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Assume that Delay(YX) >> Delay(YAX)

A BS-I- RACT Inserted““buffer

Stalls, due to mis-matches in communication rates, are a major per-
formance obstacle in pipelined circuits. If the rate of data production
is faster than the rate of consumption, the resulting design perforir ...
slower than when the communication rate is matched. This can be
remedied by inserting pipeline buffers (to temporarily hold data), al- .~ -7
lowing the producer to proceed if the consumer is not ready to ac- Critical Cycle

cept data. The problem of deciding which channels need these buffers @ ® ©

(@nd how many) for an arbitrary communication profile is called therigure 1: (a) An example demonstrating the need for slack matching;
slack matching problem; the optimal solution to this problem has beep) the critical cycle before, and (c) after slack matching.
shown to be NP-complete. . o

In this paper, we present a heuristic that uses knowledge of thighow that backward edges along the critical cycles are indicative of
communication protocol to explicitly model these bottlenecks, and af1® Presence of bottlenecks. The backward edge is manifest in differ-
iterative algorithm to progressively remove these bottlenecks by in€nt forms and patterns depending on the design style, e.g., in asyn-
serting buffers. We apply this algorithm to asynchronous circuits, anghronous [9] and latency insensitive synchronous systems [6], 1t is a
show that it naturally handles large designs with arbitrarily cyclic andXplicit control signal representing the acknowledgment of a hand-
acyclic topologies, which exhibit various types of control choice. Theshake; for a synchronous FIFO, it may be ftiefull signal. When
heuristic is efficient, achieving linear time complexity in practice, andthe critical cycle of execution is free of such backward edges, then it
produces solutions that (a) achieve up to 60% performance speed(gPresents the largest cycle in the circuit constructed from just fdrwar
on large media processing kernels, and (b) can either be verified to I§§9€s. This cycle is referred to as #igorithmic cycleof the circui,

optimal, or the approximation margin can be bounded. and has been shown to be a performance bound for a given pipelined
circuit design [1, 3], and is free of communication bottlenecks.
1. INTRODUCTION Slack matching is an optimization that determines the minimum

A pipelined circuit is well-balanced if all computation stages arenumber of buffers that must be inserted in order to guarantee that

allowed to execute as soon as the input data is available. Stalls {R€ critical cycle of execution is the algorithmic cycle. Previous ap-
the pipeline occur due to various reasons; one fundamental cauB&Paches to slack matching [1, 8, 6] have cast the optimization as a
of pipeline stalls is a mis-match between the data production angonstraint satisfaction problem that meets the algorithmic cycle time
consumption rates. Consider the example in Fig. 1a. It shows twgonstraint. The complexity of these solutions are NP-complete. Our
pipelined circuit loops, C1 and C2, executing concurrently, whichSolution is an efficient heuristic which is inspired by examining the
must synchronize twice; at stages X and Y. Assuming that the delajroPerties of the critical cycle, which we refer to as the Global Criti-
along cycle C1is much greater than the delay along C2, the critical cy=al Path (GCP) [12]. We observe that: (a) it is possible to accurately
cle of execution for this circuit is shown in Fig. 1b. This critical cycle model the GCP for a circuit in a given initial state; (b) the backward
passes not just through forward edges of the graph, but also ﬂnrougdges that represent communication bottlenecks will mamfest 'Fhem-
a backward edge (along channel AX). Such backward edges ede usSelves as a precise pattern on the GCP, _whose topolo_gy is directly
to acknowledge previously produced data items. Stage A cannot geﬁorrelated to the protogoll used to communicate over agiven ch.annel;
erate new data until such an acknowledgment is received from X.  @nd (c) when a buffer is inserted on such a channel, it is possible to
This bottleneck occurs because of a re-convergent path that is ufliminate the bottleneck, and to efficiently and accurately re-compute
balanced, Y-X> (Y-A + A-X). Data items from previous iterations the GCP to reflect the new critical cycle. _
clog up the shorter path, thus constricting the progress of A until X Based on these observations, we propose an algorithm that starts
consumes the waiting data items. Inserting the buffer acts as tempWith the GCP for an initial state of the circuit, examines it for bottle-
rary storage for new data items, thus enabling A to continue alon§eck pattems representing mis-matched communication rates, inserts

path AY; the result is a shorter critical cycle latency. In this paper, wePipeline buffers to eliminate the bottlenecks, updates the GCP and
looks for more opportunities. This is repeated until no more bottle-

necks can be removed from the GCP. We show that this algorithm

Permission to make digital or hard copies of all or part of thirknfor is efficient and, in practice, achieves linear time complexity in the
personal or classroom use is granted without fee providatidbpies are  number of communication channels in the system. The algorithm
not made or distributed for profit or commercial advantage aatidbpies is a heuristic since we cannot prove that the algorithmic cycle time
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la* I*‘z Finally, we defineR: E — E, which specifies how an event becomes

"} ‘ ’Zj ‘ N 1 ‘ h dead an evenie € M is removed fromM whenR(e) becomes alive.
e : For example, the rising transition of a circuit signal will render the

falling transition of the same signal as dead. The following models the

(1+1) uonesey

F (1) uonesay
s

Adder
Pipe-stage

adder in Fig. 2a, assuming that it implements the protocol described
Hﬂll H in Fig. 2c:
N dnam 22 E= {rat,ral,ral,r2l, &l a1, @27, 82,
@ ® © Tol,fol 80 1,80 |80, T, 80, }
. L ) . B= {b1,b,bs} X=0
Figure 2: (a) An asynchronous communication channel is associated In(by) = {ruf,r21,80, 1,8,1}, Out(by) = {rol,a11,a1}
with two control signalsréq andack), (b) a typical asynchronous :nEEZ; = «aniT.aﬁT}, 8utggz; = ?oll} 5
. . n = ril,r2l}, ut ={a1l.&
pipeline stage, and (c) A 4-phase handshake protocol. Mo 2 {ell | eze £} Vee E3 R(eml: ezl Reel) el

mation margin. The result is significant performance improvement Behaviorb; describes how the adder functions. Once its input data
(up to 60% speedup) and improved energy efficiency, as reported Rhannels are valid (indicated by} andr,1), and its previous output
post-layout simulations. has been consumed (i.@o, | anday, |), the adder processes its in-

In this paper, we focus on an asynchronous communication Prgsuts, generates a new outpeg (), and acknowledges its inputas(
tocol, the four-phase bundled data protocol [4]. However, the conanda,1). Behaviorsh, andbs describe the reset phase of the hand-
cepts proposed can be adapted to other protocols as well. SectiorsRake as shown in Fig. 2c. Notice that the $endOut only specify
introduces the modeling and analysis framework that infers the negne input and output handshake signals of the pipeline stage interface.
essary metrics for use in the optimization phase. Section 3 describgfys, behaviors in the model are restricted to control events (hand-
the slack matching algorithm, which we compare to previous work ifshake events, in particular), implying that internal events, implemen-
Section 4. In Section 5, we report experimental results, and concludgtion details, and datapath logic are abstracted away. This not only

in Section 6. leads to a large reduction in the model size, but also decouples system
modeling from system implementation.
2. MODELING AND ANALYSIS 22 Model Analysis

Asynchronoug cw_cun o_|e5|gn is characterlzed_ by the absence qf a performance can be analyzed by associating a dBlag — R,
global synchronization signal, e.g., a clock. Fig. 2a shows the in-

- with every behavior in the model. This is the expected execution la-
terfa_t(_:e of a typlcal_ asynchronous Stage' E_ach data channel Camfae%cy through the micro-architectural blocks thatescribes. De-
additional control signals, which participate in the handshake proto-ending on the system and the environment, these delays may be de-

;Osl.urfiltg. v\/zhbicshhi(:\:v;eﬂr:qeeﬁtrgt]ggclgjcg ﬁ;:gzhsgiﬁg :nzalztghce(;nggIreqerministic or stochastic. The model can now be analyzed by simulat-

: "~ "ng the firi f t haviors — whe is satis-
sult. Fig. 2c shows a four-phase handshake protocol [4], which i ng the firing sequence of events and behaviors 1S Saus
commonly used in asynchronous designs for data transfers betwe
stages; we apply our slack matching algorithm in the context of thi

protocol.

ﬁed, it fires afterD(b) time units, generating its output events, which
f'turn satisfy other behaviors. This analysis is similar to techniques
?)roposed for analyzing event-rule systems [3], marked grapharid]
Petri-Nets [13]. The weaknesses of all these techniques are (a) their
2.1 System M oddli ng inability to scale when analyzing large problem sizes (on the order of

We model the performance behavior of these circuits at the pipelinfiousands of events and beyond), and (b) their inability in handling
stage granularity. Specifically, we capture dependence relations baYStéms with choice. .~~~ _ _
tween the handshake events at the pipeline stage interface. An analy-10 Overcome these difficulties, we employ a trace-based simulation
sis phase then computes the steady-state timing dependencies betwi&iinique to focus the analysis on the most commonly expected input
these events, which form the input to the slack matching algorithm?ECtorS. Since there is a one-to-one correspondence between events

We formally describe this modeling and analysis phase in the remair@"d Signal transitions, and between behaviors in the model and micro-
der of this section. architectural blocks in the circuit, we simulate the synthesized and

The behavior of a given circuit is captured by the systéin: laid out circuit using_com_mer_cia_l simu!ators (I_ike Model_sim), and an-
(E,B,In,0ut, X,R,M,Mo). An event e ¢ E, represents a transition alyze the model during C|rcu_|t simulation. This results in an accurate
on a control signal in the circuit. It mlivewhen the equivalent circuit 9€1ay model, and our experiments reveal a low overhead (about 6%)
transition has fired. The set of all live events is giverMyandMp is N @nalyzing the model during simulation.
the set of events initially live. dehavior b € B, defines how an event Slack. The analysis produces slack relations for eviery B; if in
becomes alive. It is associated with some input evéntsg — 2F),  thekih firing, inputs ofb (where|In(b)| = m) arrived at times{t; <
and generates some output evest(: B — 2F). Itis satisfiedvhen ... <t <. .. <tm}, then slack on eveng is given bySIac%(q,b) =
allits input events are aliveérf(b) C M). In the absence of choice [13], (tm—t;). This implies thaig arrived SlacK(e,b) time units before
a behavior cafire once it is satisfied, and this will make all its outputs the last arriving evengm, which satisfie. Event,en, with the least
live. slack is referred to as tHecally critical event,Crit (b).

Choice and conditional flow semantics [13] are modeled by aHOW'GIobaJ Critical Path (GCP). If byag is the last behavior to fire in the

ing multiple behaviors to fire _the same events. Tlﬂh&ﬁ b €8, s.t., timed execution, then we define the GCP as the sequence of behaviors,
Out(by) NOut(by) # 0. For unique (deterministic) choice, only one of (br,....bi,...,bias). FOr any two consecutivéd, by 1) in the GCP,

the_se be_haviprs can b_e sa}tisfied atany ‘”?t"?‘“.“"“@l).u lr?(bZ) Z Crit (bi+1) € Out(bj). Equivalently, it is also the event sequenee
M is an invariant. Arbitration (non-deterministic) choice is modeledel Bast >, S.t.,6 = Crit (by) ' '
PREEE} asl y oLy — (y

by specifying mutually exclusive behaviorX,: B — 2B. A mem-
ber X(b) C B) is a set of behaviors which may be satisfied simul- The slack and GCP metrics thus constructed are described for a timed
taneously, but their outputs are mutually exclusive. Thufires iff: ~ execution [13]. Thus, there may be multiple instances of a given
vh' € X(b),0ut(t/) "M = 0. If two members o (b) are satisfied in in the GCP. Since the number of times a behavior fires can be po-
the same instant, then one of them is probabilistically chosen to firéentially large, we summarize slack and GCP on an untimed model.
reflecting the non-deterministic firing semantics of arbitration behavFor a givenb that firesNy times, slack ore € In(b) is given by

iors. If bis a non-choice or unique choice behavi(b) = 0. SlacKe,b) = (z?‘gl SlacK (e,b))/Np. Summarizing GCP and slack
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Figure 3: Two causes of bottlenecks: re-convergent paths (a-c) and slopd [0l-f). For each, the figure shows system topology with data
dependencies (a,d), the GCP in the presence of a bottleneck (ldhea@ CP after buffer insertion (c,f). Bold edges mark the GCP.

in this manner leads to information loss, but it also biases the analysﬁlf(';g:)ztgm

for the common case. These metrics are key components in our slack seqg= the firsps sequence in the GCP, that is not in Ignore

matching algorithm, which is described in the following section. if (seq is found) begin
success = eliminate seq by inserting buffers (Section 3.1)
if (success)
3' SL ACK M ATCH I NG update model, slack, and GCP (Section 3.2); Ignefi
Beerel [1] notes that there are only two causes for communication else

ddseqtoll
bottlenecks:re-convergent pathandshort loops For example, the endifa sedtognore

design in Fig. 1 has a re-convergent path that causes a bottleneck. The else sTOP
key insight to finding the bottlenecks in both these cases is the obsendwhile
vation that these bottlenecks are manifest as a precisely defined pat-
tern (critical event sequence) on the GCP. The shape of this sequence
is defined by the communication protocol employed. ing but SlacKryy1,b), wherel firesayx, 1. This is a key insight in
Re-convergent paths. These are the most common source of bottle-the bottleneck elimination algorithm as described in Section 3.1. The
necks in large concurrent systems. To find and eliminate these bdgarly ack eventay T, in turn, produces earlw| andayw| events,
tlenecks, an analysis of the communication protocol is essential. Ifus eliminating the bottleneck. The GCP of the design now shifts to
some cases, the re-convergent path is not immediately apparent, i€ topology shown in Fig. 3c.
can be uncovered only by examining the protocol interactions. Foshort Loops. A similar situation occurs in the presence of short loops
example, there are apparently no re-convergent paths in Fig. 3a, bag shown in Fig. 3d-f. In this case, the forward delay to transmit data
when the handshake event interaction is observed, we notice that a ound the loop (i.e., along pafhwT— rwy1]) is shorter than the
convergent path exists, forking at stagelhe join point, however, is  delay to reset the handshake backwards along the same loop, resulting
nota single stage, but three stages togethergndw). To understand  in the GCP shown in Fig. 3e. Again, the insertion of a buffer hastens
why, consider Fig. 3b which shows for each channelRbe/Aclsig-  the generation of the critical events resulting in a GCP devoid of the
nals that implement the 4-phase handshake described in Fig. 2c. TRandshake reset events. Notice that after buffer insertion, the GCP is
model describing the firing behavior for these signals is similar to thehorter in both cases (Fig. 3c,f).
adder example in Section 2.1. Assume that the patsmuch longer In summary, we note that for any communication protocol, we can
thansy. If rmp andamn are theReg/Aclksignals of the channel from  identify two event sequences py signifies the generation of new
to n, thenrsyT arrives much earlier thany,T. Stagey can begin the  data by the producer, angk is a synchronization path, which sig-
handshake on channelsandyw, firing rysf andryw. After this,w nifies the acceptance of this data by the consumer. For example, in
acknowledges witlay T, and the reset phase begins wiyegenerates  the four phase protocopy = (r7) andps = (af,r|,al); for a syn-
rywl. However, the reset phase cannot complete sinceist waitfor  chronous FIFO with protocol signal$engdeq full,empty}, pg =
rxwl fromx, before generatingyw|. Eventryy ], in turn, is awaiting  (engempty, andps = (deq full). Ideally, we would likeps to occur
axyT, Which in turn is awaitingsyT, the latter representing data along in parallel, before the next iteration’s data shows up. If not, we will
the longer path frons. Thus, stages, x andw are all involved in  have new data, which we are not ready to process, implying a bottle-
the handshake along both patsandsy, and together they form the neck. It can be shown that for any protocol, the GCP can be captured
join point of the re-convergent path frosn by the regular expresior{p}, p$)*. In fact, the short-loop bottlenecks
If the cycles—y—sis shorter than the pa8y, then, in steady state, will always feature at least two consecutjpesequences on the GCP,
rsyl always arrives earlier than (and is waiting fagy,|, i.e., the next  or as in the pathological example in Fig. 3e, the GCP may be just
iteration is throttled due to the late completion of the handshake resepg)*. The GCP for a bottleneck-free system, however, will pg)*.
phase of the previous iteration, resulting in a bottleneck; the GCP is: Fig. 4 describes the overall algorithm for eliminatipgsequences
(rsvT, axvT, rxwl, @ywl, rysT)*. In other words, if no bottleneck exists, from the GCP. It iteratively finds @s sequence, inserts buffers and
then a stage should process its inputs as soon as they all arrive. lipdates the system model. Thesequences are considered for elimi-
essence, the appearence of the reset event seqagterxwl, aywl)  nation in topological-sort order of the GCP. This is because it is highly
on the GCP is indicative of a slow consumer, resulting in a bOtt|eneC|1ike|y that such sequences are the cause for the appearance of others
If a buffer is inserted on channeV (Fig. 3c), then the late ackx,T  downstream. The remainder of this section describes how we elimi-
can now be generated early since it no longer needs to waitfor  nateps sequences from the GCP, and how the GCP and system model
in other words, the buffer acts as temporary storage for the early agre updated once a buffer is inserted. We end the section with an anal-
riving input at stager. The ack event can now be generated as soon agsis of the complexity and optimality of the algorithm. Although the

rxw1 fires, implying that inserting a buffer accelerates the generatioRigorithm is described for a 4-phase asynchronous handshake proto
of ayyT by the amount of timey,T was kept waiting, which is noth-

Figure 4: The overall slack matching algorithm.
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(a) (b) are the estimated and real slack for an event, then the x-axis shows

&% x 100; for each error value, the graph shows the percentage of

Figure5: A visual of (a) all theps paths that can precedg in Fig. 3b 21T events with this error value.

(ignoring theps paths alongs for simplicity), and (b) computation of
various slack values. waiting r 7 event ofchan(e;). This is equivalent to the slack on the
1 event of the channel between a leaf of the tree and its parent, e.g.,
lack ofryy7. MinAvail, the minimum of allAvailSlack specifies
oo ] the maximum slack that can be generated by inserting buffers on the
3.1 Bottleneck Elimination leaves of the tree. If this quantity is larger th@hackyner, then some
Observe that thes sequenceay T, rwl,ayw!) is on the GCP in  event that is not in anys € P (€.9.,sy[ in Fig. 3b), will become
Fig. 3b, becausesy| arrives earlier at the behavior, calllig, which  locally critical thus eliminatings from the GCP. Thus, (1) represents
generatesys. To make theps sequence non-critical, we must gen- & necessary and sufficient condition for obtaining a GCP frepsof
erate it sooner by at leaSilacKrsyT,bc), which is the slack on the Sequences.
waiting event. In general, lat (fired by be) be the event that suc-  For a givenps path in the tree, iFreeSlackps) is already larger
ceeds theps sequence on the GCP, aBthclkner = Slackes,bc) be  than Slackner, then no buffer is required. If, on the other hand,
the slack on the waiting event la that ps must offset. FreeSlackps) < Slaclginer < AvailSlacK ps), then we must insert a
Since theps sequence on the GCP is a chain of locally critical buffer on the leaf of the path, in order to levera@eailSlack We
events, firing the first event gfs (call it e; generated by behavior argue that even iFreeSlackps) < AvailSlacKps) < Slackher, we
by) earlier, will accelerate the firing of all events ji. This may be  should still insert a buffer; although this buffer will not help elimi-
achieved by inserting a buffer along the chanokar(e; ), associated Nhate ps from the GCP, it will still help in accelerating its firing by
with e;; a necessary condition for this, however, is thatphevent of ~ (AvailSlacK ps) — FreeSlackps)), thus shortening the length of the
char(e;), which is an input td; must have positive, non-zero slack. GCP. Both these conditions together are captured by (2), which if
For example, in Fig. 3bey is axy]; inserting a buffer alongv can satisfied results in a buffer insertion. Being conservative, however,
hasten the generation afy] only if ry1 (Which is thepy event of @ buffer is inserted only if this difference is larger than the latency
xv) has positive, non-zero slack. Inserting a buffer ensures that tH@rough the buffer itself; otherwise, the output, of the buffer will
locally critical event which was constrictings would not affect its b€ locally critical downstream, but not necessarily on the GCP.
firing_an)_/more, g.g.nsvT is not necessary to firgyT in Fig. 3c. Fur- 32  Maetric Update
ther, if this slack is larger thaBlackher, then we would have reached
our goal. Thus, to yield a GCP free p§ sequences, we must ensure
that this condition can be achieved along evaygequence that could

col, it can be extended for other protocols by appropriately definin
the model and th@s and pg event sequences.

The above algorithm described how to eliminate gnepattern
from the GCP; there may however be many more, and eliminating
otentially precede., and appear on the GCP. one may introduce others. Before looking f(_)r more opportunities,
P 1ty p & P however, the model and the slack/GCP metrics must be updated to

Let the setP; represent everyps sequence that could precede a ) )
givene. on the GCP. We can visualize this set as a tree, whose roéf"ﬂeCt changes due to the newly inserted buffer. For example, inser-

is e, and every path from leaf to root representss@equence iif. ion of buffer, b, _along channekv in Fig. 3c, eliminates an e_xist_ing
The depth of the tree i§ps| + 1), which is four in our protocol. For channelxv, and introduces two new channetb,andbv, resulting in

example, Fig. 5a shows this tree fer=rys| in Fig. 3b. To determine a corresponding change to the event set of the model. The slack values

if there is sufficient slack to offs&lackher atbe (wWhich firese;), we for g:e new e\tﬁ ntsl cakn bettr:MaIIy dte_;[ermllned. For gxamtyzle,dthle slack
compute the following: on thery, 1 is the slack on the event it replaceg, T, minus the delay

of generatingy, T from b. Changes to slack on the other local events

FreeSlackps) = SlacKe g, be) + 313 Slacke 1,b) can be similarly determined.

AvailSlackps) = FreeSlackps) + Slackra 1, by) Next, these changes are propagated globally. This is done by com-
MinAvail = MIN (AvailStackps)), ¥ps < Pe puting the minimum slack at eatre B, and if this value has changed,
MinAvail > Slackher (1) then the difference is propagateddo iff: Out(b) NIn(b’) # 0. The
MIN(MinAvail, Slacker) > FreeSlackps) @ effect of slack change needs to be propagated only once throughout

whereg is theith event in a giverps sequence (thusyp| is ana| the model, i.e., the propagation stops if the same input at the same be-
event, e.g.ayw! in Fig. 3b), behaviob; firese, r11 is thepy event  havior is reached again. This is because the initial slack from the anal-
of chanle;), e.g.,rxv1 in Fig. 3b. This computation is illustrated in ysis is a steady state property (in fact, an asymptote in systems with-
Fig. 5b. FreeSlackps) specifies, for each path through the tree (seeout choice). A local change to slack implies a change to the steady
Fig. 5a), the amount slack th® sequence has since the firing of its state value, whose effect needs to be propagated to other events in the
first event,eq, until the firing ofe;. There exists at least ong € P, system.
i.e., one path through the tree, whdgeeSlackps) value is zero; this Clearly, the slack and GCP updates are heuristics due to the lack of
is the sequence on the GCP, ewxwyin Fig. 5b. iteration history. We validated our algorithms by comparing the slack
AvailSlacKps) specifies the slack that would be available if we estimated by this update technique against a complete re-analysis of
were to insert a buffer oohane; ), and apportion the slack from the the model. The result of the comparison is shown in Fig. 6. If es-



timated slack is5; and actual slack i§, then the X-axis shows the 60 =Time
error value aErr = % x 100; i.e.,Err = 50 indicates an accurate B Energy-Delay

estimation. Each trendline represents a benchmark from Table 1, and
the plot shows the percentage of all events with a given error value.
These results indicate that, on average, our slack estimation is accu-
rate for more than 75% of all events, and more than 90% of events
are within a+10% error margin, validating this update method. The
reasons for the inaccuracies are two-fold: (1) lack of iteration history, 15 1
and (2) some latency estimatd3(b)) may not match those from ac-

tual post-layout values. o4

45 4
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33 CompIeX|ty and Optlmallty Figure 7: Performance and energy-delay improvements after slack
The computational complexity of our algorithm (as described inmatching. The benchmarks are numbered in order of their listing in
Fig. 4) is summarized as follows: (1) the complexity of the initial Table 1.
trace-based model analysis and slack/GCP constructi@{|E5|k),
wherek, the number of iterations simulated, depends on the analyz
design; (2) finding gs pattern on the GCP ha&3(|GCP)) time com-
plexity, i.e.,O(|E|) in the worse-case; (3) eliminatirg depends on
the fan-out and fan-in of the channels in the patternf, l&nd f; are
the maximum fan-out and and fan-in for any behavior in the model
thenO( fg fi) is the worst-case complexity; on averadgand f; are
about two or three; (3) updating slack and GCP each I@\E|)

set up to meet the given timing constraint, which are then solved by a
Sthear programming optimization.

The latter category [1, 8, 6], which attacks a problem similar to the
one in this paper, defines a constraint satisfaction problem, where one
of the constraints is for the critical cycle latency to be equal to the
algorithmic cycle latency; the optimization objective is to minimize
the number of buffers inserted to achieve this constraint. In contrast,

. . . . ur algorithm finds and eliminates bottlenecks by explicitly modeling
worst-case complexity, while updating the model occurs in constanf, o in the GCP. In terms of complexity, previous algorithms gener-
time; (4) finally, we must bound the number of iterations the algo- !

ith ds f Inth ¢ buffer i " ally involve finding the cycle time constraint (the algorithmic cycle),
rithm needs for ((:gg\é(;rgence. n the worst-case (one buffer inaer IOgenerating a system of linear constraints, and solving the optimization

per iteration):3; =5, VG > Co, WhereC, is the largest (algorith-  problem. Determining the cycle time constraint in their approaches,
mic) cycle composed of only{ events, andy, is the delay through  and finding the GCP and slack metrics in ours, has comparable com-
a pipeline buffer. That is, in the worst-case, we would have to insefplexities. From here, we diverge from previous work. Determining
buffers on all mismatched cycles. Thus, the number of iterations hase linear constraints and solving the optimization problem has been
O(|E|) time complexity. In practice, as reported in Table 1, the al-shown to bed(m?n?) [8] and NP-complete respectively (whereand
gorithm converges within five iterations in most cases. The overah are the number of edges and nodes in the graph). We decompose the
complexity isO(|E|k) +O(|E|?f2f;) in the worst-case, an@(|E[) in  hard problem into smaller sub-problems that are iteratively solved.
practice, i.e., the heuristic scales linearly with the number of handThe overall complexity i€D(m? f2 ;) in the worst-case, an@(m) in
shake communication channels in the model. practice. In terms of capabilities, previous work cannot generate the
Finally, we address the question of optimality. There are two axegP constraints in the presence of choice. Our heuristic, on the other
of optimality in slack matching: (a) the critical cycle must be the al-hand, naturally adapts to systems with all types of choice. The draw-
gorithmic cycle time, and (b) the number of pipeline buffers insertechack of our approach is that creating smaller sub-problems prevents
to achieve this constraint is minimized. If the GCP, which is the crit-us from being able to prove its optimality. However, our results indi-
ical cycle, is made up of onlpg events (which are? in the 4-phase  cate that the solutions for many benchmarks are indeed optimal in the
protocol) and does not contain any newly introduced pipeline buffersalgorithmic cycle time.
then it is guaranteed to be the algorithmic cycle. Observe, however
that in the case of short loops (Fig. 3f), buffers are always inserte®- EXPERIMENTAL RESULTS
on the GCP; thus the presence of buffers on the GCP does not imply We have implemented our algorithm in a toolflow that automati-
non-optimality, but their absence guarantees optimality. The seconghlly synthesizes asynchronous circuits implementing a four-phase,
optimality property, however, cannot be proven without an exhaushundled data protocol [11]. Synthesis uses a standard-cell flow, and
tive analysis akin to [1]. While we cannot prove whether or not thetargets a [180nm/2V] technology library. A property of our algorithm
heuristic algorithm can find an optimal solution, we can determine ais that when it insert buffers, it is guaranteed to improve performance
approximation marging, which specifies how far off the optimal a as described in Section 3.1. But, when no opportunities exist (i.e.,
generated solution could be, in the worst case. If the GCP consistRere are n@s sequences on the GCP), it leaves the design unchanged.
of only pq events and does not contain any newly inserted buffersin this section, we report on the results of the kernels from the Me-
thene = 0, and the solution is optimal. If the GCP contaMsnew  diabench suite [5] that could be improved. We randomly picked ker-
buffers, the delay through the buffer for generatimgis D(buff),  nels from these benchmarks, and noticed that more than 50% of those

and the algorithmic cycle time constrainiGs, thene = NexP(buff) = tested could be improved. Table 1 shows these kernels and their sizes
in the worst case. We note that sinldg is typically very small (see in terms of the number of pipeline stages, behaviors and events.
Table 1).e is also very small€ 5% in our experiments). The last column in Table 1 lists the number of iterations the algo-

rithm took to converge, and the number of pipeline buffers inserted in
each iteration. More than one pipeline buffer may be inserted per iter-
4. RELATED WORK ation as described in the slack tree analysis algorithm (see Fig. 5). All
Proposals for slack matching a circuit design can be grouped intthe generated solutions result in a GCP consisting of pglgvents.
two categories: delay insertion to optimize the clock cycle time inFor seven of these kernels, the GCP does not contain any new buffers
synchronous circuits [2, 10], and those that minimize the global cyand thus the solution is optimat & 0). For the remainder (K3, K7
cle time in data driven systems, e.g.,Latency Insensitive synchsonoand K10), we have determined theat 5%, in the worst case.
(LIS) designs [6] and asynchronous circuit designs [1, 8]. All¢hes Our experiments indicate that the number of buffers inserted cor-
proposals take a similar approach to the solution: a target timing comelates with what caused ths bottleneck to appear on the GCP. In
straint is defined, and equations for circuit timing dependencies ane-convergent paths, for which the critical event aftergghsequence



‘ 1d } Bench | Kernel ‘ Pipe | Bhvs ‘ Evts ‘ Buffs per ‘
Stages iteration GCP indicate bottlenecks due to mis-matched communication rates.
K1 [ adpcmd | adpcmdecoder 101 | 761 1218 () Based on these observations, the algorithm identifies bottlenecks on
R ggmﬁe EL‘dA‘;{CF:“t‘;O?per 20 | a1 ' 1(51)) the GCP, eliminates them by inserting pipeline buffers, updates the
Ka | gsmd Shortierm. — system state and repeats these steps until no more bottlenecks are
synthesisfiltering 144 | 582 | 865 @) found. In this paper, we have focused on asynchronous circuit de-
K5 [ gsme Lon:}terfﬂ_l*: _ a30 | 1434 | 2061 o signs, however, the proposed modeling abstraction enables portability
analysisfiltering . .
K6 | gsme Coofficients27 39 ST T 312 489 D to other design styles as well. Furt_her, since we rely on slack ar_ld GCP
K7 | gsme Shortterm. metrics, the algorithm can be applied to arbitrary graph topologies and
analysisfiltering 137 | 552 | 816 (3,2) systems with choice.
K8 | mpeg2d | form.component Compared to the optimal solution to slack matching, which is NP-
prediction 960 | 4197 | 6114 1) lete. th dh istic h t dratic ti
K9 mpeg2e | predcomp 555 7068 T 5924 @) complete, the proposed heuristic has a worst-case quadratic time com-
K10 | Huffman | HammingBitwise 131 | 376 | 570 | (L..1f° plexity in the number of communication channels, and a linear time

complexity, in practice. While we cannot prove whether the algorithm

L can converge on an optimal solution, we can bound the approximation
Table 1: List of kernels used. The last column shows the number . . Lo : .
of buffers inserted in each iteration of the algorithm. The Huffman &9 for a given a solution; our experiments reveal that, in most

circuit went through 22 iterations, with one buffer inserted in each cases, the solutions can be verified to be optimal; if not, it is within
g ’ " a 5% approximation margin, in the worst case. The results also show

is anr1 (see Fig. 3b), the shorter paths of the re-convergent join neeeincouraging improvements (upto 60%) in performance and energy-

only as many buffers as the number of waves of computation thatelay.

could collide at the forking point. In short loops, for which the crit-

ical event afterps is anal event (see Fig. 3e), the waves of com- 7. ACKNOWLEDGMENTS
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