges are synthesized as dataless handshake channels—a com-
pletion of the handshake on one of these channels corresponds
to the transfer of the token along the associated graph edge.

Fig. 3 illustrates the basic architecture of the proposed MAN,
and how a simple example flow graph with dependent memory
operations is synthesized. The data read from memory by
the load is used by an adder. There is a memory-ordering
dependence between the load and the store. In this example, the
circuit must guarantee that the load access is performed before
the store. By releasing the load’s output token from a common
point on the two accesses’ routes to the memory, we can enforce
this guarantee. The root of the access tree is guaranteed to be
such a common point. Since access delivery from this point to
the memory is guaranteed to be in order, and since the store
cannot initiate the access until it receives this token, memory
ordering is enforced. The released token is routed down the
token tree to the store.

An important observation in this token-synchronization ar-
chitecture is to notice that we do not wait until the load
is actually performed before releasing its token. Instead, we
enable the dependent store as soon as we can guarantee that
the consumer of the token cannot overtake the producer on its
route to the memory. The chosen common point, the access-tree
root, is thus a much closer synchronization point than the main
memory itself.

The encoding of the access-tree datapath contains: 1) access-
specific information including memory address, store value,
and some control bits; 2) the path to be taken by the token
through the token tree; and 3) if the access is a load, then the
path to be taken by the load value through the value tree. The
token-tree and value-tree datapaths both encode the route taken
through the respective trees. In addition, the value-tree datapath
also contains a field for the value that was read from memory.

Fig. 4. Handshake multiplexer implements access tree node.

B. Building Blocks

We will now describe how these trees are implemented. The
MAN is characterized by dynamic scheduling, which implies
that all communication within it and with the outside world
is asynchronous in nature. At the circuit level, however, this
communication can be implemented synchronously, as a GALS
architecture, or, as we have done in this paper, as a completely
self-timed or clockless implementation. Clockless circuits are
characterized by the absence of a global synchronization signal
such as a clock. They are data driven, and all flow control is
handled by local handshaking mechanisms. We make use of
the four-phase bundled-data push protocol that uses two control
signals, request (req) and acknowledge (ack), to implement
the handshake protocol in a communication channel [35]. The
request signal being driven high by the producer side of the
channel indicates that data are valid. The consumer responds by
driving the acknowledge signal high, indicating that the data has
been accepted. What follows is a return-to-zero phase, during
which the producer resets the request first, then the consumer
resets the acknowledge.

Each tree is constructed out of pipelined handshake blocks. A
node in the access tree is an arbitrating handshake multiplexer,
as shown in Fig. 4. The register at the output allows for pipeline
parallelism in the tree. Since the timing between the arrival of
concurrent inputs is unknown in a clockless implementation,
special circuitry is needed to avoid metastability when arbitrat-
ing between these. The key control signal for this arbitration is
enable. When input requests arrive, any_req causes enable to go
high; this locks all signals to the right of the mutual exclusion
elements [36], which function as asynchronous lock registers.
The function of a mutual exclusion element is to allow only
one of its inputs to propagate to the output, and it contains a
metastability filter. When enable is high, arriving input requests
cannot propagate through the lock registers. Enable going high
starts the arbitration phase. In this phase, the inputs, which are
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Fig. 5. Handshake demultiplexer used in value/token trees.

locked and stable to the right of the lock registers, are arbitrated
according to a static priority. This design (based on [37]) is
optimized for throughput. It was first used in [38].

The nodes in the token and value trees are implemented as
handshake demultiplexer elements, as illustrated in Fig. 5. The
demultiplexor selection signal is encoded in the datum itself,
and provides the routing information for demultiplexing. The
difference between the value and token-tree nodes is that the
former have a wider datapath for the load values read from
memory.

Given the input specification, SOMA uses these build-
ing blocks to automatically synthesize an application-specific
MAN. Each static memory reference in the specification is
synthesized into a memory-access initiation point. Each of
these points connect to a dedicated input port at the leaves of the
access tree. The value and token trees have as many output ports
as there are load-value and token destinations, respectively. The
result of the synthesis is a standard cell-based gate-level imple-
mentation of these tree nodes with customized datapath widths.

V. CB MAN CONSTRUCTION

For a single-ported monolithic memory, the construction of
the value and token trees is simple since no congestion can
occur. The access tree, on the other hand, is more complex
since it must support arbitration between potentially concurrent
accesses. Congestion among concurrent accesses degrades per-
formance considerably. We present an access-tree-construction
technique in this section, which balances latency through the
tree with the throughput demands of the application, as deter-
mined by a static program analysis.

A. Modeling Access Tree

In this section, we derive a performance cost model for
the access tree, which is then used to determine the opti-
mal tree topology for a given application. The two important
application-specific metrics used are: 1) the total number of
memory access points,1 which is referred to as N throughout
this analysis and 2) the MLP of the application. The cost
model is constructed based on the timing characteristics of the
underlying nodes that make up the tree.

1) Node Model: An access tree node can be characterized
by two parameters: forward latency f and cycle time C. The

1A static memory reference in the application is synthesized into a memory
access point.

Fig. 6. Generic definition of balanced access tree. It has k levels, and each tree
node at level i has bi inputs. Each of N static memory references has dedicated
leaf-level input port.

forward latency is the latency through the node when there
is no congestion, while the cycle time is the minimum time
between servicing two concurrent inputs, assuming that there is
no congestion on the output channel. An analysis of the circuit
implementing a j-input tree node (as shown in Fig. 4) yields
the worst case costs of the forward latency (fj) and cycle time
(Cj) for a given bit width as

fj =λ + β log2 j (1)

Cj = τ + γ log2 j. (2)

The j-dependent term arises from the need to drive and merge
internal signals that scale with the number of inputs. The
constant terms λ and τ themselves scale logarithmically with
the bit width of the data path. This is due to the need to
drive internal nodes that scale linearly with the bit width. We
have evaluated the constants of (1) and (2) in terms of logic
levels to be

λ = 15 + log4 B, β = 4.5 (3)

τ = 22 + log4 B, γ = 4.5 (4)

where B is the bit width of the data path. We use step-up drivers
with a step-up value of approximately 4, hence the log base
of 4. Note that these are analytical approximations based on the
circuit architecture. In an actual implementation, the parameters
have discontinuities; e.g., when going from eight to nine inputs,
the parameters may jump as an extra logic level is added in
internal buffering. Nevertheless, functions (1) and (2) are of
great use in the analysis presented in this section.

2) Tree Model: Using (1) and (2), we derive a cost model,
in terms of latency and bandwidth, for an entire access tree. We
limit the discussion in this section to balanced access trees.
Section VI addresses an asymmetric access-tree construction.
A balanced access tree is illustrated in Fig. 6. It has k levels,
and each tree node at level i has bi inputs, or children; i = 1
represents the root level. Each of the N memory access points
in the application has a dedicated input port to some leaf of this
tree. Thus, N =

∏k
i=1 bi. Using (1), we can now model forward

latency, i.e., the time to travel from a leaf to the root when the
tree is uncongested. This is given by

F (k) = fb1 + · · · + fbk

=(λ + β log2 b1) + · · · + (λ + β log2 bk)

= kλ + β log2 N. (5)
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For the trivial case where a single access makes its way
through an uncongested tree, the access latency through the
tree is F (k). Now, assume that the next access is initiated
after an interval of tnext, and that both accesses have separate
routes through the tree, meeting only at the root. Then, the
second access will reach the root tnext time units after the first
access. If tnext ≥ Cb1 (the cycle time of the root node), then no
congestion will occur between the two accesses, and the latency
of the second access through the tree is also F (k). The total cost
overhead of accessing the memory through the tree, defined as
the total time spent waiting for memory requests being routed,
is given by Cost = (F (k) + tnext), if Cb1 < tnext < F (k), and
by Cost = (2 × F (k)), if tnext ≥ F (k) and tnext > Cb1 . We
call such accesses mutually nonconcurrent, and Cost for these
accesses can be minimized by minimizing F (k), the forward
latency through the tree.

If tnext ≤ Cb1 , then the delay of the second access through
the tree becomes dependent on the cycle time Cb1 of the root
node, because the accesses collide at the root. Such colliding
accesses are said to be mutually concurrent, and their cost
overhead is now given by Cost = (F (k) + Cb1). A group of
accesses are said to be mutually concurrent if tnext < Cb1 for
every two successive accesses. Under the assumption that the
root is the bottleneck for mutually concurrent accesses, a group
of w such accesses has a total cost overhead of the forward
latency through the tree for the first access plus the cycle time
of the root for the following (w − 1) accesses

Cost = F (k) + (w − 1) × Cb1 . (6)

Based on (5) and (6), we notice that the two main factors that
affect Cost are as follows.

1) Average MLP: The number of memory accesses that are
predicted to be concurrently initiated most commonly
during program execution. This affects w in (6).

2) Total number of accesses N : As the number of access
points N increases, either F (k) or Cb1 must increase.

As can be seen from (5), a k = 1 (or a one-level) tree minimizes
F (k). However, from (2) and (6), we notice that this maximizes
Cb1 to CN . On the other hand, a multilevel (k > 1) tree in-
creases F (k) but reduces Cb1 . Our tree-construction algorithm
minimizes Cost by managing this tradeoff between the depth of
the tree and the size of the root node.

For a given N , the access points attached to the leaves,
there are a variety of topologies ranging from the shallowest
tree (k = 1) to the deepest tree (k = log2 N). To understand
the tradeoff between F (k) and Cb1 , we ran experiments using
the two extreme tree topologies: a one-level tree [to minimize
F (k)], and a binary tree (to minimize Cb1 ) with log2 N levels.
We synthesized the most frequently executed kernels from the
Mediabench [39] suite, as shown in Table I. The last two
columns represent N , the number of memory access points in
the kernel, and MLPa, the statically estimated average MLP of
the kernel, respectively. MLPa is estimated by the compiler as
described later in Section V-C.

Fig. 7 shows the relative performance speedup of the k = 1
topology (one-level) over the k = log2 N topology (binary).

TABLE I
LIST OF BENCHMARK KERNELS SYNTHESIZED AND

AVERAGE ESTIMATED MLP

Fig. 7. Relative performance of k = 1 (one-level ) versus k = log2 N
(binary) trees.

Notice that when MLPa is small, the one-level topology is
better. However, as MLPa increases, the binary tree tends to
be the superior choice.

The optimization presented in this section constructs a tree
with the smallest depth that still supports the MLP demands of
the application. Given the potentially large search space for a
given N , our first phase shows how we can restrict the size of
this space, while still ensuring that the optimal topology lies
within this restricted space. In the second phase, we search this
restricted space to find the best topology match for the statically
estimated MLP of the application.

B. Topology-Space Pruning

The goal of this analysis is to show that for a given N , we can
restrict the search space to trees that are at most d levels deep,
where d � log2 N . Further, we show that the tree with the
lowest possible cost, according to (6), exists within this space.

In this analysis, we assume that all N accesses are expected
to be mutually concurrent; i.e., w = N in (6). The reason is
as follows: to minimize Cost, the depth k of the tree must be
increased only when the expected concurrence w is high, and
the (w − 1) × Cb1 term of (6) dominates. With a lower w, F (k)
dominates, hence (6) is minimized with a smaller tree depth.
The pruned space accounts for all N accesses being concurrent.
With any less concurrence, shallower trees may be more cost
effective. Since these shallower trees are still members of the
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pruned space, the optimal tree topology for a given N is con-
tained within this space, irrespective of the application’s MLP.

Our approach to this analysis is to find the largest N that
an optimal k-deep tree can support. As a result, we will define
a relation R such that R(k′) = N ′ implies that for up to N ′

accesses, the lowest cost topology is at most k′ levels deep. To
find R(k′), we first determine the lowest cost of a tree with
(k′ + 1) levels. Then, we compare this to the cost function of
a k′-deep tree to determine the maximum N ′, beyond which
we can no longer prove that there exists some k′-deep tree that
could improve upon the cost of the (k′ + 1)-deep tree. Thus,
R(k′) is defined to be N ′.

1) Bounding Relation for k = 1: We first find R(k = 1).
From (5), we know that F (k) is constant for a given k. Hence,
the lowest cost two-level tree must simply have the smallest
root size, and therefore, the smallest Cb1 . Thus, the lowest cost
is Costk=2 = F (2) + (N − 1) × C2. If we compare this to the
cost of a one-level tree, we find that a one-level tree is better
than a two-level tree as long as the following inequality holds:

Costk=2 > Costk=1

F (2) + (N − 1) × C2 > F (1) + (N − 1) × CN

F (2) − F (1) > (N − 1) × (CN − C2)

λ > (N − 1) × (CN − C2)

λ > (N − 1) × log2

(
N

2

)
. (7)

Notice that the left-hand side (LHS) of (7) is constant, but the
right-hand side (RHS) is monotonically increasing in N . Thus,
R(1) is equal to the largest value of N , for which (7) is satisfied.

2) Bounding Relation k ≥ 2: Now, consider what happens
when we use the same approach to find R(2). The low-
est cost three-level tree must also have a two-input root,
hence, Costk=3 = F (3) + (N − 1) × C2. However, since a
two-level tree can also employ a two-input root, its cost remains
Costk=2 = F (2) + (N − 1) × C2. We know from (5) that for a
given N , F (2) < F (3). Thus, under the assumption in (6) that
the cycle time of the root is the only bottleneck to throughput,
we may conclude that Costk=2 is always smaller than Costk=3.

The assumption of (6) is that the rate at which memory
accesses are generated by the tree is constrained only by the
cycle time of the root Cb1 . However, if the cycle time of the
level below the root is larger than the time it takes for the root
to service inputs from all its children, then the bottleneck is not
in the root, and (6) is no longer valid. Of course, this condition
may exist at any level of the tree. Thus, for a node at level i, a
bottleneck condition occurs at level i + 1 if

bi × Cbi
< Cbi+1 . (8)

When (8) holds, the actual Cost may be larger than that com-
puted by (6), and thus we cannot use (6) to compare costs. Our
approach to finding R(k) for k ≥ 2 is to find an upper bound
for N , call it Nmaxk

, such that (8) is not satisfied at any level i
in the tree, and (6) still remains valid. We can then compare this
tree with one that has (k + 1) levels, using (6).

This approach to finding R(k) is conservative; if (8) is satis-
fied for some k, we conservatively settle for a space bounded by
a larger (> k) depth. However, the optimal tree may in fact be
a k-deep tree. Though we run the risk of finding a larger space,
this makes the analysis easier.

We now show how we can define the topology of this
(maximal sized) lowest cost k-deep tree. Since, for the same
k, the lowest cost is obtained with the smallest Cb1 , this tree
always has a root size of 2. The maximum number of concurrent
accesses that can be sustained by such a k-deep tree is Nmaxk

,
the highest N for which (6) is still valid. Nmaxk

can be
calculated as follows

bi =
{

2, if i = 1
bmaxi|

(
Cbi−1 × bi−1

)
= Cbmaxi

, if i > 1

Nmaxk
=

k∏
i=1

bi.

Notice that the construction of this tree is such that increasing
N to (Nmaxk

+ 1) causes (8) to be satisfied for some level i in
the tree. Then, we can no longer compute Cost using (6), while
we can do so when N = Nmaxk

. If we compare the lowest cost
for this maximal k-deep tree and for a (k + 1)-deep tree that
also supports Nmaxk

, we find that the k-deep tree has a lower
cost if

F (k) + (Nmaxk
− 1) × C2 < F (k + 1) + (Nmaxk

− 1) × C2.

Since F (k) < F (k + 1), the above inequality is always satis-
fied. Thus, we have observed that for up to Nmaxk

concurrent
accesses, we can use (6) to prove that a k-deep tree will always
have a lower cost than any tree with more than k levels. We can
summarize the search for R(k ≥ 2) as follows.

1) Given that (8) is not satisfied anywhere in the tree, the
lowest possible cost for any tree of depth k is always
Costk = F (k) + C2 × (N − 1). This is because F (k) is
constant for a given N and k, and by using a two-input
root, we minimize (6).

2) For a given N , the forward latency of the tree F (k) grows
monotonically with k. Thus, when comparing two trees
with k and (k + 1) levels, the k-deep tree always has a
lower Cost as long as it has a two-input root, and (8) is
not satisfied at any level, i ≤ k.

3) Finally, we find the largest N = Nmaxk
for which the

above condition is met. As described earlier, the value of
Nmaxk

represents this upper bound on N . Thus, R(k) =
Nmaxk

for any k ≥ 2, because for any N ≤ Nmaxk
, we

can prove that there exists a k-deep tree achieving a lower
cost than that of any tree with (k + 1) levels.

Observe the importance of (8). Note that if (8) is satisfied for
some k-deep topology supporting N accesses, it only implies
that the actual cost of the topology is greater than that predicted
by (6). Hence, as per our approach, we would conservatively
settle on a larger depth (> k) topology, for which (6) is
valid. However, a k-deep topology with a three-input root may
achieve a lower cost than that determined for the (k + 1)-deep
tree. However, the k-deep topology will still lie within the
topology space bounded by (k + 1) levels, and thus, we would
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still satisfy our goal for this analysis. This is sufficient for the
purposes of our heuristic presented in Section V-C, since the
whole space is searched to find the best topology match for
the given application.

3) Discussion: Applying (2), with a bit width2 of B =
70 bits and n = 2, in (8), we find the cycle_ratio = C187/C2 =
2. This implies that to keep a two-input root node busy requires
level-2 nodes with 187 or fewer inputs. Of course, the analytical
model in (2) is an approximation, and the actual cycle times
are affected by other factors outside the scope of this model,
like wire loads and other circuit effects. For realistic estimates,
we conducted some postlayout experiments to find the actual
Ci and fi times for nodes with up to i = 68 inputs, and
extrapolated these data for larger i. We found that the largest
node that can keep a two-input parent node busy is a 32-input
node. This implies that a realistic two-deep tree can sustain up
to 64 memory accesses.

Using these simulation results, we also found {R(1), R(2),
R(3)} to be {8, 64, 512}. Thus, for an application with up to
512 concurrent accesses, a three-level tree will suffice to deliver
optimal throughput. Even for large values of N , the search
space could be pruned substantially. Notice that the biggest
benchmark in our experiments (Table I) only has 68 memory
accesses, and a two-level tree has turned out to suffice for all.

Further, remember that these results are under worst case
conditions when all N accesses are mutually concurrent, i.e.,
w = N , which is rarely the case in a real application. If the
actual concurrence (or MLPa) is much smaller, then we can
shrink the depth of the tree, thus optimizing forward latency,
since a fast cycle time at the root is not as essential any more.
Although the depth of the tree grows sublinearly with N , the
size of the circuit for the tree grows linearly with N . However,
as we show in Section VII, the size of the entire MAN is a small
fraction of the overall circuit size.

C. Tree-Topology Selection

This section describes an algorithm that explores the pruned
space to find the best tree topology for an application with
N memory access points, and a given MLP. The first step in
finding the best topology match is to estimate the memory
concurrence in the application. For this purpose, we classify the
Napp accesses into c groups of mutually concurrent memory
accesses. The total cost overhead for the application is then the
sum of the cost overhead of each of these groups

Costapp =
c∑

i=1

Costi. (9)

Costi is computed using (6). The value of w used in Costi is
the size |ci| of the ith group of mutually concurrent accesses.
Costapp is the objective function we use in evaluating the
different topologies against the application’s access profile.

1) Mutual Concurrence Classification: Precise concurrence
information is, in principle, obtainable from a detailed exami-

2A memory access packet has 32 bits each for the address and value and
some additional control bits.

Fig. 8. (a) ASAP schedule creates (b) C-table. All accesses within a row are
deemed mutually concurrent, while accesses from different rows are mutually
nonconcurrent.

nation of an accurate execution schedule. Such a schedule is not
always available at synthesis time, e.g., in our case, the circuits
are dynamically scheduled. However, the token graph provides
an excellent approximation since any two accesses connected
by a token edge are guaranteed to be nonconcurrent.

Given a token graph, the concurrence estimator creates an
as-soon-as-possible (ASAP) schedule, as shown in Fig. 8(a)
(as-late-as-possible (ALAP) scheduling is not feasible for pure
dataflow machines without centralized controllers). Using this
schedule, we form a concurrence table (C-table) in which all ac-
cesses scheduled in the same time step form a row of the C-table
[Fig. 8(b)]. Since they are scheduled concurrently, row i in the
table forms the ith group of mutually concurrent accesses. This
approach to finding concurrence relations is accurate in most
cases, e.g., except for (X, P) and (Y, P), all other concurrence
relations in the table are accurate under all runtime conditions.
The estimated MLPa of an application as shown in Table I is
the average width over all rows in the C-table.

2) Topology Evaluation: For an application with Napp, we
can determine the upper bound tree depth kapp within which the
optimal tree lies. Given this bound, we enumerate all possible
topologies that are of depth kapp or lesser. For each topology
in the space, we compute the cost overhead for a given row
(with w accesses) in the C-table, according to (6). The total
cost overhead is computed according to (9), by adding up the
costs of each row. Finally, we pick the tree topology with
the lowest cost. The complexity of this search corresponds to
the size of the pruned topology space. In practice, kapp is small
(as described in Section V-B3), and our algorithm is scalable.

3) Access-to-Leaf Assignment: In addition to the condition
stated in (8), another requirement in the cost model is that
accesses must be assigned to leaves such that, at runtime,
concurrent accesses meet at level i, if and only if all the nodes at
levels j < i are busy. In other words, if two concurrent accesses
are injected through their respective leaf ports into an otherwise
idle tree, then the accesses must meet only at the root.

This requirement is enforced heuristically by a balanced
leaf assignment of the accesses within a given C-table row.
All accesses within each row are distributed evenly among all
leaves. As we show in Section V-D, this strategy is effective.

4) Criticality: A further optimization is to account for ac-
cesses that are on the dynamic critical path of execution. We use
static analysis to predict a quantifiable criticality factor for each
memory access; for example, accesses within loops are always
deemed more critical than those outside loops. Now, each
C-table row’s criticality is defined as the sum of the criticalities
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Fig. 9. Token flow graph for jpeg_e.

Fig. 10. Final access tree for jpeg_e.

of its access members. The total cost overhead (9) is now
computed as a weighted total, where the weights are the row
criticalities. This has the effect of biasing the tree construction
in favor of more critical accesses.

5) Example (jpeg_e): We now present an example that
demonstrates the heuristic presented in this section. Fig. 9(a)
shows the token flow graph for the jpeg_e kernel. It consists
of two sequential loops with 16 accesses in each loop. In each
loop, there is a burst of eight concurrent load accesses that
are then followed by eight concurrent store accesses. An edge
between any two accesses signifies an ordering dependence.

The ASAP schedule for this kernel is as shown in Fig. 9(b).
Using the model in Section V-B, we determined that the optimal
tree for this kernel has a depth of at most two levels. After
evaluating each topology within this space, the lowest cost
topology was found to be a [k = 2, b1 = 2, b2 = 16] tree, as
shown in Fig. 10.

Finally, to ensure proper access-to-leaf assignment, accesses
from each row of the C-table are distributed evenly among all
leaves. Hence, as shown Fig. 10, half of the accesses from each
row are assigned to each of the two children of the root. As
shown in the next section, this topology turns out to be the best
for the concurrence profile of jpeg_e.

D. Experimental Evaluation

We will now evaluate the quality of our tree-construction
heuristic, and the assumptions that the heuristic makes. We
have incorporated the heuristic into CASH [8], an HLS flow
that automatically synthesizes clockless standard-cell circuits
in a [180-nm/2-V] technology, from unannotated unrestricted
ANSI-C programs. All results reported in this section and the
rest of the paper are extracted from postlayout simulations. Our
benchmarks are the most frequently executed kernels from the
Mediabench [39] suite, as listed in Table I.

In order to evaluate our heuristic, we performed a set of
reference experiments in which we construct simple n-ary
balanced trees. The accesses are randomly assigned to the
leaves of the tree. To explore the design space, we varied n to be
any of {2, 4, 8, 16, 32}; and a one-level tree was also included.
This creates a variety of topologies whose depths range from
k = 1 to k = log2 N . We compared the performance of these
trees against the one constructed using our heuristic. For each
kernel, we simulated between 15 and 30 reference experiments
depending on the size of the search space for that kernel.

Tree Congestion: First, let us evaluate the congestion in the
tree during periods of high memory parallelism. When a burst
of concurrent memory accesses is initiated, congestion is fun-
damental and cannot be avoided. However, we can differentiate
between three types of congestion depending on where in the
tree they occur.

1) Root congestion: This is when congestion occurs only at
the root level. This is ideal since it means that the concur-
rent accesses have moved freely up the tree, and are only
serialized at the point of exit from the tree; hence, the tree
allows for maximal concurrence when the accesses meet
each other at the root.

2) Higher level congestion: Congestion occurs at a given
tree node at level m only when all tree nodes on the path
from level m to the root (i.e., nodes at levels {1, . . . , m})
also experience congestion. This is also desirable since it
implies that arbitration is being pipelined, and allows for
maximal parallelism until the point of serialization.

3) Lower level congestion only: Congestion occurs at level
m when there exists some node at a higher level k < m
that is uncongested. This is bad because we have serial-
ized the concurrent accesses far too early; this wastes the
tree resources and can degrade performance.

We computed the dynamic congestion in the trees by exam-
ining the postlayout simulation traces. Our observation is that
there is no type-3 congestion in any of the trees constructed
by our heuristic. This confirms our claim that we can easily
meet the first assumption in our analysis. In contrast, type-3
congestion in the reference trees account for about 15% of all
congestion.

Throughput: From the traces, we identify bursts of w ac-
cesses and note the time interval t between the time when the
first access enters the tree and the last one exits the tree. The
throughput for each burst is then w/t. The average throughput
aggregated across all bursts is shown in Fig. 11 in terms of
mega-accesses per second. The shaded region of the graph
shows the space occupied by the reference experiments, and the
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Fig. 11. Throughput: shaded region marks throughput space achieved by
random topologies, while trendline shows throughput of heuristic.

trendline shows the performance of the heuristic tree. Notice
that the heuristic constructs the best trees most of the time, and
its throughput is better than the average reference topology by
about 25%. There are two interesting results here.

1) One of the reference topologies for the jpeg_d kernel
has better throughput than the heuristic. Note that the
reference topology has type-3 congestion, and the over-
all system performance of the heuristically constructed
MAN is superior to that of the reference topology.

2) adpcm_e is the only kernel for which the heuristic does
not deliver the best performance. Our analysis of the
C-table for this kernel reveals an MLP of 2.8, and the
heuristic constructs a two-level tree with a four-input
root. However, the observed runtime MLP is much lower
(< 2) for this kernel. This is a consequence of using only
the token graph to determine the MLP. Although four
accesses were observed to be mutually concurrent in this
graph, an inspection of the entire dataflow graph with all
data dependences reveals that there exist additional data
dependences between the accesses. Hence, analyzing the
complete dependence context is important to make better
concurrence predictions, and we are currently incorporat-
ing this into our tool.

Summary: In addition to better throughput, our heuristic
also results in better overall timing, lower power, and better
energy delay of the entire application: the heuristic achieves
improvements of about 19% in performance, and about 20%
in energy delay, over the average reference topology. Hence,
the heuristic provides a methodical approach to the access-tree-
construction problem, which is also efficient in terms of power
and performance.

VI. EARLY-TOKEN-RETURN-BASED MAN CONSTRUCTION

In this section, we present a very different approach to
optimizing the MAN. The optimization goal here is to reduce
the dynamic synchronization overhead that occurs between
dependent memory accesses due to token transfer. Assume that
we have two memory operations that are linked together by
a token, as shown in Fig. 12(a). We must guarantee that the
load is performed before the store. As described in Section IV,
we enforce this by releasing the load access’s token from the

Fig. 12. (a) Input spec, (b) baseline MAN, and (c) improved MAN if we hook
up both accesses to same leaf node in access tree.

root of the access tree, which is then routed down to the store
through the token tree, as shown in Fig. 12(b). The time spent
waiting for the token to arrive at the store from the time the
load is initiated (i.e., enters the access tree) is the cost of
enforcing memory ordering, and we refer to this as the dynamic
synchronization overhead.

A source of inefficiency in the basic MAN architecture is that
memory ordering is enforced conservatively. An access releases
its token only from the root of the access tree, thereby synchro-
nizing with every other access in the application. However, it
needs to synchronize only with its token dependents. In Fig. 12,
for example, the store only has a single predecessor dependent,
the load. Our architecture guarantees that the requests sent from
a given tree node always arrive in order at the shared memory.
If both these accesses are connected to the same leaf node in
the access tree, then that leaf node becomes the merge point on
their paths to memory. Therefore, the load can release the token
to the store once it has reached the leaf node in the tree, as
illustrated in Fig. 12(c). As is evident from the figure, we have
drastically reduced the synchronization overhead3 compared to
Fig. 12(b). In this section, we present the ETR optimization,
which identifies such opportunities and builds a customized
MAN to take advantage of them.

A. Single-Entry Single-Exit (SESE) Regions

An important concept that enables this optimization is the
SESE region [40]. Such a region has a single node through
which all external edges enter the region, and has a single node
through which all internal edges exit the region. Internally, how-
ever, there may be arbitrary fan-out/fan-in of edges and cycles.
A SESE region has the property that, for all its nodes except
the entry node, the predecessors of each node are contained
within this region. Therefore, if all the nodes in such a region
connect to the same subtree within the access tree, then the
subtree root is the earliest common point on their paths to
the memory. All accesses within the SESE region (except for
the exit node) can release their tokens from this common point.
The exit node must synchronize with its dependents outside the
SESE region.

Dominator and postdominator trees of the input graph can
be used to find SESE regions [40]. For our analysis, we define

3We also refer to this as token path or token round trip time (RTT).
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Fig. 13. Pseudocode of Reduce algorithm.

two special types of SESEs: 1) a linear SESE (LSESE) region
is the maximal subgraph in which each node has exactly one
predecessor and one successor and 2) an innermost SESE
(ISESE) region is one that contains no other SESEs (including
LSESEs) within it.

B. Reduce: Access-Tree-Construction Algorithm

Using SESEs, we have devised an algorithm, called Reduce,
that generates an application-aware MAN for a given input
graph G. Reduce is described in the pseudocode presented in
Fig. 13. It requires G to have unique entry and exit nodes; if a
graph has multiple source (sink) nodes, then a pseudonode entry
(exit) can be created as a predecessor (successor) of all source
(sink) nodes. In addition, each graph node is associated with a
tree pointer (Tptr) indicating which tree node in the access tree
releases the output token of that node. Initially, all Tptr pointers
are NULL.

Next, we find all ISESE and LSESE regions in the graph
and create a local subtree for the graph nodes in each of the
identified regions. Creating a subtree for an LSESE region
is easy since we know that they are all mutually exclusive.
Hence, we can simply create an unarbitrated access tree node
and connect all graph nodes in the LSESE to the inputs of the
tree node. This forms our local subtree for the region. For an
ISESE, we first construct a balanced arbitrated tree t using all
the internal nodes of the region. Since the entry node, the root of
t, and the exit node are all mutually exclusive, we connect these
to an unarbitrated three-input access tree node, which forms the
region’s subtree root.

Once we form a subtree s for a given SESE, we update
the Tptr values of all nodes but the SESE exit to point to the
subtree root. We then delete s from G, and replace it with a new
(compound) graph node X and alias Tptr(exit(s)) = Tptr(X).
This SESE reduction is repeated on the newly reduced graph.
When the SESE region containing X is reduced, Tptr(X) [and
hence, exit(s)] will be updated.

Fig. 14. (a) Example of applying Reduce on graph. (b) Resulting memory-
access tree. (c) Table on right shows Tptr pointers for each access specifying
where in tree this access can release its token.

The progression of Reduce is illustrated using an example
token graph in Fig. 14(a). The initial token graph is progres-
sively reduced, until a single node is left in the graph. Since
the original graph itself is one large SESE region, Reduce is
guaranteed to converge. The final access tree generated after
reduce is shown in Fig. 14(b). The table in Fig. 14(c) displays
the values of Tptr pointers corresponding to all accesses af-
ter Reduce completes. These values specify the node in the
tree that will release the access’s token. The complexity of
a single iteration of Reduce is equivalent to the complexity
of finding SESEs. The number of iterations depends on the
input graph structure, but typically converges in less than five
iterations.

C. Loop Optimizations

Fig. 15(a) shows the token graph for a typical loop. In the
first iteration, the loop accesses are dependent on (receive their
tokens from) accesses that occur prior to entering the loop, the
Pred block. In subsequent iterations, all tokens remain within
the loop itself. In the final iteration, accesses outside the loop
(in the Succ block) will be the recipients of the last iteration’s
access tokens.

Loop accesses present a unique opportunity because we
know that between any two given loop iterations, the memory
dependences are local to the loop region. However, a loop can
never form an SESE region by itself since there always exists
at least two loop exits—one for looping back to the loop entry
and another to the Succ block. A key observation, however, is
that the latter exit is used only in the last loop iteration. To
optimize for the common case, the loop is temporarily changed
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Fig. 15. Optimizing Reduce in loops. (a) Typical loop token graph. (b)
Reducing loop graphs. (c) Global and local tokens for loop accesses; dark-
colored triangles are token trees.

into a new graph G′ by deleting all exits to the Succ block; thus,
the only exit from the loop region is now the back edge. Now,
Reduce will consider G′ to be an SESE region and optimize the
resulting subtree independently of its external context.

Next, the fully reduced loop node is inserted into the top-
level graph by reintroducing the deleted exit edges, as shown
in Fig. 15(b). The resulting graph is then reduced as before.
However, upon this second reduction, the loop accesses that
emit tokens along the Succ block exits are now flagged as
generating tokens from two points in the access tree—one from
the reduction of G′ and the other from the reduction of the
top-level graph. The first (local) token synchronizes with all
accesses within the loop, while the second (global) token is
used only in the last iteration and is used to synchronize with
dependents in the Succ block.

This is illustrated in Fig. 15(c), showing the simplified circuit
for the synthesized loop. The dark-colored triangles are token
trees through which all tokens are routed. A and B form an
LSESE, and we would connect them to the same leaf of the
access tree. A local token tree is now connected to this leaf that
routes tokens from all accesses (A and B, in this case) to their
respective destinations. Access B has a fan-out on its token,
edges L2 and E2, the former staying within the loop, while the
latter goes to Succ. Thus, L2 is deemed to be a local token that
can be emitted from the local token tree, but E2 is emitted by the
global token tree, since in the last iteration, B will synchronize
with its successors in Succ. In this manner, loop accesses are
accelerated through localized synchronization.

D. Priority-Based Construction

A problem with Reduce is that accesses in SESE regions
reduced earlier on end up at the bottom of the access tree (for
example, C–E and D–F–G–H in Fig. 14). This is not a problem
for token RTT; however, if any of these accesses is a load, then
the path of the load-value round trip will include the entire
depth of the access tree. If the access is critical, then the overall
performance can degrade.

We solve this problem by assigning priorities to nodes dur-
ing the subtree-construction phase of Reduce. Currently, the
algorithm employs a simple greedy heuristic that only considers
two levels of priorities at a time—high and low. Independent

Fig. 16. (a) For two groups of high- and low-priority nodes, tree construction
can be biased. (b) Result of applying this optimization on access tree generated
in Fig. 14 to optimize high-priority accesses (bold-circled nodes).

subtrees are formed for each priority class, and finally, the low-
priority subtree is subordinated to a leaf of the high-priority
subtree. Fig. 16(a) illustrates this idea.

Since a node involved in the subtree construction could itself
be a smaller subtree, the heuristic can be applied hierarchically,
which provides for more flexibility in selecting the accesses
to be optimized. For example, in Fig. 14(b), if we assign high
priority to accesses C, E, D, F, and G, then the resulting access
tree is shown in Fig. 16(b). Most importantly, this heuristic
preserves the Tptr of the smaller subtrees involved in the
construction. Hence, nodes C and E, for example, still point
to N1 as the point of their token release, but have a shorter path
through the AccessTree.

E. Experimental Evaluation

We incorporated ETR into CASH and synthesized the ker-
nels from Table I using ETR. Fig. 17 shows the savings in
synchronization overhead due to the deployment of ETR. Token
(or value) RTT is defined as the time difference between when
an access is inserted into the access tree and when its token (or
load value) emerges from the token tree (or value tree). Using
simulation traces, we computed the weighted average of the
dynamic token and value RTTs across all accesses. The graph
shows the ratio of these averages for the basic MAN versus an
ETR MAN. A value greater than one implies that RTT is shorter
after ETR.

By creating asymmetric trees, the ETR optimization reduces
the token RTT (and hence, synchronization overhead) for some
accesses, while increasing it for others. The use of priorities
guides the optimization so that we reduce this overhead for the
most common (i.e., high priority) case, thereby reducing the
overall token RTT. Fig. 17 suggests that this strategy works
quite well as the token RTT is reduced by a factor of about 4×,
on average. The most illustrative cases are the adpcm kernels.
These contain loops (and hence, SESE regions) with a single
access within them; thus, their loop structure is similar to that
in Fig. 15(a), but without the access A. This means that the sub-
tree for each such loop consists of a single node, and the
synchronization token for the access never needs to enter the
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Fig. 17. Reduction in dynamic synchronization overhead (tok RTT) and load-
value RTT.

Fig. 18. Analysis of MAN area complexity. On primary y axis is growth in
MAN area as N increases. On secondary y axis is fraction of MAN area to total
circuit area in corresponding benchmark.

MAN. Hence, the token RTT is a single hop. For the same
reason, the synchronization overhead increases in the mpeg2_d
kernel. This kernel contains no loops. Hence, the strategy to
improve the common case fails, and hence, the overall token
RTT degrades.

VII. RESULTS AND DISCUSSION

In this section, we evaluate the quality of the MAN. We
have implemented the MAN construction and the optimizations
within the CASH [8] toolflow, and all results presented in this
section are for circuits synthesized from kernels in Table I.
We start by discussing the MAN’s cost overhead, followed by
a performance evaluation of the MAN. Finally, we compare
and evaluate the two optimizations presented in this paper
and discuss the impact and opportunities of applying them in
conjunction.

A. Cost Overhead

The MAN area consists of the area occupied by the access
tree, the token tree, and the value tree. An analysis of the MAN
area is depicted in Fig. 18. It shows two types of trends for the

CB and ETR-based constructions. The trendlines labeled ETR
and CB depict the growth in the absolute MAN area (square
millimeters in a 180-nm process) as N , the number of accesses
connected to the MAN increases. The ETR: % Area and the
CB: % Area report the fraction of the total circuit area occupied
by the MAN.

The make-up of the MAN area can be understood by study-
ing Fig. 3. There are four hardware structures in the MAN—the
access tree, the token tree, the value tree, and the memory
station. The memory station is analogous to a load store queue
(LSQ) in microprocessors. It provides the interface to the main
memory while tracking outstanding load accesses. The design
of the memory station is independent of the number of access
N in the application, and thus has a constant size irrespective
of the application. As N grows, the sizes of the access and
token trees grow proportionately. The size of the value tree
grows only if the number of load accesses in the appli-
cation grows.

As N increases, the growth trends in the absolute MAN
area (in Fig. 18) is almost linear for CB, and superlinear but
subquadratic for ETR. The increased area cost for higher N
comes from larger trees. The linear scalability of the MAN can
be explained by its modularity and the absence of a centralized
controller. Irrespective of the size of N , each tree in the MAN is
built out of small composable modular building blocks. These
building blocks are the tree-node implementations, as depicted
in Figs. 4 and 5. As N increases, the depth of the MAN
trees scale logarithmically, while the number of building blocks
(and thus, the overall MAN area) scales linearly. Although
the area complexity of the MAN scales linearly, the logic
design complexity is constant and is equivalent to the design
complexity of the individual building blocks. This is because
of the distributed design of the MAN and the absence of
any centralized controllers. Implementing these blocks with
clockless (or self-timed) circuits eliminates the need for timing
closure and retiming during the synthesis flow; this allows for:
1) arbitrary instantiation and interconnection of the various
building blocks and 2) placement of these blocks as close to
their producers/consumers as possible.

The difference in the absolute area between the ETR and CB
MAN circuits can be explained by differences in the shape of
the access tree. The area cost of each node in the access tree can
be classified into: 1) the muxing cost; 2) the pipeline register;
and 3) the handshake controller. From postlayout circuits, we
have seen that the handshake circuitry accounts for only about
1% of the total area. Irrespective of the depth, if the access tree
supports N accesses, it must contain some form of a cascaded
N × 1 multiplexer that is distributed throughout the tree. The
biggest additional cost of a deeper tree is the additional pipeline
registers. As these registers are usually about 70 bits wide, they
are a significant contribution to the total area. For example,
the register accounts for about 35% of the total area of a two-
input access tree node. By reducing F (k) in (6), CB effectively
minimizes the latency through the tree by reducing its depth.
On the other hand, by introducing early points of token synchro-
nization, ETR tends to introduce additional tree levels. Further,
with decoupled token regions, ETR also tends to have a higher
token-tree area overhead.



VENKATARAMANI et al.: HARDWARE COMPILATION OF APPLICATION-SPECIFIC MEMORY-ACCESS INTERCONNECT 769

The contribution of the MAN to the total area (the ETR:
% Area and CB: % Area trendlines in Fig. 18) is appli-
cation dependent. The trend in the graph shows that, for a
variety of different applications with different N , the MAN
contribution is a tolerable overhead, about 15% of the total
area, with slight differences between ETR MAN and the CB
MAN area.

B. Performance Comparison

To evaluate the quality of the MAN approach, it would be
best to compare it against existing HLS approaches for han-
dling dynamic memory dependences. However, as discussed in
Section II, we know of no other HLS tool that supports dynamic
memory disambiguation and that can tolerate unpredictable
latency in the memory system. Given this difference, a fair
comparison of our study with others is difficult. Further, the
C benchmarks we use can be directly compiled in our system,
while other flows impose severe restrictions on the C language;
thus, these benchmarks must be considerably rewritten to make
them synthesizable.

To provide the reader with a feeling for the overall effective-
ness of the resulting circuits, we compare the performance of
the automatically synthesized circuit from a given C program
to that of a superscalar processor running the same program.
The basis for this comparison is that: 1) both approaches use
the same C source and 2) both approaches use a single-ported
shared-memory resource, and the same external interface to
the memory. Despite the fact that the superscalar is general
purpose, the comparison is illustrative of two very different
approaches to accessing the memory. The superscalar core is
representative of all processor- and platform-based approaches
to supporting memory accesses. It has a single point of access
initiation, which is the LSQ, and all instructions are fetched and
dispatched to the LSQ in program order. Accesses to this single
initiation point are scheduled beforehand, and no contention
can occur.

On the other hand, we implement the resulting ASIC as a
spatial computing architecture [41]. The circuit is dynamically
scheduled, and we allow for multiple concurrent accesses to be
initiated simultaneously, and for contention to occur when ac-
cessing the memory interface. Thus, resolving contention while
sustaining high levels of memory concurrence is the primary
challenge in designing the MAN. The cost of performing a
memory access in the MAN-based ASIC is thus much more
expensive since contention must also be resolved.

For this comparison, we used MASE [42] to obtain simu-
lation results for the superscalar core. The ASICs synthesized
by CASH use a [180-nm/2-V] CMOS standard-cell technology.
The core is assumed to run at 600 MHz, which is a reasonable
clock frequency for an aggressive out-of-order core in the
180-nm process technology. Fig. 19 compares the execution of
the given C kernels on the processor core versus execution on
the synthesized ASICs. The graph shows the MAN’s perfor-
mance speedup over the processor core (a value greater than
one implies speedup over the core). The RD bar corresponds to
the average performance of the baseline MAN aggregated over
all reference experiments (see Section V-D); the CB and ETR

Fig. 19. Performance comparison of different MAN constructions against
superscalar core (baseline).

bars correspond to the performance of the CB and the early-
token-based MAN construction.

The MAN-based ASIC constructions are superior in terms
of execution on the aggressive superscalar core in almost all
cases. The bottleneck due to contention arbitration can severely
impact performance, as earlier limit studies have shown [41].
Despite this, our results show that an ASIC with an optimized
MAN still delivers superior overall performance (on average,
2× better than the core).

C. Optimization Evaluation

Comparison: Fig. 19 also shows that the CB MAN construc-
tion is generally superior to ETR. The main reason for this is
that ETR only optimizes the token RTT paths in the circuit;
it ignores the impact on the value RTT altogether. Further, the
ETR optimization is highly sensitive to the priorities assigned
to accesses, as described in Section VI-D. While a detailed
compiler analysis can often statically predict criticalities, dy-
namic dependences lead to inaccuracies. The combination of
these two factors results in some load accesses being demoted
in the asymmetric tree. If priority information is inaccurate,
then the performance deteriorates. On the other hand, CB
optimizes the access-tree depth for all accesses. By reducing
the depth of the access tree, it implicitly reduces the token and
value RTT for all accesses. Further, it is much more resilient
to inaccuracies in priority and criticality information than ETR.
Hence, it can readily be applied without requiring complicated
compiler analysis.

Returning tokens early implies an overhead in controlling
the token return, as well as hurting other (demoted) accesses.
It is thus necessary to justify this overhead, by saving a number
of hops through the tree. This is also evidenced in our results,
which show that ETR outperforms CB only in the cases of the
adpcm kernels. As described in Section VI-E, ETR performs
well in these cases because every loop in these kernels contains
just a single access. Hence, as long as the loop executes, dy-
namic token RTT never enters the MAN, while in CB, the token
still has to travel through the MAN. Hence, ETR optimizes the
most common case, and the overhead is justified.

Combination: Since the goals of these two optimizations
are vastly different, it is difficult to apply both in conjunction.
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While CB relies exclusively on the construction of a balanced
access tree, ETR always generates an asymmetric access tree.
Despite this, we attempted to apply the two in conjunction: We
built the access tree for these kernels using CB, and looked
for LSESE chains (see Section VI-A) that are connected to the
same leaf. For each LSESE chain, all accesses except the exit
of the LSESE can return their tokens early to their destinations
without having to route the token through the MAN. Fig. 12
is an example that depicts this scenario. However, our experi-
ments show little or no performance benefit over a purely CB
construction due to two reasons: 1) the dynamic critical path
of the application rarely pass through the token paths that are
optimized by ETR and 2) this still adds circuit overhead at
the access-tree root, which must now decide when it should
forward a token to the token tree. If the optimized token paths
are not critical, then this overhead will increase the latency for
all unoptimized accesses, resulting in an overall performance
degradation.

When the source application is large, however, the access
tree will have more levels. Most commonly, large applications
consist of regions of accesses where most synchronization
occurs within a region, whereas inter-region synchronization
is less common. For example, our experiments have shown
MAN construction for a single kernel. When synthesizing a
multikernel application, each kernel will form such a region.
Thus, the MAN within each kernel can be constructed using
CB, while synchronization between kernels, which will be
much fewer and less common, can be optimized using ETR.
Hence, we foresee CB as a fine-grained optimization and ETR
as a coarser grained optimization.

A final observation is that in a large application, the MAN
needs to be spread out across a large chip area, and the wires
between the tree nodes begin to dominate the performance.
Binary trees naturally pipeline these wires. This same trend is
true also on a smaller scale when looking at future technologies
where wire loads are predicted to dominate over gate delays
[43]. Since the number of hops through binary trees are larger,
ETR has better potential, even for a relatively small number of
access points.

VIII. CONCLUSION

We have presented SOMA, a framework for synthesizing and
optimizing unconstrained memory accesses in HLS. Starting
from a graph representation that specifies may dependences, we
synthesize a distributed MAN, which implements communica-
tion to and from the memory. The architecture is scalable and
provides a dynamic synchronization mechanism that maintains
consistency in the context of memory-ordering dependences
that are known only at runtime.

We also present two optimizations of the baseline MAN
construction. The first uses a CB analysis of the application to
select the MAN topology that is tailored to the application’s
memory concurrence profile. The second optimization explores
other MAN topologies that reduce dynamic synchronization
overhead. This is done by identifying local regions of memory
dependences and tailoring the MAN topology to take advantage
of these regions.

While the MAN described here is synthesized as a clockless
circuit, there is nothing intrinsic in SOMA that prevents us
from implementing it synchronously. In fact, a GALS-like
solution may be attractive in some cases. Thus, the SOMA
framework can be embedded within HLS tools that synthe-
size circuits from abstractions like C, e.g., System-C, thereby
expanding the tool’s capability to support arbitrary memory-
access references.
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