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Abstract

We present a complete toolflow that translates ANSI-C programs

into asynchronous circuits. The toolflow is built around a com-

piler that converts C into a functional dataflow intermediate rep-

resentation, exposing instruction-level, pipeline and memory par-
allelism. The compiler performs optimizations and converts the
intermediate representation into pipelined asynchronous circuits,
with no centralized controllers. In the resulting circuits, control
is distributed, communication is achieved through local wires,
and arbitration for datapath resources is unnecessary. Circuits
automatically synthesized from Mediabench kernels exhibit ex-
cellent energy-delay.

1 Introduction

For five decades Moore’s law has supplied chip designers with
an exponentially increasing amount of computational resources.
Computer architects have taken advantage of these additional re-
sources to produce faster and more parallel machines. But this
relentless advance is proving to be a double-edged sword: the
chip complexity is also exponentially out-pacing the design pro-
ductivity [1], and designers are unable to efficiently take advan-
tage of the wealth of available resources. In this paper we de-
scribe a solution to the design scalability problem: A CAD tool
flow which can automatically synthesize energy efficient asyn-
chronous circuits directly from ANSI-C programs. Our com-
piler automatically creates Application-Specific Hardware (ASH)
circuits directly from C programs, generating highly distributed
computational structures which require no global wires and no
centralized controllers. ASH uses the extra resources to reduce
design time and manage complexity while providing excellent
energy efficiency and energy-delay.

The important characteristics of our toolflow are: (1) fully
automatic compilation of C programs to dataflow machines; (2)
hardware synthesis of the dataflow machines as asynchronous
circuits; (3) synthesis of dynamically-scheduled circuits that di-
rectly implement the source program, without resource sharing
or the use of interpretive structures. ASH circuits can most
naturally be used in combination with a regular processor: the
processor handles tasks such as running the operating system
and virtual memory, while ASH is best suited for implement-
ing computations with a high amount of instruction-level par-
allelism (ILP). The ASH circuits can either be fabricated as an
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Figure 1: Compilation toolflow

ASIC or can be converted into a configuration and loaded onto
a reconfigurable fabric that is coupled with the processor.

Figure 1 shows how our compiler, CASH (Compiler for ASH),
is used within a complete compilation/synthesis tool-flow.

(1) Hardware-software partitioning, which selects the C kernels
to be mapped on ASH, is performed at procedure boundaries:
entire procedures are mapped either to the processor or to ASH
as an indivisible unit [11]. The partitioner can automatically
synthesize the communication code for transferring control across
the hardware-software interface.

(2) The software part of the program is mapped to the proces-
sor by a regular C compiler; the hardware part is processed by
the CASH front-end and the CASH Asynchronous Back-end
(CAB).

(2a) The CASH front-end translates the selected C kernels
into a dataflow intermediate representation (IR) called Pegasus [9],
and then performs a complex series of optimizations.

(2b) CAB produces asynchronous circuits from Pegasus; the
output is a structural Verilog description of the circuits. Com-
mercial tools then perform synthesis, and place-and-route.

1.1 Contributions

A distinguishing characteristic of our methodology is the distri-
bution of control in a dynamically scheduled, purely dataflow
circuit. Aggressive predication and speculation is used to in-
crease parallelism and all control-flow constructs are transformed



into dataflow. The resulting circuits contain no FSMs or global
control circuits.

The tool-flow compiles unmodified ANSI C programs into
hardware, without requiring any hardware-related program an-
notations. This enables us (1) to leverage the enormous base
of existing code, and (2) to directly compile the reference de-
scriptions frequently used for describing hardware, which are
customarily translated by hand into Verilog. The result is a fully
automated CAD toolflow that converts a C program into circuit
layout.

We envision our toolflow being useful in two scenarios: first,
as a compiler for accelerating the performance of a hybrid micro-
processor-reconfigurable hardware system, at a low energy cost.
This avenue becomes even more important as technology contin-
ues to shrink feature sizes. Second, our tool can also be used to
deliver a quick turnaround, low-power ASIC solution. In this re-
gard, our research is similar to the “chip-in-a-day” project from
Berkeley [17], but our approach is very different: that project
starts from parallel statechart descriptions and employs sophis-
ticated hard macros to synthesize synchronous designs with au-
tomatic clock gating. In contrast we start from C, use a library
of standard cells, and build asynchronous circuits.

Our toolflow also explores the use of established synchronous
CAD tools for synthesizing asynchronous circuits. While using
these tools did not produce optimal results for our asynchronous
designs (see Section 6), the overall experience is very encourag-
ing. In contrast, most of the proposed asynchronous synthesis
flows employ custom tools to synthesize their circuits.

1.2 Roadmap

In the remainder of this paper we focus our attention on the hard-
ware compilation issues, shown in the highlighted box in Fig-
ure 1. The result of our hardware compilation is a micropipelined
[35], asynchronous circuit that directly implements the function-
ality of the source program. The circuits use a 4-phase bundled-
data protocol [32] for communication. The control logic is closely
tied to the synthesized datapath, and the computational part uses
only local communication. Each channel can only be written
by a single data producer. Computation thus requires no arbi-
tration or scheduling, and communication is a lightweight op-
eration. Preliminary results from the synthesis of Mediabench
kernels [25], which tend to produce million gate equivalent cir-
cuits, reveal two interesting facts — one, these circuits have sig-
nificant energy-delay advantages over synchronous implemen-
tations employing comparable technologies; and two, such a de-
sign paradigm appears to be layout-friendly — in all the circuits
we have synthesized so far, we have had a smooth place-and-
route experience (using Cadence Silicon Ensemble) without any
post-layout timing violations.

2 Related Work

Compiling high-level languages into circuits, whether for the
creation of ASICs or for use in reconfigurable computing is a
widely studied area. C has been the starting point for many

of these efforts, but in most cases, the language is either re-
stricted, extended with hardware-specific extensions, or both.
We compile all of ANSI-C, and handle programs without re-
gard to their intended target domain. SA-C [4], StreamsC [19],
Rapid-C [15] all restrict the source to a “synthesizable” subset
of the language, and may include extensions such as explicit
bitwidth specification or timing constraints. These languages
also leverage their domain-specific nature, e.g., streaming mul-
timedia applications. HardwareC [29], Transmogrifier C [20],
Handel-C [13], Esterel-C [24], SystemC [36] are all more gen-
eral, but require the programmer to include notions of hardware,
e.g., I/0 ports, bitwidths, explicit parallelism, etc. Their goal is
to create a version of C that looks more like traditional HDLs,
but is still accessible to C programmers.

Using C as a source language is more common in the do-
main of reconfigurable computing [3, 12, 22, 30, 39]. Our work
differs from this body of work in two ways. First, we compile
all of ANSI C to hardware. Second, and more importantly, we
generate asynchronous circuits, without any centralized control.

Synthesis flows to asynchronous circuits generally start from
a high-level language (usually based on CSP [23]) suitable for
explicitly describing the parallelism of the application, e.g., Tan-
gram [38], Balsa [18], OCCAM [28], CHP [26, 37]. Synthesis
tends to follow a two step approach: the high-level description
is translated in a syntax-directed fashion into an intermediate
representation; then, each component of the IR is (template-
based) technology mapped into gates. An optional optimization
step [14] may be introduced to improve performance.

There are many differences between our approach and other
flows. In short, no other flow compiles all of C into energy ef-
ficient pipelined asynchronous circuits. Our input language is a
well-established, imperative, sequential programming language.
In addition, the compiler also performs extensive analysis and
optimization steps on the intermediate form.

3 The CASH Front-End

This section briefly describes the front-end of our compiler, which
translates the input ANSI-C program into the compiler’s IR, Pe-
gasus. The C front-end is based on Suif 1 [40], and performs
parsing and some optimizations. Afterward the front-end trans-
lates the low-Suif IR into the Pegasus dataflow IR. Next, CASH
performs numerous optimizations on this representation, includ-
ing scalar-, memory-, and Boolean optimizations.

The implementation of C into hardware is simplified by main-
taining roughly the same memory layout of all program data
structures as implemented in a classical CPU-based system. ASH
currently uses a single monolithic memory for this purpose. There
is nothing intrinsic in our model that mandates the use of a
monolithic memory; on the contrary, using several independent
memories (as suggested in [33, 3]) would be beneficial.

The remainder of this section presents a brief overview of the
Pegasus IR, and then describes how some of the more complex C
language constructs are represented in Pegasus. See [7, 8, 9, 10]
for more details on Pegasus and CASH.
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Figure 2: C program and its Pegasus representation. The dotted
lines represent predicate values.

3.1 ThePegasusIntermediate Representation

In Pegasus, a program is represented as a directed graph in which
nodes are operations and edges indicate value flow. Pegasus is
a form of Static Single Assignment (SSA) [16], an IR used for
imperative programs in which each variable is assigned to only
once. As such, it can be seen as a functional program [2]. Each
ALU operation is represented as a unique node in the graph.
When a value can be produced by several instructions (such as
assignments to a variable in both the t hen and el se branches
of a conditional), Pegasus uses one of two special types of nodes
to represent the “join” (corresponding to the ¢ nodes in SSA):
decoded multiplexers (Mux) and MERGE nodes. While, MUX
nodes are used to select the value from forward branches (like
i f-el se), the MERGE nodes are used for merging the flow at
loop entry points. The latter can have several inputs, and when
any one of the inputs is available, it is copied to the output.

A simple C program in Figure 2 illustrates Pegasus. The
loop contains two MERGE nodes (shown as triangles pointing
up), one for each of the loop-carried values, i and sum Loop
exit controls are handled by another Pegasus construct, the ETA
node (shown as triangles pointing down). These nodes have
two inputs—a value and a predicate—and one output. When
the predicate evaluates to true, the input value is moved to the
output; when the predicate evaluates to false, the input value and
the predicate are simply consumed, generating no output. The
example contains three ETA nodes: two of them send the values
of i and sumback to the beginning of the loop, while the third
sends the value of the sumto the return node when the loop is
completed. Note that the predicate controlling the third ETA is
the complement of the predicate of the first two.

Memory access is represented through explicit LoAD and
STORE nodes. The compiler adds dependence edges, called to-
ken edges, to explicitly synchronize operations whose side-effects
may not commute. These token edges are implemented as data-

less channels. Operations with memory side-effects (LOAD, STORE,

CALL, and RETURN) all have a token input. An operation with
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Figure 3: Bundled Data Protocol: (a) Signals (b) Complete
Handshake

side-effects must collect tokens from all its potentially conflict-
ing predecessors (e.g., a STORE following a set of LOADS).

3.2 Function Calls

Function calls can be implemented in several ways. The sim-
plest method is inlining, which requires code duplication and is
not applicable for recursive functions. Alternatively, each func-
tion is synthesized as a separate circuit. Calls to functions known
at compile time involve routing control from the CALL node to
the callee arguments, and from the callee’s RETURN back to the
call site. If the functions are not recursive this is easily achieved
using a “call” asynchronous element [35]. Passing arguments
can be done either over wires, on a stack, or using a hybrid solu-
tion (in the same way traditional compilers pass some arguments
in registers and the rest on the stack).

Handling recursion simply requires the live variables of the
caller to be saved on a stack (using STORE operations) before ex-
ecuting the call. After the recursive call completes, the live vari-
ables are restored from the top of the stack (using LOADS). One
of the values saved is the identity of the caller’s parent which is
used by the caller to return when it completes.

We can partition the standard C library functions into two
categories: functions implementable in C (e.g., memory alloca-
tion) and functions requiring system calls (e.g., file operations).
Given the source code, CASH can synthesize the former as hard-
ware circuits. The latter, which requires execution of system
calls, cannot be described in pure C; these should be imple-
mented on the processor by the hardware-software partitioner.

3.3 Compiler Status

The front-end and optimizer handle all of ANSI C except al -
| oca, var ar gs, and | ongj unp. While the former two con-
structs are relatively easy to integrate, handling | ongj np is
substantially more difficult. Strictly speaking, C does not have
exceptions® and our compiler does not handle them.

While all of Pegasus is amenable to synthesis, we have not
yet implemented floating-point operations and procedure calls
in CAB. The former is easily handled. The latter is harder to
implement efficiently in full generality (i.e., in the presence of
function pointers). However, our results indicate that ASH is
most beneficial for implementing kernels, and thus a full-blown
mechanism for handling large programs may be unwarranted.

1The meaning of a program which generates exceptions is undefined by the
C standard.
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4 Circuit Architecture

CASH Asynchronous Back-end (CAB) synthesizes each node
in the Pegasus graph as a unique pipeline stage. Data transfers
between pipeline stages use the bundled data protocol [32] for
signaling, as shown in Figure 3a: every data channel consists of
a data bus, a data ready wire and an acknowledgment signal. A
complete 4-phase handshake is shown in Figure 3b: a data item
is sent from the producer to the consumer by placing it on the
data bus, and then asserting the Rdy signal. This timing con-
straint (indicated by the left-most dashed line of the waveform)
is called the bundling constraint. Once the consumer consumes
the data item, it asserts the Ack signal. After that, the Rdy and
Ack signals return to zero.

4.1 Basic Pipeline Stage

The architecture of a pipeline stage (Figure 4) is based on mi-
cropipelines [35]. Each stage performs three essential tasks —
data processing (the stage’s logic function), control-flow, and
output data latching. The control-flow circuitry implements the
4-phase handshake using a Muller C-element. When the inputs
arrive, the handshake asserts the trigger signal indicating that the
stage is active. After a delay that matches the latency of the data
processing logic, the trigger signal enables the latching of the
output register. A completion detection circuit produces a done
signal when the latching completes. This signal is then used as
both the data ready (Rdy,.:) for the consumers downstream,
and as the acknowledgment (Ack;,,) for the producers upstream.

Handling multiple inputs is straightforward: additional C-
elements collect the Rdy signals of all inputs. The output can
have a fanout greater than one; additional C-elements are used
to collect the Ack signals from all of the consumers.

4.2 Memory Access

Every LOAD and STORE instruction in the IR is synthesized as a
pipeline stage, and represents a point of memory access. Thus,
there are potentially multiple points of access to a single shared
resource, the memory. Figure 5 illustrates the four hardware
structures currently used to implement memory accesses:

1. The Access Tree provides arbitration for accesses to main
memory. The leaves of the tree are the different memory op-
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Figure 5: Memory access circuitry: (a) Sample snapshot of Pe-
gasus graph with memory accesses (b) Circuit Implementation.

erations, and each internal node is a pipeline stage containing
an asynchronous arbiter (mutex) guarding access to the parent
node.

2. The Memory Station is the interface between the access
tree and main memory. The memory station holds the LOAD
operations that have been initiated but have not yet completed.
Currently we allow only one outstanding LOAD. The memory
station corresponds to the load-store queue (LSQ) in a classical
superscalar processor [34]. Our current implementation approx-
imates a 1-element LSQ.

3. The Value Tree mirrors the access tree. It routes LOAD
results back to the circuit. Each internal pipeline stage of this
tree is a demultiplexor. As a load access makes its way up the
access tree, the path it takes is recorded and used by the value
tree to return the result.

4. The Token Tree is similar to the value tree, but is used
to forward the enabling token signal from the current memory
access to the dependent operations once the current access has
been issued. For example, the LOAD access in Figure 5(b) re-
leases its token to the dependent STORE when it reaches the
memory station.

CAB builds a program-specific memory access network us-
ing these structures. The protocol for issuing memory accesses
mandates that an access can be issued only after all the memory
operations that it is dependent on have issued. To enforce this,
an access does not release its token until it reaches a common
point for all access, the memory station, after which the token
travels down the token tree.

4.3 Lenient (Early) Evaluation

One problem with the form of speculative execution employed
by Pegasus is that the critical path of the entire construct is the
longest of the critical paths, as shown in Figure 6.

In ASH we take advantage of additional control circuitry and
use leniency to solve this problem. A lenient operation can com-
pute its output using only a subset of its inputs. For example, a
LOGICAL AND operation can determine that the output is false
as soon as one of its inputs is false.

In general, there is a finite set of conditions under which an
operation can be triggered early. If we define I as the set of all
inputs and their data valid signals, then we can define the set
of triggering conditions as: C' = Couy Uy, -; {CilCi = F(Ix)}



if (x > 0)
y = -X;
el se
y = b*x

Figure 6: Sample program fragment and the corresponding Pe-
gasus circuit with the static critical path highlighted.
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Figure 7: A lenient 2 x 1 mux: There are two sufficient condi-
tions, Cy and C1, for the early triggering of the operation, and
one necessary condition, C,;;, for acknowledging all inputs

where F'(I;) is a Boolean function which computes a lenient
triggering condition, and C,;; is the strict case when all inputs
have arrived. The set on the right side of the union describes the
lenient triggering conditions. If any one of the conditions in this
set is true, then we say that a sufficient input condition has been
met to trigger the node. In a strict operation, the set C = C\;.

Figure 7 shows a lenient implementation ofa2x1 MuXx. The
MUX has two data inputs, D0 and D1, and two selection inputs
S0 and S1. Each of these inputs is accompanied by its Rdy
signal. For this operation:> C' = {Cyy, Co, C1}, where Cy =
(Rdyso O] RdyDo) ASOand C; = (Rdys1 ®© Rdypl) A S1.

Essentially, the MuX is triggered if either one of its data in-
puts, say D;, and the corresponding selection input, S;, have
arrived, and .S; is true (condition C;).

As a result of leniency the dynamic critical path is the same
as in a non-speculative implementation. For example, if the mul-
tiplication in Figure 6 is not used, it does not affect the critical
path. In this protocol a lenient operation sends an ack only after
all its inputs have arrived. In the asynchronous circuits literature,
leniency was proposed under the name “early evaluation” [31]
and “or causality” [41]. A recently proposed enhancement [5]
can send early acks, potentially speeding up computation at the
cost of more machinery to cancel partially executed operations.

In addition to Boolean operations and multiplexers, all pred-
icated operations are lenient in their predicate input. For exam-
ple, if a LOAD operation receives a false predicate input, it can
immediately emit an arbitrary output, since the actual output is

2In the equation, we use ® to denote a C-element operation.
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irrelevant. The circuitry implementing leniency introduces some
area overhead. However, since the number of operations that can
be lenient is generally a small fraction of all nodes in a typical
program, the performance gains outweigh the area overhead.

5 Circuit Synthesis Flow

In this section, we briefly describe the synthesis flow which
transforms a Pegasus graph into a fully placed and routed cir-
cuit. Figure 8 illustrates this flow. The transformation takes
place in three stages:

A) CAB: translates the Pegasus IR into Verilog. Most of
the translation process is fairly straight-forward, as each node
of the graph is translated into a pipeline stage (as described in
Section 4). In addition, CAB also synthesizes the control-path
and registers in each pipeline stage.

B) Synthesis: Synopsys Design Compiler (version 2002.05-
SP2) is used only for the synthesis of the datapath ALUs. The
result of this phase is gate-level Verilog description of the circuit,
and its timing characterizations (for back-annotation in simula-
tion).

C) Place-and-Route: Finally, this gate-level circuit is placed
and routed using Cadence Silicon Ensemble (version 5.4). This
produces a layout specification, and wire load information. The
latter is back-annotated to the synthesis phase to generate new
(and more accurate) circuit timing characterizations.

The circuit can be simulated after the completion of each
of the above phases using a Verilog simulator (Modelsim SE
version 5.8b, in our current tool flow). After processing by
CAB, the circuit is not fully tech-mapped, but a mixed struc-
tural/behavioral simulation is useful for debugging. After syn-
thesis, the critical path delay can be accurately estimated and
used to obtain precise performance evaluations. After layout,
the simulation uses the actual wire load information. Simulation
produces a toggle activity file that is used to estimate dynamic
power consumption by the Synopsys Design Compiler.

We have adapted commercial CAD tools customarily used
for creating synchronous circuits to our asynchronous design



flow. This requires some awareness and caution. For example,
we cannot allow Synopsys to synthesize (let alone infer) reg-
isters, and we cannot synthesize any combinational block with
feedback loops (basic asynchronous blocks like C-elements con-
tain feedback loops). We get around this problem by ensuring
that only the datapath is synthesized by Synopsys, while CAB
synthesizes the control path and registers.

We also use a standard cell library designed for use in syn-
chronous circuits. In consequence, some commonly used gates
in asynchronous circuits, such as C-elements, are not available
in the library. Although we can create an implementation using
existing library cells, our experiments show that such C-element
implementations are 2-3 times slower and 2 times larger than a
custom transistor-level design.

Our investigation indicates that the place/route phase is con-
siderably simplified compared to a synchronous circuit design
flow. No clock-tree is required, routing does not need to be
timing driven, and there are no clock-related timing violations.
Timing closure is thus not necessary.

There are two possible sources of timing violations in our
circuits, that can occur post-layout:

Matched Delay: each pipeline stage uses a delay element
to match the data processing logic delay (see Figure 4). Actual
logic delays after place-and-route may violate this assumption.
However, we have engineered the circuits to reduce the proba-
bility of such a violation by ensuring that the data processing
logic is a localized circuit with a fanout of exactly one (the out-
put register is the only destination). This constraint allows for an
early correct estimation of the matched delays, thus improving
the whole synthesis run-time.

Bundling Constraint: the bundled data protocol works un-
der the assumption that data always arrives at the destination
before the corresponding Rdy signal. The completion detection
circuit (see Figure 4) ensures that this constraint is obeyed at the
output of a pipeline stage. However, layout could violate these
constraints if the wires connecting pipeline stages are arbitrarily
routed. The problem can be addressed by supplying hints to the
layout tool — for example, by ensuring that the weight on the
data wire is bigger than that on the Rdy wire (assuming that the
tool optimizes for minimum wire-length).

In all of the circuits that we have synthesized (see the next
section for a list), we have not encountered any timing viola-
tions. Overall, the experience with layout of our asynchronous
circuits has been encouraging — not only have we had no tim-
ing violations, but often the post-layout circuit has better latency
and power consumption than pre-layout estimates. It seems that
the local communication and self-timed nature of our circuits
simplify layout considerably.

6 Toolflow Evaluation

There are many metrics that can be used to evaluate a CAD
tool flow — design time, circuit performance, power, area. Our
toolflow optimizes design time. Despite this, it also produces
circuits with excellent energy-delay, energy efficiency compara-
ble to hand-optimized custom designs, and good performance.
For a quantitative analysis, we compare our circuits against two

Benchmark | Function

adpcm_d adpcm_decoder

adpcm_e adpcm_coder

g721d fmult+quan

g72l e fmult+quan

gsm._d Short_term_synthesis fi Itering
gsm_e Short_term_analysis_fi ltering
jpeg-d jpeg-idct_islow

jpeg_e jpeg_idct_fdow

mpeg2_d idctcol

mpeg2_e distl

Table 1: Embedded benchmark kernels used for the low-level
measurements. For g721 the function quan was inlined into
frul t.

processor cores that execute the same C program: (1) a 4-wide
out-of-order superscalar core, and (2) a single-issue in-order core.
Both processors use aggressive clock gating. While it would be
best if we could also compare our circuits to other asynchronous
and synchronous implementations of the same programs, we do
not have data for such implementations. Furthermore, we know
of no other tools that will create such circuits from unannotated
C-code; a head-to-head comparison is difficult.

Experimental Setup

We use the Mediabench suite [25] for the comparison. From
each program we select the most important function, e.g., the
one which takes the most time on the CPU (see Table 1). The
data we present is for the entire circuit synthesized by CAB,
including the memory access network (described in Section 4.2),
but excluding the memory itself or 1/O to the circuit. We report
data only for the execution of the kernels itself, ignoring the rest
of the program. We do not estimate the overhead of invoking
and returning from the kernel.

We use a [180nm/2V] standard cell library from STMicro-
electronics, tuned for high-performance. All numbers are post-
layout estimates. The processors, operating at 2V, are simulated
using Wattch [6]. The clock frequency is 600 MHz (the state-of-
the-art for many commercial CPUs in an 180nm process). For
all systems we assume a perfect L1 cache, and do not include the
power consumption of the caches or memory in these results.
Measurements

Area. Figure 9 shows the area required for each of these
kernels. For reference, in the same technology a minimal RISC
core can be synthesized in 1.3mm?, and a complete P4 processor
die, including all caches, has 217mm?. This shows that while
the area of our kernels is sometimes substantial, it is certainly
affordable, especially in deep sub-micron technologies.

Performance. Figure 10 compares the performance of our
circuits against the two processor cores. The graph displays the
ratio of the execution times of each kernel on the processors to
the timing on ASH. Although ASH circuits perform better than
the single-issue core, they often perform worse in comparison
with the superscalar core.

We have uncovered two major sources of inefficiency in our
circuits: (1) As described in Section 5, our C-element imple-
mentation from the available standard cells is highly suboptimal.
Our experiments indicate that a faster C-element can speed-up
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Figure 10: Performance comparison: how many times processor
cores are slower than ASH. Values above 1 indicate that ASH is
faster, while values less than 1 indicate a faster processor.

programs by 15% on an average. (2) The memory accesses pro-
tocol described in Section 4.2 is currently the main performance
bottleneck. An operation cannot release a token to its depen-
dents until its request has reached the memory station and the
confirmation has traveled through the entire token tree. An im-
proved construction would allow an operation to (i) inject re-
quests in the network and (ii) release the token to the dependent
operations immediately (e.g., the token should be sent to the de-
pendents as the operation request enters the access tree). The
network packet through the access tree must carry enough in-
formation to enable the memory station to execute operations in
the original program order. A similar protocol is actually used
by superscalar processors, which inject requests in order in the
load-store queue, and can proceed to issue more memory opera-
tions before the previous ones have completed. A limit study we
have performed by reducing the latency of a memory access tree
stage to 10ps shows that performance can increase by as much
as five times. Many of our programs are currently completely
bound by the latency of the token path in the memory access
network.

10000 -
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M In-order

1000

100 -

Times Larger

Figure 11: Energy-Delay product: Ratio of processors to ASH in
logarithmic scale. Taller bars means that ASH circuits perform
better.

Energy Efficiency. Our circuits are characterized by ex-
tremely low-power, and consume between 9mW and 24mW,
with an average of 14mW. This compares with an average of
4.9W for the superscalar, and 1.3W for the in-order core. ASH
consumes thus two to three orders of magnitude less power. In
order to summarize power and performance in a single number
we use the energy-delay metric, which was shown in [21] to be
roughly supply-voltage and clock insensitive.

Figure 11 shows the ratio of energy-delay of the processors
to ASH. ASH is one to three orders of magnitude better than
a generic microprocessor. Intuitively, the only power drawn in
ASH circuit is from computations that directly contribute to the
result (with the exception of speculated operations). The distri-
bution of control, and reduction of global wires have a signifi-
cant impact on power consumption.

The energy efficiency of our circuits, expressed in useful
arithmetic operations per nanoJoule varies between 10 and 100
ops/nJ. This makes our circuits 3 orders of magnitude better than
superscalar processors, and one to two orders of magnitude bet-
ter than DSPs and asynchronous processors [27, 42]. In fact, our
circuits are comparable to the hand-optimized custom-hardware
commercial implementations from [42]. [27] indicates that more
than 70% of the power of the asynchronous Lutonium processor
is spent in instruction fetch and decode, partly explaining the
higher efficiency of ASH.

7 Conclusions

In this paper, we have presented a toolflow that automatically
generates placed-and-routed asynchronous circuits from ANSI
C programs. Our compiler extracts parallelism and constructs
a dataflow graph from the input program. The dataflow graph

is then translated into an asynchronous circuit with completely
distributed control. Our results are extremely encouraging as
the synthesized circuits are orders of magnitude more efficient
(in terms of energy-delay) than a conditionally clocked super-
scalar processor, and is comparable to hand-designed dedicated
hardware. The resulting circuits can be used in conjunction with



a processor, or alone. Such an automated design flow helps to
exploit the benefits of technology scaling while significantly re-
ducing design time.
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