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Abstract
A major constraint in high-level synthesis (HLS) for large-scale
ASIC systems is memory access patterns. Typically, most state-
of-the-art HLS tools severely constrain the kinds of memory ref-
erences allowed in the source, requiring them to have predictable
access patterns or requiring dependencies between them to be stat-
ically determinable. This paper shows how these constraints can
be eliminated.

We present an analysis infrastructure that can be used within
any HLS toolflow for synthesizing circuits from high-level ab-
stractions, such as ANSI-C, where no assumptions are made about
either memory access latencies or about dependencies between
memory references, i.e., arbitrary pointer aliasing are allowed.
Our solution starts with a generic framework for building a dependence-
aware, fully distributed, although often conservative, memory-
access network (MAN) for a given memory-dependence graph.
Then, we propose a suite of optimizations to customize the MAN
for the given specification. All these techniques guarantee mem-
ory coherency. Experimental results on Mediabench benchmarks,
show that such an approach succeeds in maintaining high lev-
els of parallelism, while ensuring memory coherency. The op-
timizations succeed in lowering the synchronization overhead by
as much as 4x.

1 Introduction
High level synthesis (HLS) tools have shown great potential for
generating highquality circuits in a timely fashion by bridging the
semantic gap between highlevel abstractions and gatelevel imple-
mentations. As design time becomes critical, and the increase
in design productivity continues to lag behind the increase in de-
sign complexity [1], HLS tools can play a central role in deliver-
ing highperformance, lowpower, largescale ASICs from abstract,
complex behavioral specifications [3].

In general, HLS tools have shown to be promising at extract-
ing finegrained parallelism in synthesizing highperformance cir-
cuits for purely dataflow abstractions. However, largescale appli-
cations with numerous memory references continue to present an
obstacle due to two main reasons:
• Highperformance memory systems result in variable memory

access latency. Even the simplest hierarchical memory sys-
tem will have different times for a cache hit and a cache miss.
Hence, a synthesis flow cannot statically schedule these mem-
ory accesses.

• Even stateoftheart pointer alias analyses can statically disam-
biguate only about 60% of all memory dependencies in C pro-

grams [14]. Hence, the circuit must support some dynamic syn-
chronization framework to guarantee memory coherency at all
times.

Many HLS tools deal with the first issue by constraining the
memory system so that all accesses take a fixed latency [32, 22].
For the second issue, most HLS tools restrict themselves to speci-
fications in which all memory dependencies are statically explicit
(for example, pointer aliasing is disallowed in SystemC [20]). The
motivation of this paper is to introduce techniques to allow uncon-
strained memory access dependencies to occur in the source spec-
ifications for HLS tools, and further to support highperformance
hierarchical memory systems. We present a framework that can
be embedded within any HLS flow. This can help in expanding
the applicationdomain space for tools like SystemC.

At the core of this framework is a simple memory access
network (MAN) that provides reliable, pipelined, arbitrated ac-
cess to shared memory resources. The key feature of the MAN
is a synchronization framework that guarantees that no memory
dependency (including statically unknown ones) is ever violated
— in other words, memory coherency is always maintained. Of
course, this guarantee involves a synchronization overhead at run-
time, and several conservative design decisions may artificially
increase the overhead. Thus, the paper also introduces optimiza-
tion techniques that infer, from the source program, certain prop-
erties of the memory dependencies to reduce the synchroniza-
tion overhead. These techniques were implemented within the
CASH HLS toolflow [7, 29]. CASH starts with unannotated, un-
restricted ANSIC programs and produces gatelevel implementa-
tions of fully asynchronous (selftimed) circuits.
The novel research contributions described in this paper are:
• A unified framework featuring a MAN architecture to synthe-

size memory coherent, gatelevel circuits from HLS specifica-
tions exhibiting variable latency memory operations, and stati-
cally unknown memory dependencies.

• Memory coherency requires synchronization checkpoints at var-
ious junctures in the circuit. We present MAN optimizations to
eliminate unnecessary synchronization.

• With applications that exhibit high levels of memory paral-
lelism, the MAN can quickly get congested. We present a flow-
control technique to minimize MAN congestion.

The paper first describes the input specification requirements in
Section 2, and goes on to illustrate how a simplistic MAN archi-
tecture can be built for this in Section 3. Various optimizations to
enhance the MAN are presented in Section 4. We examine related
work, present results and conclude in Sections 5,6 and 7 respec-
tively.
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int foo(int* ptr, int index, int offset) {
  int result = A_arr[index] +  // lod1
               B_arr[index];   // lod2
  if (index)
    result += *(ptr+offset);   // lod3
  else
    *ptr = result;             // str1

  return result;
}

int A_arr[100], B_arr[100];

Figure 1: A trivial example demonstrating explicit memory de-
pendency representation

2 Dependency Representation
The starting point for building and optimizing our proposed mem-
ory access network is an input specification which explicitly en-
codes dependencies, called may dependencies, between memory
references. A may dependency exists between any two references
that cannot be proven to be independent.

We use the notion of location sets [33], which represents a
unique position within a block of storage. Typically, each scalar
memory location is assigned to its own location set, while all
entries within an array are assigned to a single location set [33,
25]. Alias analysis then unravels false dependencies, and assigns
memory accesses to unique location sets. In the worst-case, when
nothing can be disambiguated, there will exist a single location
set representing the entire memory block.

The input specification is a flow-graph in which nodes rep-
resent unique memory accesses in the source program and edges
represent (synchronization-)tokens. The tokens indicate that two
accesses are assigned to the same location set, i.e. there exists a
may dependency between them. Thus, the flow-graph explicitly
represents a partialordering of memory accesses through these to-
kens. At runtime, the execution semantics of a node is equivalent
to dataflow execution semantics [2]. Each edge either holds a
token or is empty. The memory access is executed only after it
receives tokens along all its input edges. After accessing mem-
ory, the token is released along all its output edges. Thus, mem-
ory accesses are dynamically scheduled, and we claim that this
is a necessary requirement in any synthesis framework support-
ing memory access dependencies that can only be dynamically
disambiguated.

Figure 1 shows a trivial example of this representation. There
are three location sets, arrays A arr and B arr, and the rest of
the memory block, represented as Unknown. Special source and
sink nodes in the graph represent the synchronization boundaries
with the rest of the application. When execution starts, all sources
contain tokens on their outputs. Execution finishes when all sinks
have received tokens on their inputs.

The accesses, lod1 and lod2, reference different location sets
(A arr and B arr respectively), and therefore the representation
does not introduce any edge between them. On the other hand, we

switch

lod1

str1

eta eta

_sourceUnknown

_sinkUnknown

int foo(int* p, int* q, int n)
{
  int sum = 0, i;

  for (i = 0; i < n; i++) {
    int tmp = *p++;  // lod1
    *q++ = tmp;      // str1
    sum += tmp;
  }

  return sum;
}

Figure 2: Memory-dependency representation in loops

know nothing about the pointer, ptr, and hence it is associated
with Unknown. To preserve memory coherency, we must as-
sume that it can point to (or alias) either of the other two location
sets. Thus, we may introduce tokens between each of lod1 and
lod2, and each of lod3 and str1, and between lod3 and str1.

This is a valid, though conservative, memory-coherent speci-
fication. Further analysis reveals that lod3 need not synchronize
with lod1 and lod2 since they are all memory-reads, and can be
issued out-of-order. Similarly, we need not synchronize lod3 with
str1 because they occur in the different branches of the if-else
statement. But, we need to synchronize lod1 and lod2 with str1,
as shown in Figure 1. Such analysis and elimination of redundant
dependencies will improve the overall quality of the circuits, and
should be performed before the techniques described in this paper
are applied.

Finally, two constructs called SWITCH and ETA are used to
model memory accesses in a loop, as shown in Figure 2. Inputs
to a SWITCH are assumed to be mutually exclusive, and the ex-
ecution semantics of this node just moves an active input to its
output. ETA has a predicate and a data input. The execution se-
mantics specifies that, when the predicate is true, the input is
moved to the output; otherwise, no output is generated and the
input is simply consumed.

Loop-entry points are represented using SWITCH nodes with
two inputs - a token on the first input starts the execution of the
first loop iteration, while a token on the second input implies the
start of a new iteration. A loop-exit point is modeled using an ETA
node. The node’s data input is the token, and its predicate input
represents the loop-exit condition.

This loop representation is illustrated in Figure 2. Notice that
there exists a dependency between the accesses in one iteration to
the same set of accesses in the next iteration, since the token has
to flow around the loop. If it can be determined that the accesses
in all loop iterations are independent, then code-motion (for loop-
invariant accesses) or loop unrolling can be applied to break these
false dependencies.

This completes our discussion of the input specification. This
representation is not a complete one of the source application,
since data as well as the predicate edges are missing. We assume
that this representation will be used within a more complete and
unified dataflow representation for the whole program, that mod-

2



enabling
token

store

+

load

address

Access
Tree

Token
Tree

Value
Tree

Memory
Station

To Memory
Port

+

load

address

store

synthesized as

value

address
address

value

MAN

Figure 3: (a) A simple input spec; and (b) the MAN architecture

els all data-types. Pegasus [5] is one such complete representa-
tion, and several optimizations have been proposed to eliminate
unnecessary token edges [6]. However, the token network speci-
fication is sufficient for the discussions in this paper.

3 MAN Architecture
This section describes how a given dependency-annotated input
graph specification can be synthesized into a dependency-coherent
memory access network (MAN). Without loss of generality, we
assume that all accesses are to a single, shared memory block
with a single memory port. The same optimization framework
proposed in this paper can be applied to systems with multi-ported
memories, or even multiple, distributed memories.

The MAN architecture must address three specific goals. It
must (1) allow multiple, potentially concurrent accesses to the
shared memory block; (2) allow data read from memory to be
routed to their appropriate destinations; and (3) guarantee memory-
coherency. The MAN allocates an input port for each static mem-
ory reference in the program. Hence, the MAN architecture must
be highly scalable as the number of references can be numerous.

The proposed MAN architecture is fully distributed and pipe-
lined. It is both scalable, since there are no global controllers, and
provides for increased pipeline parallelism. Figure 3 shows the
architecture of the MAN for a simple flow-graph, with only two
memory operations with a memory dependency between them.
The data read by the load from memory is to be used by an
adder in the circuit.

The two accesses are connected to the AccessTree, which is
a pipelined, arbitrated tree, whose tree elements are implemented
as Memmux elements, shown in Figure 4. Each Memmux re-
ceives requests on bus0 and bus1 data bundles, which seek to
gain access to the next level of the tree. The Memmux arbitrates
these using an asynchronous mutual-exclusion element [28]. The
arbitration winner controls the Mux, which steers the appropri-
ate data item to the internal register. In turn, the Mux activates
the handshake controller (HS Cntrl), which performs the 4-phase
handshaking between the tree children nodes and the parent node.

The MemoryStation provides an interface to the shared mem-
ory port. It simply issues accesses once they exit the accesstree,
and, for load accesses, it waits for the memory response and
forwards the load-value to the V alueTree. This tree routes the
values to the appropriate destinations (such as the adder in Fig-
ure 3). The valuetree, like the accesstree, is also pipelined, but
the flow direction is reversed. Each tree-node element, called a
Memdemux, is implemented as a handshake-demultiplexor, as
shown in Figure 5.
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Figure 4: Circuit-level implementation of the Memmux element
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Figure 5: Circuit-level implementation of the Memdemux ele-
ment

Memory coherency can be achieved if an access releases its
token to its dependents only when it is guaranteed that the depen-
dents cannot overtake this access. Since the root of the access-
tree represents a common point in the path of all accesses to
memory and these accesses cannot overtake each other in the
memorystation, the tokens can be safely released from the access-
tree root. Once released, the token flows to its appropriate des-
tination through the TokenTree. Functionally, the tokentree is
identical to the valuetree.

The encoding of packets passing through these trees is straight-
forward. An accesstree packet has: (1) access-specific informa-
tion like memory address, etc; (2) the path taken by its token
through the tokentree; (3) value path, if the access is a load.
The return tree packets carry path routing information, with the
load-value being an additional field for the valuetree.

The return trees are parameterized by the tree-degree, and
their construction is simple since their only function is to deliver
packets to the appropriate destinations. The accesstree, on the
other hand, not only delivers an access to the memorystation, but
also releases the accesses’ tokens to the tokentree. Decisions re-
garding when to perform the latter can significantly affect perfor-
mance and is the topic of the next section.

4 Restructuring
A source of inefficiency in the MAN architecture is that mem-
ory coherency is enforced conservatively: an access releases its
synchronization token only from the AccessTree root, thereby
synchronizing with every other access in the program. In reality,
it needs to synchronize only with its token-dependents.

To understand this, consider a trivial example in Figure 6 where
access A has only a single token-dependent, B. If they are both
connected to the same Memmux node, then this node becomes
the common point on their paths, and A’s token can be released
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from here. In general, if there are N memory accesses in the pro-
gram, then the token round-trip time (RTT) for A is reduced from
O(2 log(N) to just O(1). Furthermore, A and B are mutually
exclusive since B needs the token from A to fire; hence, this leaf-
node can, in fact, be un-arbitrated, thereby reducing the critical
path through Memmux.

This example shows that the RTT through the MAN can be
greatly decreased if we take into account local regions of depen-
dencies. We now present an algorithm to analyze memory depen-
dence relations and to then construct an AccessTree that reduces
the token RTT, without sacrificing memory coherency.

4.1 SESE Regions
An important concept that enables our proposed optimization al-
gorithm is Single Entry, Single Exit (SESE) regions [15]. Such
a region has a single node through which all external edges en-
ter the region, and has a single node through which all internal
edges exit the region. Internally, however, there may be arbitrary
fanout/fanin of edges, and can also include cycles. A SESE re-
gion has the property that for all its nodes except the entry node,
the predecessors of each node are contained within this region.
Therefore, if all the nodes in such a region belong to the same
subtree (within the AccessTree), then the subtree root is a com-
mon point on their paths to memory. Except for the exit node, all
accesses can release their tokens from this common point; the exit
node, however, must synchronize with its dependents outside the
SESE region.

For our analysis, we define two special types of SESEs: (1) a
Linear SESE (LSESE) region is the longest chain of nodes with no
fanout/fanin within them; (2) an Innermost SESE (ISESE) region
is one that contains no other SESEs (including LSESEs) within it.

4.2 Reduce: AccessTree Construction Algorithm
Using SESEs, we have devised an algorithm, Reduce, that gen-
erates an application-aware AccessTree for a given input graph,
G. Reduce is described in the pseudo-code presented in Figure 7
and is the focus of this section. Reduce requires G to have unique
entry and exit nodes. If a graph has multiple source (sink) nodes,
then a pseudo-node entry (exit) can be created as a predecessor
(successor) of all source (sink) nodes. In addition, each node is as-
sociated with a tree pointer (Tptr) indicating which tree-node in
AccessTree releases the token for the access. Initially, all Tptr

pointers are NULL.
Next, we find all ISESE and LSESE regions in the graph, and

create a local subtree for the nodes in the SESE. All accesses in an
LSESE are mutually exclusive, and thus, the subtree for this is a
simple un-arbitrated Memmux with all LSESE nodes as inputs.
For an ISESE, we first construct a balanced arbitrated tree, say t,
using all the internal nodes of the region. Since the entry node,

    foreach s in LS {
      Let n = size of s
      Create un−arbitrated, n−input Memmux, r
      Connect all nodes in s to r
      Let Tptrs of all nodes (except exit) point to r

      Replace s in G with a new, unique node, x
    }

    foreach s in IS {
      Create binary, arbitrated Memmux tree, t, with all
       the internal nodes in s

      Create un−arbitrated, 3−input Memmux, r with inputs:
entry(s), t, and exit(s) respectively

      Let Tptrs of all nodes (except exit) point to r

      Replace s in G with a new, unique node, x

    }

Reduce(G) {
  Add pseudo entry/exit nodes, if necessary
  Initalize Tptrs of all nodes in G to 0.

  while (|G| > 1) {
    Find LS, the set of all LSESEs in G
    Find IS, the set of all ISESEs in G

  }
}

Figure 7: Pseudo-code of the Reduce algorithm

t, and the exit node are all mutually exclusive we connect these
to a un-arbitrated 3-input Memmux, which forms the region’s
subtree root.

Once we form a subtree for a given SESE, say s, we update
the Tptr values of all nodes but the SESE exit to point to the sub-
tree root. We then delete s from G, and replace it with a new
(compound) graph node, say X , and we alias Tptr(exit(s)) =
Tptr(X). This SESE reduction is then repeated on the newly
reduced graph. When X is later involved in a (higher-level) SESE
reduction, we will be connecting the subtree associated with X to
the (higher-level) tree, and Tptr of X will be updated.

The progression of Reduce is illustrated in Figure 8a. The
initial graph is progressively reduced, until a single node is left in
the graph. Since the original graph itself is one large SESE region,
Reduce will always converge. The final AccessTree generated
after reduce is shown in Figure 8b. The table in Figure 8c displays
the values of Tptr pointers corresponding to all accesses after the
Reduce completes. Notice that token RTT for most nodes have
now been drastically reduced. The complexity of a single itera-
tion of Reduce is equivalent to the complexity of finding SESEs.
The number iterations depends on the input graph structure, but
typically converges in less than five iterations.

4.3 Loop Optimizations
Figure 9a shows a typical loop. In the first iteration, the loop ac-
cesses are dependent on (receive their tokens from) accesses that
occur prior to entering the loop, the Pred block. In subsequent
iterations, all tokens remain within the loop itself. In the final it-
eration, accesses outside the loop (in the Succ block) will be the
recipients of last iteration’s access tokens.

Loop accesses present a unique opportunity because we know
that between any two given loop iterations, the memory depen-
dencies are local to the loop region. However, a loop can never
form a SESE region by itself since there always exists at least two
loop exits — one for looping back to the loop-entry, and another
to the Succ block. A key observation, however, is that the latter
exit is used only in the last loop iteration. To optimize for the
common case, the loop is temporarily changed into a new graph,
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Figure 9: Optimizing Reduce in loops

G′ by deleting all exits to the Succ block; thus, the only exit from
the loop region is now the back-edge. Now, Reduce will consider
G′ to be SESE region and optimize the resulting subtree indepen-
dent of its external context.

Next, the fully reduced loop node is inserted into the top-level
graph by re-introducing the deleted exit edges as shown in Fig-
ure 9b. The resulting graph is then reduced as before. However,
upon this second reduction, the loop accesses that emit tokens
along the Succ block exits, are now flagged as generating tokens
from two points in the AccessTree — one from the reduction of
G′ and the other from the reduction of the top-level graph. The
first (local) token synchronizes with all accesses within the loop,
while the second (global) token is used only in the last iteration
and is used to synchronize with dependents in the Succ block.
In this manner, loop accesses are accelerated through localized
synchronization.
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I H
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Low−priority trees
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Figure 10: For two groups of high- and low-priority nodes, the
tree construction can be biased as shown in (a). (b) shows the
result of applying this optimization on the access tree generated
in Figure 8 to optimize nodes C, F and G.

4.4 Priority-based Construction
A problem with Reduce is that accesses in SESE regions reduced
earlier on end up at the bottom of the AccessTree (for example,
C-E and D-F-G-H in Figure 8). This is not a problem for token
RTT, however, if any of these accesses is a load, then the path
of the load-value round-trip will include the entire depth of the
AccessTree. If the access is critical, then overall performance
can degrade.

We solve this problem by assigning priorities to nodes during
the subtree construction phase of Reduce. Currently, the algo-
rithm employs a simple, greedy heuristic that only considers two
levels of priorities at a time — High and Low. Independent sub-
trees are formed for each priority class, and finally, the Low prior-
ity subtree is subordinated to a leaf of the High priority subtree.
Figure 10a illustrates idea.

Since a node involved in the subtree construction could itself
be a smaller subtree, the heuristic can be applied hierarchically,
which provides for more flexibility in selecting the accesses to be
optimized. For example, in Figure 8b, if we assign high-priority
to accesses C, E, D, F, and G, then the resulting AccessTree is
shown in Figure 10b. Most importantly, this heuristic preserves
the Tptr of the smaller subtrees involved in the construction.

4.5 Sequencers
In case of high memory parallelism, the congestion in the MAN
usually results in performance penalties due to two reasons - (a)
high cost of arbitration, and (b) the turn-around time of the hand-
shake in Memmux, which is usually hidden, now falls on the
critical path. Therefore, as an optimization, entire arbitrated sub-
trees are replaced by “sequencer” stages, which, unlike a Mem-
mux stage, services its inputs in strict order and does not need
arbitration. In addition, while it is expensive to implement arbi-
trated Memmuxes with more than two incoming accesses, a se-
quencer stage can easily be extended to multiple inputs. With this
optimization, the critical path for the accesses serviced by the se-
quencer is reduced from ln(N) down to 1 stage.

However, not any sub-tree can be replaced by a sequencer,
since (a) deadlocks may be introduced, and (b) performance may
degrade when a critical access is connected to a port serviced
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amongst the last. Currently, our MAN optimization step uses se-
quencers only for a set of accesses that have (a) common sources,
which will avoid deadlocks, and (b) have the same ASAP sched-
ule, ensuring that performance is not sacrificed.

5 Related Work
HLS tool support for applications with memory references can be
classified into the following four broad categories:
• Memory Size Estimation and Mapping: A vast body of work

examines the ideal sizing of memory modules in order to cus-
tomize them to the particular application’s needs [30, 23, 34,
17]. De Micheli [25] described how data structures in ANSI-
C can be allocated into separate memories. In particular, they
present an implementation of the malloc/free constructs in
C used for dynamic memory allocation.

• Memory redundancy elimination: has been the focus of many
efforts attempting to improve memory bandwidth and reduce
unnecessary memory accesses. Kolson [18] described tech-
niques based on Tree Height Reduction to consider memory
access latencies and redundancies in forming a schedule. Re-
cent work by Stitt [27] shows how words recently read from
memory can be reused.

• Access ordering and access scheduling: A huge body of work
in HLS systems addresses the problem of static scheduling in
memory-intensive applications [9, 32, 13, 24, 22]. Most of
these efforts use a control-data flow graph (CDFG) like spec-
ification as their input, where memory references are explic-
itly marked (that is, statically disambiguated). They differ in
the static scheduling algorithm used, and may even assume
that memory accesses incur fixed latencies [32, 22]. There are
also some efforts that consider memory access scheduling and
memory allocation in conjunction [21, 26].

• Tool support: A number of C-like toolflows [8, 10, 11, 31, 16,
12] like System-C [20] define synthesizable subsets of C, but
they all require static memory reference disambiguation.
The first two research directions described above are orthogo-

nal to the focus of our work, and can be used in conjunction with
our techniques. A commonality in the last two is that they all per-
form static scheduling and rely on the fact that memory references
can be statically disambiguated.

Our work differs from all of the above in that our proposed
HLS techniques support input specifications in which memory
references cannot be statically determined. Our input spec uses an
explicit memory dependency representation, which also becomes
a runtime synchronization construct. Hence, all memory accesses
are dynamically scheduled once their dependencies have been dy-
namically disambiguated. To our knowledge, we are the first to
propose HLS techniques to handle these concepts.

6 Experimental Results
This section evaluates the quality of the MAN architecture, and
the optimizations applied to it. We have implemented the tech-
niques described in this paper within the CASH toolflow [29].
The input to this toolflow is ANSI-C programs, which are auto-
matically synthesized into fully asynchronous, gate-level circuits

Benchmark Kernel Static Tok RTT Val RTT
Refs. Ratio Ratio

adpcm d adpcm 9 623.00 1.12
decoder

adpcm e adpcm 10 579.00 1.30
coder

gsm d Short term 6 1.93 1.34
synthesis
filtering

gsm e Short term 5 1.94 1.05
analysis
filtering

jpeg d jpeg idct 68 1.23 1.14
islow

jpeg e jpeg fdct 32 2.43 1.00
islow

mpeg2 d idctcol 35 0.78 1.00
mpeg2 e dist1 43 1.21 1.03
pgp d mp smul 7 1.22 1.00
pgp e mp smul 7 1.23 1.00

Geometric Mean (GM) 4.74 1.09

Table 1: List of the benchmark kernels synthesized and the num-
ber of static memory accesses within each kernel. The RTT ratios
specify the ratio of the weighted average of dynamic RTTs in the
base MAN to the weighted average of dynamic RTTs in MAN
built using Reduce.

using a [180nm/2V] standard-cell library. All results reported in
this section are extracted from post-layout estimations.

Our benchmarks are the most frequently executed kernels from
the Mediabench suite [19]. The second column of Table 1 lists
these kernels and the third column lists the number of static mem-
ory references present in them. The latter is the number of input
ports to the accesstree, and gives us a feel for its complexity. For
all these kernels, our technique achieves its design goal of synthe-
sizing a memory coherent access network which allows for high
memory level parallelism (MLP), which is measured as the num-
ber of in-flight accesses. In other words, MLP measures the num-
ber of accesses that have entered the accesstree but whose tokens
have not yet emerged from the tokentree. Our results show that
the MAN can sustain high MLP, e.g., 32 in the mpeg2 e kernel.

MAN Optimizations. Table 1 shows the impact of using the
restructured MAN as described in Section 4, by evaluating the
effect on the token and value RTTs. Token (value) RTT is defined
as the time difference between when an access is inserted into
the accesstree, and when its token (load-value) emerges from the
tokentree (valuetree). Using simulation traces, we computed the
weighted average of the dynamic token and value RTTs over all
accesses. The fourth and fifth column of Table 1 shows the ratio
of these averages for the basic MAN versus a restructured MAN.
A value greater than one implies the token (value) RTT is better
(i.e., shorter) after restructuring.

The table suggests that we are able to reduce the the token
RTT (and hence the synchronization overhead) by a factor greater
than 4x, on average. This is especially true with the adpcm ker-
nels, which contain loops (and hence SESE regions) with a single
access. This means that the sub-tree consists of a single node, and
the synchronization token for the access never needs to enter the
MAN. Hence token RTT is zero. The improvements for the value
RTT comes from assigning high-priority to loop accesses as dis-
cussed in Section 4.4. However, these improvements are modest,
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Figure 11: Evaluation of MAN optimizations

because MAN restructuring mainly strives to reduce synchroniza-
tion overhead, but may inadvertently worsen the value RTT.

Figure 11 shows the impact on the kernel performance when
using the restructured MAN. The graph shows the ratio of the
kernel execution latency of the base MAN construction versus the
optimized one. In most cases (8 out of 10), performance improves
with the optimized MAN.

For two benchmarks, the base construction works better. The
gsm e kernel contains a two-deep nested loop, with two accesses
in the outer loop, and the rest of the accesses within the inner
loop. The greedy heuristic used in the priority-based construction
works poorly since, in our current framework, it only prioritizes
inner loop accesses; our simulations indicate that the outer loop
accesses are on the critical path, which is now worsened.

The mpeg2 d kernel loses by about 8% and is a more in-
structive example. Here, there are no loops in the kernel. Since
our priority heuristic only classifies loop accesses as high-priority,
the Reduce-based construction ends up being priority-less. This
shows that a more nuanced priority-based Reduce construction
is vital. Without this information, Reduce may result in overall
performance degradation.

The sequencer synthesis technique, on the other hand, is a lo-
cal optimization, and is bound to improve the critical path when
it can be applied. It boosts the performance of the mpeg2 e and
jpeg d kernels, which are the only ones that present an opportu-
nities. In the former, two sets of 16 accesses can use sequencers,
and in the latter two sets of 8 accesses can be sequenced, result-
ing in a reduction of 3/2 stages, respectively, for each sequenced
access.
Based on these results, we can draw two conclusions:
• The Reduce-based accesstree construction technique relies heav-

ily on which accesses are tagged for optimization. The cur-
rent greedy heuristic is insufficient in some cases, and em-
ploying more sophisticated analysis to reveal critical accesses
would greatly enhance Reduce. Finding critical accesses is
really orthogonal to the Reduce algorithm, and we are cur-
rently working on incorporating some scheduling-based anal-
ysis techniques.

• Table 1 shows that Reduce results in significant reductions in
the dynamic RTTs; however, this does not always translate to
equivalent improvements in overall performance in Figure 11.
Analysis of the results shows that these reductions in the RTTs
have the effect of shifting the critical sections to new regions in

Figure 12: Performance comparison with superscalar

the circuit, which then become the bottleneck to performance.
To that end, the optimizations have succeeded. However, to at-
tain overall improvement, it is imperative that we use the MAN
construction techniques in concert with other circuit optimiza-
tion techniques, that can then deliver a global improvement in
performance.

MAN vs Superscalar. The optimizations presented in this pa-
per improve on the basic performance of the MAN. To provide
the reader with a feeling for the overall effectiveness of the re-
sulting circuits we compare the performance of the automatically
synthesized circuit to that of a superscalar processor running the
identical program. Despite the fact that the superscalar is gen-
eral purpose, the comparison is illustrative of two very different
approaches to accessing memory. In the superscalar, there is a
single-point of access for all memory operations, the load-store
queue (LSQ). Thus, there is no arbitration. Furthermore, the LSQ
performs a host of aggressive optimizations such as store forward-
ing, and load-store re-ordering to minimize the cost of memory
access dependencies. On the other hand, the ASIC implementa-
tions have many points of access to memory, and one of the fun-
damental functions of the MAN is to arbitrate amongst these ac-
cesses, while enforcing all memory dependencies. With a single-
ported memory in both cases, the cost of performing a memory
access in the MAN-based ASIC is thus much more expensive than
in a superscalar core. In many ways, the LSQ and the MAN are
two extremes in the continuum of hardware support for uncon-
strained memory accesses.

Figure 12 compares the execution latency of the C kernels in
Wattch [4] simulations of a 4-wide, out-of-order execution core
versus the execution latency of the same kernels in post-layout
simulations of ASICs generated by our toolflow with all MAN op-
timizations enabled. The factors influencing performance in both
systems are varied; CASH takes advantage of data-parallelism
through spatial layout of the circuit, while the superscalar core re-
lies on techniques like register renaming, prediction and specula-
tion to uncover parallelism. Previous limit studies of the MAN [7]
show that it quickly becomes a bottleneck in memory-intensive
applications due to its excessive cost of accessing memory. De-
spite this, our results show that an ASIC with an optimized MAN
still delivers competitive performance (on average 33% better than
the core). Of course, the superscalar core is more flexible since
the same core can execute all kernels.

7



7 Conclusions
This paper presents techniques to support unconstrained mem-
ory accesses in a HLS flow. Given an input graph representation
that explicitly specifies may-dependencies, we can synthesize a
distributed memory access network (MAN) architecture to pro-
vide access to and from memory. The architecture is scalable and
maintains memory coherency at all times. Comparison with ag-
gressive memory coherency techniques used in superscalar cores
show that MAN is effective since it keeps the cost overhead of
distributed memory access low.

We have also presented some analyses and optimizations that
improve upon the basic MAN architecture by reducing exces-
sive synchronization and by accelerating the application for the
common-case. While some optimizations like sequencer-synthesis
are local optimizations and should always provide benefits, oth-
ers like Reduce-based AccessTree construction relies heavily on
good criticality information. Although these optimizations gener-
ally improve performance by themselves, our analysis shows that
there is more to gain if they are applied in concert with other cir-
cuit optimizations.
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