
Leveraging Protocol Knowledge in Slack Matching

Girish Venkataramani
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

girishv@ece.cmu.edu

Seth C. Goldstein
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

seth@cs.cmu.edu

ABSTRACT
Stalls, due to mis-matches in communication rates, are a major per-
formance obstacle in pipelined circuits. If the rate of data production
is faster than the rate of consumption, the resulting design performs
slower than when the communication rate is matched. This can be
remedied by inserting pipeline buffers (to temporarily hold data), al-
lowing the producer to proceed if the consumer is not ready to ac-
cept data. The problem of deciding which channels need these buffers
(and how many) for an arbitrary communication profile is called the
slack matching problem; the optimal solution to this problem has been
shown to be NP-complete.

In this paper, we present a heuristic that uses knowledge of the
communication protocol to explicitly model these bottlenecks, and an
iterative algorithm to progressively remove these bottlenecks by in-
serting buffers. We apply this algorithm to asynchronous circuits, and
show that it naturally handles large designs with arbitrarily cyclic and
acyclic topologies, which exhibit various types of control choice. The
heuristic is efficient, achieving linear time complexity in practice, and
produces solutions that (a) achieve up to 60% performance speedup
on large media processing kernels, and (b) can either be verified to be
optimal, or the approximation margin can be bounded.

1. INTRODUCTION
A pipelined circuit is well-balanced if all computation stages are

allowed to execute as soon as the input data is available. Stalls in
the pipeline occur due to various reasons; one fundamental cause
of pipeline stalls is a mis-match between the data production and
consumption rates. Consider the example in Fig. 1a. It shows two
pipelined circuit loops, C1 and C2, executing concurrently, which
must synchronize twice; at stages X and Y. Assuming that the delay
along cycle C1 is much greater than the delay along C2, the critical cy-
cle of execution for this circuit is shown in Fig. 1b. This critical cycle
passes not just through forward edges of the graph, but also through
a backward edge (along channel AX). Such backward edges are used
to acknowledge previously produced data items. Stage A cannot gen-
erate new data until such an acknowledgment is received from X.

This bottleneck occurs because of a re-convergent path that is un-
balanced, Y-X> (Y-A + A-X). Data items from previous iterations
clog up the shorter path, thus constricting the progress of A until X
consumes the waiting data items. Inserting the buffer acts as tempo-
rary storage for new data items, thus enabling A to continue along
path AY; the result is a shorter critical cycle latency. In this paper, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’06 November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

Y

A

X

Y

X

A

Y

X

A

C2

C1 C1

C2

C1

C2

Inserted buffer

Critical Cycle

(b) (c)(a)

Assume that Delay(YX) >> Delay(YAX)

...
...

......
...

... ...
...

...

Figure 1: (a) An example demonstrating the need for slack matching;
(b) the critical cycle before, and (c) after slack matching.

show that backward edges along the critical cycles are indicative of
the presence of bottlenecks. The backward edge is manifest in differ-
ent forms and patterns depending on the design style, e.g., in asyn-
chronous [9] and latency insensitive synchronous systems [6], it is an
explicit control signal representing the acknowledgment of a hand-
shake; for a synchronous FIFO, it may be thefifo full signal. When
the critical cycle of execution is free of such backward edges, then it
represents the largest cycle in the circuit constructed from just forward
edges. This cycle is referred to as thealgorithmic cycleof the circuit,
and has been shown to be a performance bound for a given pipelined
circuit design [1, 3], and is free of communication bottlenecks.

Slack matching is an optimization that determines the minimum
number of buffers that must be inserted in order to guarantee that
the critical cycle of execution is the algorithmic cycle. Previous ap-
proaches to slack matching [1, 8, 6] have cast the optimization as a
constraint satisfaction problem that meets the algorithmic cycle time
constraint. The complexity of these solutions are NP-complete. Our
solution is an efficient heuristic which is inspired by examining the
properties of the critical cycle, which we refer to as the Global Criti-
cal Path (GCP) [12]. We observe that: (a) it is possible to accurately
model the GCP for a circuit in a given initial state; (b) the backward
edges that represent communication bottlenecks will manifest them-
selves as a precise pattern on the GCP, whose topology is directly
correlated to the protocol used to communicate over a given channel;
and (c) when a buffer is inserted on such a channel, it is possible to
eliminate the bottleneck, and to efficiently and accurately re-compute
the GCP to reflect the new critical cycle.

Based on these observations, we propose an algorithm that starts
with the GCP for an initial state of the circuit, examines it for bottle-
neck patterns representing mis-matched communication rates, inserts
pipeline buffers to eliminate the bottlenecks, updates the GCP and
looks for more opportunities. This is repeated until no more bottle-
necks can be removed from the GCP. We show that this algorithm
is efficient and, in practice, achieves linear time complexity in the
number of communication channels in the system. The algorithm
is a heuristic since we cannot prove that the algorithmic cycle time
will be met, or that the minimum number of buffers will be inserted.
However, experimental results indicate that the heuristic achieves a
solution that is provably either optimal, or is within a 5% approxi-

1r 2r

1d 2d

1a 2a

odor

o1a o2a
Data

r

a

Reset

Ite
ra

tio
n
 (i)

Ite
ra

tio
n
 (i+

1
)

Delay
1r

2r

1d

2d

1a

2a

L
A

T
C

H

or

od

o2a

o1a

HS

en

(a) (b) (c)

Pipe−stage

Adder

C

C

+

Figure 2: (a) An asynchronous communication channel is associated
with two control signals (req and ack), (b) a typical asynchronous
pipeline stage, and (c) A 4-phase handshake protocol.

mation margin. The result is significant performance improvement
(up to 60% speedup) and improved energy efficiency, as reported by
post-layout simulations.

In this paper, we focus on an asynchronous communication pro-
tocol, the four-phase bundled data protocol [4]. However, the con-
cepts proposed can be adapted to other protocols as well. Section 2
introduces the modeling and analysis framework that infers the nec-
essary metrics for use in the optimization phase. Section 3 describes
the slack matching algorithm, which we compare to previous work in
Section 4. In Section 5, we report experimental results, and conclude
in Section 6.

2. MODELING AND ANALYSIS
Asynchronous circuit design is characterized by the absence of a

global synchronization signal, e.g., a clock. Fig. 2a shows the in-
terface of a typical asynchronous stage. Each data channel carries
additional control signals, which participate in the handshake proto-
col. Fig. 2b shows the architecture of this stage: it has a controller,
HSunit, which implements the local handshaking and latches the re-
sult. Fig. 2c shows a four-phase handshake protocol [4], which is
commonly used in asynchronous designs for data transfers between
stages; we apply our slack matching algorithm in the context of this
protocol.

2.1 System Modeling
We model the performance behavior of these circuits at the pipeline

stage granularity. Specifically, we capture dependence relations be-
tween the handshake events at the pipeline stage interface. An analy-
sis phase then computes the steady-state timing dependencies between
these events, which form the input to the slack matching algorithm.
We formally describe this modeling and analysis phase in the remain-
der of this section.

The behavior of a given circuit is captured by the system,N =
(E,B, In,Out,X,R,M,M0). An event, e∈ E, represents a transition
on a control signal in the circuit. It isalivewhen the equivalent circuit
transition has fired. The set of all live events is given byM, andM0 is
the set of events initially live. Abehavior, b∈B, defines how an event
becomes alive. It is associated with some input events (In : B 7→ 2E),
and generates some output events (Out : B 7→ 2E). It is satisfiedwhen
all its input events are alive (In(b)⊆M). In the absence of choice [13],
a behavior canfire once it is satisfied, and this will make all its outputs
live.

Choice and conditional flow semantics [13] are modeled by allow-
ing multiple behaviors to fire the same events. Thus,∃b1,b2 ∈ B, s.t.,
Out(b1)∩Out(b2) 6= /0. For unique (deterministic) choice, only one of
these behaviors can be satisfied at any instant, i.e.,In(b1)∪ In(b2) 6⊂
M is an invariant. Arbitration (non-deterministic) choice is modeled
by specifying mutually exclusive behaviors,X : B 7→ 2B. A mem-
ber (X(b) ⊆ B) is a set of behaviors which may be satisfied simul-
taneously, but their outputs are mutually exclusive. Thus,b fires iff:
∀b′ ∈ X(b),Out(b′)∩M = /0. If two members ofX(b) are satisfied in
the same instant, then one of them is probabilistically chosen to fire,
reflecting the non-deterministic firing semantics of arbitration behav-
iors. If b is a non-choice or unique choice behavior,X(b) = /0.

Finally, we defineR: E 7→E, which specifies how an event becomes
dead; an evente∈ M is removed fromM whenR(e) becomes alive.
For example, the rising transition of a circuit signal will render the
falling transition of the same signal as dead. The following models the
adder in Fig. 2a, assuming that it implements the protocol described
in Fig. 2c:

E = {r1↑, r1↓, r2↑, r2↓,a1↑,a1↓,a2↑,a2↓,
ro↑, ro↓,ao1↑,ao1↓,ao2↑,ao2↓}

B = {b1,b2,b3} X = /0
In(b1) = {r1↑, r2↑,ao1↓,ao2↓}, Out(b1) = {ro↑,a1↑,a2↑}
In(b2) = {ao1↑,ao2↑}, Out(b2) = {ro↓}
In(b3) = {r1↓, r2↓}, Out(b3) = {a1↓,a2↓}
M0 = {e↓ | e∈ E} ∀e∈ E, R(e↑) = e↓,R(e↓) = e↑

Behaviorb1 describes how the adder functions. Once its input data
channels are valid (indicated byr1↑ andr2↑), and its previous output
has been consumed (i.e.,ao1↓ andao2↓), the adder processes its in-
puts, generates a new output (ro↑), and acknowledges its inputs (a1↑
anda2↑). Behaviorsb2 andb3 describe the reset phase of the hand-
shake as shown in Fig. 2c. Notice that the setsIn andOut only specify
the input and output handshake signals of the pipeline stage interface.
Thus, behaviors in the model are restricted to control events (hand-
shake events, in particular), implying that internal events, implemen-
tation details, and datapath logic are abstracted away. This not only
leads to a large reduction in the model size, but also decouples system
modeling from system implementation.

2.2 Model Analysis
Performance can be analyzed by associating a delay,D : B 7→ R,

with every behavior in the model. This is the expected execution la-
tency through the micro-architectural blocks thatb describes. De-
pending on the system and the environment, these delays may be de-
terministic or stochastic. The model can now be analyzed by simulat-
ing the firing sequence of events and behaviors — whenb∈B is satis-
fied, it fires afterD(b) time units, generating its output events, which
in turn satisfy other behaviors. This analysis is similar to techniques
proposed for analyzing event-rule systems [3], marked graphs [7], and
Petri-Nets [13]. The weaknesses of all these techniques are (a) their
inability to scale when analyzing large problem sizes (on the order of
thousands of events and beyond), and (b) their inability in handling
systems with choice.

To overcome these difficulties, we employ a trace-based simulation
technique to focus the analysis on the most commonly expected input
vectors. Since there is a one-to-one correspondence between events
and signal transitions, and between behaviors in the model and micro-
architectural blocks in the circuit, we simulate the synthesized and
laid out circuit using commercial simulators (like Modelsim), and an-
alyze the model during circuit simulation. This results in an accurate
delay model, and our experiments reveal a low overhead (about 6%)
in analyzing the model during simulation.

Slack. The analysis produces slack relations for everyb ∈ B; if in
thekth firing, inputs ofb (where|In(b)| = m) arrived at times,{t1≤
·· ·≤ ti ≤·· ·≤ tm}, then slack on event,ei is given bySlackk(ei ,b) =
(tm− ti). This implies thatei arrivedSlackk(ei ,b) time units before
the last arriving event,em, which satisfiedb. Event,em, with the least
slack is referred to as thelocally critical event,Crit (b).

Global Critical Path (GCP). If blast is the last behavior to fire in the
timed execution, then we define the GCP as the sequence of behaviors,
〈b1, . . . ,bi , . . . ,blast〉. For any two consecutive(bi ,bi+1) in the GCP,
Crit (bi+1) ∈ Out(bi). Equivalently, it is also the event sequence,<
e1, ...,elast >, s.t.,ei = Crit (bi).

The slack and GCP metrics thus constructed are described for a timed
execution [13]. Thus, there may be multiple instances of a givenb
in the GCP. Since the number of times a behavior fires can be po-
tentially large, we summarize slack and GCP on an untimed model.
For a givenb that firesNb times, slack onei ∈ In(b) is given by
Slack(ei ,b) = (∑Nb

j=1Slackj (ei ,b))/Nb. Summarizing GCP and slack

w

yx

v

s

s

syr ysr,GCP:

b

w

yx

v

*

Dataflow
direction

Req

Ack

y

ww

y

w

y

b

ybr bwr wyrywawya ywr ywa wyawyr ,, , ,,GCP: *

s

svr xva xwr ywa ysr, , , ,GCP:

w

yx

v

* GCP: , , *

(c) (e)(b)(a) (d) (f)

Figure 3: Two causes of bottlenecks: re-convergent paths (a-c) and short loops (d-f). For each, the figure shows system topology with data
dependencies (a,d), the GCP in the presence of a bottleneck (b,d), and the GCP after buffer insertion (c,f). Bold edges mark the GCP.

in this manner leads to information loss, but it also biases the analysis
for the common case. These metrics are key components in our slack
matching algorithm, which is described in the following section.

3. SLACK MATCHING
Beerel [1] notes that there are only two causes for communication

bottlenecks:re-convergent pathsandshort loops. For example, the
design in Fig. 1 has a re-convergent path that causes a bottleneck. The
key insight to finding the bottlenecks in both these cases is the obser-
vation that these bottlenecks are manifest as a precisely defined pat-
tern (critical event sequence) on the GCP. The shape of this sequence
is defined by the communication protocol employed.

Re-convergent paths. These are the most common source of bottle-
necks in large concurrent systems. To find and eliminate these bot-
tlenecks, an analysis of the communication protocol is essential. In
some cases, the re-convergent path is not immediately apparent, but
can be uncovered only by examining the protocol interactions. For
example, there are apparently no re-convergent paths in Fig. 3a, but
when the handshake event interaction is observed, we notice that a re-
convergent path exists, forking at stages. The join point, however, is
not a single stage, but three stages together (v, x andw). To understand
why, consider Fig. 3b which shows for each channel, theReq/Acksig-
nals that implement the 4-phase handshake described in Fig. 2c. The
model describing the firing behavior for these signals is similar to the
adder example in Section 2.1. Assume that the pathsv is much longer
thansy. If rmn andamn are theReq/Acksignals of the channel fromm
to n, thenrsy↑ arrives much earlier thanrsv↑. Stagey can begin the
handshake on channelsysandyw, firing rys↑ andryw↑. After this,w
acknowledges withayw↑, and the reset phase begins wheny generates
ryw↓. However, the reset phase cannot complete sincew must wait for
rxw↓ from x, before generatingayw↓. Eventrxw↓, in turn, is awaiting
axv↑, which in turn is awaitingrsv↑, the latter representing data along
the longer path froms. Thus, stagesv, x andw are all involved in
the handshake along both paths,swandsv, and together they form the
join point of the re-convergent path froms.

If the cycles−y−s is shorter than the pathsv, then, in steady state,
rsy↑ always arrives earlier than (and is waiting for)ayw↓, i.e., the next
iteration is throttled due to the late completion of the handshake reset
phase of the previous iteration, resulting in a bottleneck; the GCP is:
〈rsv↑,axv↑, rxw↓,ayw↓, rys↑〉

∗. In other words, if no bottleneck exists,
then a stage should process its inputs as soon as they all arrive. In
essence, the appearence of the reset event sequence,〈axv↑, rxw↓,ayw↓〉
on the GCP is indicative of a slow consumer, resulting in a bottleneck.

If a buffer is inserted on channelxv (Fig. 3c), then the late ack,axv↑
can now be generated early since it no longer needs to wait forrsv↑;
in other words, the buffer acts as temporary storage for the early ar-
riving input at stagev. The ack event can now be generated as soon as
rxv↑ fires, implying that inserting a buffer accelerates the generation
of axv↑ by the amount of timerxv↑ was kept waiting, which is noth-

Let Ignore =/0
while(true) begin

seq= the firstps sequence in the GCP, that is not in Ignore
if (seq is found) begin

success = eliminate seq by inserting buffers (Section 3.1)
if (success)

update model, slack, and GCP (Section 3.2); Ignore= /0
else

add seq to Ignore
endif
else STOP

endwhile

Figure 4: The overall slack matching algorithm.

ing but Slack(rxv↑,b′), whereb′ fires axv↑. This is a key insight in
the bottleneck elimination algorithm as described in Section 3.1. The
early ack event,axv↑, in turn, produces earlyrxw↓ andayw↓ events,
thus eliminating the bottleneck. The GCP of the design now shifts to
the topology shown in Fig. 3c.

Short Loops. A similar situation occurs in the presence of short loops
as shown in Fig. 3d-f. In this case, the forward delay to transmit data
around the loop (i.e., along path[ryw↑→ rwy↑]) is shorter than the
delay to reset the handshake backwards along the same loop, resulting
in the GCP shown in Fig. 3e. Again, the insertion of a buffer hastens
the generation of the critical events resulting in a GCP devoid of the
handshake reset events. Notice that after buffer insertion, the GCP is
shorter in both cases (Fig. 3c,f).

In summary, we note that for any communication protocol, we can
identify two event sequences –pd signifies the generation of new
data by the producer, andps is a synchronization path, which sig-
nifies the acceptance of this data by the consumer. For example, in
the four phase protocol,pd = 〈r↑〉 and ps = 〈a↑, r↓,a↓〉; for a syn-
chronous FIFO with protocol signals,{enq,deq, f ull ,empty}, pd =
〈enq,empty〉, andps = 〈deq, f ull〉. Ideally, we would likeps to occur
in parallel, before the next iteration’s data shows up. If not, we will
have new data, which we are not ready to process, implying a bottle-
neck. It can be shown that for any protocol, the GCP can be captured
by the regular expresion:〈p∗d, p∗s〉

∗. In fact, the short-loop bottlenecks
will always feature at least two consecutiveps sequences on the GCP,
or as in the pathological example in Fig. 3e, the GCP may be just
〈ps〉

∗. The GCP for a bottleneck-free system, however, will be〈pd〉
∗.

Fig. 4 describes the overall algorithm for eliminatingps sequences
from the GCP. It iteratively finds aps sequence, inserts buffers and
updates the system model. Theps sequences are considered for elimi-
nation in topological-sort order of the GCP. This is because it is highly
likely that such sequences are the cause for the appearance of others
downstream. The remainder of this section describes how we elimi-
nateps sequences from the GCP, and how the GCP and system model
are updated once a buffer is inserted. We end the section with an anal-
ysis of the complexity and optimality of the algorithm. Although the
algorithm is described for a 4-phase asynchronous handshake proto-

p
s

sequences

Slackother

Slack(r , b)1 1

y

w

x y

v w w

e c = rys

r

a

r

aa
a

(a)

vxwy wxwy

A
va

ilS
la

ck

wywy

FreeSlack

(b)

MinAvail

Figure 5: A visual of (a) all theps paths that can precederys in Fig. 3b
(ignoring theps paths alongysfor simplicity), and (b) computation of
various slack values.

col, it can be extended for other protocols by appropriately defining
the model and theps andpd event sequences.

3.1 Bottleneck Elimination
Observe that theps sequence〈axv↑, rxw↓,ayw↓〉 is on the GCP in

Fig. 3b, becausersy↑ arrives earlier at the behavior, call itbc, which
generatesrys↑. To make theps sequence non-critical, we must gen-
erate it sooner by at leastSlack(rsy↑,bc), which is the slack on the
waiting event. In general, letec (fired by bc) be the event that suc-
ceeds theps sequence on the GCP, andSlackother = Slack(ec,bc) be
the slack on the waiting event atbc that ps must offset.

Since theps sequence on the GCP is a chain of locally critical
events, firing the first event ofps (call it e1 generated by behavior
b1) earlier, will accelerate the firing of all events inps. This may be
achieved by inserting a buffer along the channel,chan(e1), associated
with e1; a necessary condition for this, however, is that thepd event of
chan(e1), which is an input tob1 must have positive, non-zero slack.
For example, in Fig. 3b,e1 is axv↑; inserting a buffer alongxv can
hasten the generation ofaxv↑ only if rxv↑ (which is thepd event of
xv) has positive, non-zero slack. Inserting a buffer ensures that the
locally critical event which was constrictingps would not affect its
firing anymore, e.g.,rsv↑ is not necessary to fireaxb↑ in Fig. 3c. Fur-
ther, if this slack is larger thanSlackother, then we would have reached
our goal. Thus, to yield a GCP free ofps sequences, we must ensure
that this condition can be achieved along everyps sequence that could
potentially precedeec, and appear on the GCP.

Let the setPc represent everyps sequence that could precede a
given ec on the GCP. We can visualize this set as a tree, whose root
is ec, and every path from leaf to root represents aps sequence inPc.
The depth of the tree is(|ps|+1), which is four in our protocol. For
example, Fig. 5a shows this tree forec = rys↑ in Fig. 3b. To determine
if there is sufficient slack to offsetSlackother atbc (which firesec), we
compute the following:

FreeSlack(ps) = Slack(e|ps|,bc)+∑|ps|
i=2 Slack(ei−1,bi)

AvailSlack(ps) = FreeSlack(ps)+Slack(r1↑,b1)
MinAvail = MIN (AvailSlack(ps)),∀ps ∈ Pc

MinAvail > Slackother (1)
MIN(MinAvail,Slackother) > FreeSlack(ps) (2)

whereei is the ith event in a givenps sequence (thuse|ps| is ana↓
event, e.g.,ayw↓ in Fig. 3b), behaviorbi fires ei , r1↑ is the pd event
of chan(e1), e.g.,rxv↑ in Fig. 3b. This computation is illustrated in
Fig. 5b. FreeSlack(ps) specifies, for each path through the tree (see
Fig. 5a), the amount slack theps sequence has since the firing of its
first event,e1, until the firing ofec. There exists at least oneps ∈ Pc,
i.e., one path through the tree, whoseFreeSlack(ps) value is zero; this
is the sequence on the GCP, e.g.,vxwyin Fig. 5b.

AvailSlack(ps) specifies the slack that would be available if we
were to insert a buffer onchan(e1), and apportion the slack from the

Figure 6: The error distribution of estimating slack. IfSe and Sr
are the estimated and real slack for an event, then the x-axis shows

Se
Se+Sr

×100; for each error value, the graph shows the percentage of
total events with this error value.

waiting r↑ event ofchan(e1). This is equivalent to the slack on the
r↑ event of the channel between a leaf of the tree and its parent, e.g.,
slack of rxv↑. MinAvail, the minimum of allAvailSlack, specifies
the maximum slack that can be generated by inserting buffers on the
leaves of the tree. If this quantity is larger thanSlackother, then some
event that is not in anyps ∈ Pc (e.g., rsy↑ in Fig. 3b), will become
locally critical thus eliminatingps from the GCP. Thus, (1) represents
a necessary and sufficient condition for obtaining a GCP free ofps
sequences.

For a givenps path in the tree, ifFreeSlack(ps) is already larger
than Slackother, then no buffer is required. If, on the other hand,
FreeSlack(ps) < Slackother ≤ AvailSlack(ps), then we must insert a
buffer on the leaf of the path, in order to leverageAvailSlack. We
argue that even ifFreeSlack(ps) < AvailSlack(ps) < Slackother, we
should still insert a buffer; although this buffer will not help elimi-
nate ps from the GCP, it will still help in accelerating its firing by
(AvailSlack(ps)−FreeSlack(ps)), thus shortening the length of the
GCP. Both these conditions together are captured by (2), which if
satisfied results in a buffer insertion. Being conservative, however,
a buffer is inserted only if this difference is larger than the latency
through the buffer itself; otherwise, the output,r↑, of the buffer will
be locally critical downstream, but not necessarily on the GCP.

3.2 Metric Update
The above algorithm described how to eliminate oneps pattern

from the GCP; there may however be many more, and eliminating
one may introduce others. Before looking for more opportunities,
however, the model and the slack/GCP metrics must be updated to
reflect changes due to the newly inserted buffer. For example, inser-
tion of buffer, b, along channelxv in Fig. 3c, eliminates an existing
channel,xv, and introduces two new channels,xb andbv, resulting in
a corresponding change to the event set of the model. The slack values
for the new events can be trivially determined. For example, the slack
on therbv↑ is the slack on the event it replaced,rxv↑, minus the delay
of generatingrbv↑ from b. Changes to slack on the other local events
can be similarly determined.

Next, these changes are propagated globally. This is done by com-
puting the minimum slack at eachb∈B, and if this value has changed,
then the difference is propagated tob′, iff: Out(b)∩ In(b′) 6= /0. The
effect of slack change needs to be propagated only once throughout
the model, i.e., the propagation stops if the same input at the same be-
havior is reached again. This is because the initial slack from the anal-
ysis is a steady state property (in fact, an asymptote in systems with-
out choice). A local change to slack implies a change to the steady
state value, whose effect needs to be propagated to other events in the
system.

Clearly, the slack and GCP updates are heuristics due to the lack of
iteration history. We validated our algorithms by comparing the slack
estimated by this update technique against a complete re-analysis of
the model. The result of the comparison is shown in Fig. 6. If es-

timated slack isSe and actual slack isSr , then the X-axis shows the
error value asErr = Se

Se+Sr
×100; i.e.,Err = 50 indicates an accurate

estimation. Each trendline represents a benchmark from Table 1, and
the plot shows the percentage of all events with a given error value.
These results indicate that, on average, our slack estimation is accu-
rate for more than 75% of all events, and more than 90% of events
are within a±10% error margin, validating this update method. The
reasons for the inaccuracies are two-fold: (1) lack of iteration history,
and (2) some latency estimates (D(b)) may not match those from ac-
tual post-layout values.

3.3 Complexity and Optimality
The computational complexity of our algorithm (as described in

Fig. 4) is summarized as follows: (1) the complexity of the initial
trace-based model analysis and slack/GCP construction isO(|E|k),
wherek, the number of iterations simulated, depends on the analyzed
design; (2) finding aps pattern on the GCP hasO(|GCP|) time com-
plexity, i.e.,O(|E|) in the worse-case; (3) eliminatingps depends on
the fan-out and fan-in of the channels in the pattern. Iffo and fi are
the maximum fan-out and and fan-in for any behavior in the model,
thenO(f 2

o fi) is the worst-case complexity; on average,fo and fi are
about two or three; (3) updating slack and GCP each haveO(|E|)
worst-case complexity, while updating the model occurs in constant
time; (4) finally, we must bound the number of iterations the algo-
rithm needs for convergence. In the worst-case (one buffer insertion

per iteration):∑i
(Ci−Co)

Db
,∀Ci > Co, whereCo is the largest (algorith-

mic) cycle composed of onlyr ↑ events, andDb is the delay through
a pipeline buffer. That is, in the worst-case, we would have to insert
buffers on all mismatched cycles. Thus, the number of iterations has
O(|E|) time complexity. In practice, as reported in Table 1, the al-
gorithm converges within five iterations in most cases. The overall
complexity isO(|E|k)+O(|E|2 f 2

o fi) in the worst-case, andO(|E|) in
practice, i.e., the heuristic scales linearly with the number of hand-
shake communication channels in the model.

Finally, we address the question of optimality. There are two axes
of optimality in slack matching: (a) the critical cycle must be the al-
gorithmic cycle time, and (b) the number of pipeline buffers inserted
to achieve this constraint is minimized. If the GCP, which is the crit-
ical cycle, is made up of onlypd events (which arer↑ in the 4-phase
protocol) and does not contain any newly introduced pipeline buffers,
then it is guaranteed to be the algorithmic cycle. Observe, however,
that in the case of short loops (Fig. 3f), buffers are always inserted
on the GCP; thus the presence of buffers on the GCP does not imply
non-optimality, but their absence guarantees optimality. The second
optimality property, however, cannot be proven without an exhaus-
tive analysis akin to [1]. While we cannot prove whether or not the
heuristic algorithm can find an optimal solution, we can determine an
approximation margin,ε, which specifies how far off the optimal a
generated solution could be, in the worst case. If the GCP consists
of only pd events and does not contain any newly inserted buffers,
thenε = 0, and the solution is optimal. If the GCP containsNB new
buffers, the delay through the buffer for generatingpd is D(bu f f),

and the algorithmic cycle time constraint isCo, thenε =
NB×D(bu f f)

Co
,

in the worst case. We note that sinceNB is typically very small (see
Table 1),ε is also very small (< 5% in our experiments).

4. RELATED WORK
Proposals for slack matching a circuit design can be grouped into

two categories: delay insertion to optimize the clock cycle time in
synchronous circuits [2, 10], and those that minimize the global cy-
cle time in data driven systems, e.g.,Latency Insensitive synchronous
(LIS) designs [6] and asynchronous circuit designs [1, 8]. All these
proposals take a similar approach to the solution: a target timing con-
straint is defined, and equations for circuit timing dependencies are

Figure 7: Performance and energy-delay improvements after slack
matching. The benchmarks are numbered in order of their listing in
Table 1.

set up to meet the given timing constraint, which are then solved by a
linear programming optimization.

The latter category [1, 8, 6], which attacks a problem similar to the
one in this paper, defines a constraint satisfaction problem, where one
of the constraints is for the critical cycle latency to be equal to the
algorithmic cycle latency; the optimization objective is to minimize
the number of buffers inserted to achieve this constraint. In contrast,
our algorithm finds and eliminates bottlenecks by explicitly modeling
them in the GCP. In terms of complexity, previous algorithms gener-
ally involve finding the cycle time constraint (the algorithmic cycle),
generating a system of linear constraints, and solving the optimization
problem. Determining the cycle time constraint in their approaches,
and finding the GCP and slack metrics in ours, has comparable com-
plexities. From here, we diverge from previous work. Determining
the linear constraints and solving the optimization problem has been
shown to beO(m2n2) [8] and NP-complete respectively (wheremand
n are the number of edges and nodes in the graph). We decompose the
hard problem into smaller sub-problems that are iteratively solved.
The overall complexity isO(m2 f 2

o fi) in the worst-case, andO(m) in
practice. In terms of capabilities, previous work cannot generate the
LP constraints in the presence of choice. Our heuristic, on the other
hand, naturally adapts to systems with all types of choice. The draw-
back of our approach is that creating smaller sub-problems prevents
us from being able to prove its optimality. However, our results indi-
cate that the solutions for many benchmarks are indeed optimal in the
algorithmic cycle time.

5. EXPERIMENTAL RESULTS
We have implemented our algorithm in a toolflow that automati-

cally synthesizes asynchronous circuits implementing a four-phase,
bundled data protocol [11]. Synthesis uses a standard-cell flow, and
targets a [180nm/2V] technology library. A property of our algorithm
is that when it insert buffers, it is guaranteed to improve performance
as described in Section 3.1. But, when no opportunities exist (i.e.,
there are nops sequences on the GCP), it leaves the design unchanged.
In this section, we report on the results of the kernels from the Me-
diabench suite [5] that could be improved. We randomly picked ker-
nels from these benchmarks, and noticed that more than 50% of those
tested could be improved. Table 1 shows these kernels and their sizes
in terms of the number of pipeline stages, behaviors and events.

The last column in Table 1 lists the number of iterations the algo-
rithm took to converge, and the number of pipeline buffers inserted in
each iteration. More than one pipeline buffer may be inserted per iter-
ation as described in the slack tree analysis algorithm (see Fig. 5). All
the generated solutions result in a GCP consisting of onlypd events.
For seven of these kernels, the GCP does not contain any new buffers,
and thus the solution is optimal (ε = 0). For the remainder (K3, K7
and K10), we have determined thatε < 5%, in the worst case.

Our experiments indicate that the number of buffers inserted cor-
relates with what caused theps bottleneck to appear on the GCP. In
re-convergent paths, for which the critical event after theps sequence

Id Bench Kernel Pipe Bhvs Evts Buffs per
Stages iteration

K1 adpcmd adpcmdecoder 191 761 1218 (5)
K2 adpcme adpcmcoder 230 912 1493 (5)
K3 gsm d LARp to rp 96 341 575 (1,2,1,1)
K4 gsm d Short term

synthesisfiltering 144 582 865 (2)
K5 gsm e Long term

analysisfiltering 339 1434 2061 (1)
K6 gsm e Coefficients27 39 81 312 469 (1)
K7 gsm e Short term

analysisfiltering 137 552 816 (3,2)
K8 mpeg2d form component

prediction 960 4197 6114 (1)
K9 mpeg2e predcomp 925 4068 5924 (1)
K10 Huffman HammingBitwise 131 376 570 (1,..,1)22

Table 1: List of kernels used. The last column shows the number
of buffers inserted in each iteration of the algorithm. The Huffman
circuit went through 22 iterations, with one buffer inserted in each.

is anr↑ (see Fig. 3b), the shorter paths of the re-convergent join need
only as many buffers as the number of waves of computation that
could collide at the forking point. In short loops, for which the crit-
ical event afterps is an a↑ event (see Fig. 3e), the waves of com-
putation between successive iterations interfere, and these typically
require more buffers.

In larger designs, re-convergent paths are dominant, and thus just a
few buffers are sufficient for slack matching. In smaller designs, both
types of bottlenecks may be present; moreover, fixing a re-convergent
bottleneck typically gives rise to short-loop bottlenecks. Thus, more
buffers are required in these cases. Acyclic designs can also exhibit
bottlenecks if they are incorporated in streaming applications. For
the acyclic benchmark, we injected the successive waves of inputs
into the circuit, as soon as the input channels could accept them; thus
we are testing its maximum capacity. Since only relative timing is
measured by slack, it naturally adapts to capturing the behavior of
these designs. Since we have loaded the circuit to maximum capacity,
there are several waves of computation following each other in quick
succession leading to the short-loop bottleneck variety. Consequently,
this design required the most buffers (22), and the algorithm inserted
one in each iteration of its optimization loop.

Fig. 7 shows the relative improvements in overall kernel perfor-
mance and energy-delay product after applying the algorithm; a higher
bar implies larger improvements. Performance refers to end-to-end
latency except for the acyclic circuit (K10), for which it refers to
throughput. Overall, the algorithm is capable of significantly boosting
performance, over 60% in thegsm e kernel, by inserting just a small
number of buffers and running for a handful of iterations. Power in-
creases due to the extra buffers, and also because the same amount of
switching activity now occurs in a shorter time period. The overall
effect, captured by the energy-delay metric, however, shows encour-
aging improvements. The geometric means of performance speedup
and energy-delay improvements are 22% and 28% respectively for
these experiments. The running time of the algorithm is less than ten
seconds for all the designs listed in the table, and even lesser when
no bottleneck exists. Comparatively, in previous work, the run-time
to solve the LP formulation for large designs (thousands of events)
take on the order of hundreds [1] or even thousands [6] of secondsin
solving the optimization; in terms of the number of buffers inserted
relative to the problem size, our algorithm is comparable to those re-
ported in [6, 1].

6. CONCLUSIONS
We have described a heuristic slack matching algorithm that elim-

inates pipeline bottlenecks caused by mis-matched communication
rates. The algorithm models system in terms of event slack and the
Global Critical Path (GCP). We show that examining the communica-
tion protocol alone allows one to infer patterns, whose presence on the

GCP indicate bottlenecks due to mis-matched communication rates.
Based on these observations, the algorithm identifies bottlenecks on
the GCP, eliminates them by inserting pipeline buffers, updates the
system state and repeats these steps until no more bottlenecks are
found. In this paper, we have focused on asynchronous circuit de-
signs, however, the proposed modeling abstraction enables portability
to other design styles as well. Further, since we rely on slack and GCP
metrics, the algorithm can be applied to arbitrary graph topologies and
systems with choice.

Compared to the optimal solution to slack matching, which is NP-
complete, the proposed heuristic has a worst-case quadratic time com-
plexity in the number of communication channels, and a linear time
complexity, in practice. While we cannot prove whether the algorithm
can converge on an optimal solution, we can bound the approximation
margin for a given a solution; our experiments reveal that, in most
cases, the solutions can be verified to be optimal; if not, it is within
a 5% approximation margin, in the worst case. The results also show
encouraging improvements (upto 60%) in performance and energy-
delay.

7. ACKNOWLEDGMENTS
This research has been funded by NSF ITR Scalable Molecular

Electronics (contract number CCR0205523). We would like to thank
Peter Beerel, Tiberiu Chelcea, Timothy Callahan and Mihai Budiu for
providing invaluable insights and engaging in discussions that helped
refine the ideas presented in this paper. We also thank Shivakumar
Vishwanathan and Srinath Avanadhula for providing valuable feed-
back that vastly improved the presentation of these ideas.

8. REFERENCES
[1] P. Beerel, M. Davies, et al. Slack matching asynchronous

designs. InASYNC, pp. 30–39, March 2006.
[2] E. Bozorgzadeh, S. Ghiasi, et al. Optimal integer delay

budgeting on directed acyclic graphs. InDAC, pp. 920–925,
2003.

[3] S. Burns.Performance analysis and optimization of
asynchronous circuits. PhD thesis, University of Utah, 1991.

[4] S. Furber and P. Day. Four-phase micropipeline latch control
circuits.IEEE TVLSI, 4-2:247–253, 1996.

[5] C. Lee, M. Potkonjak, et al. MediaBench: a tool for evaluating
and synthesizing multimedia and communications systems. In
MICRO, pp. 330–335, 1997.

[6] R. Lu and C.-K. Koh. Performance optimization of latency
insensitive systems through buffer queue sizing of
communication channels. InICCAD, pp. 227–231, 2003.

[7] C. D. Nielsen and M. Kishinevsky. Performance analysis based
on timing simulation. InDAC, pp. 70–76, 1994.

[8] P. Prakash and A. Martin. Slack matching quasi
delay-insensitive circuits. InASYNC, pp. 30–39, March 2006.

[9] I. Sutherland. Micropipelines: Turing award lecture.
Communications of the ACM, 32 (6):720–738, June 1989.

[10] B. Taskin and I. Kourtev. Delay insertion method in clock skew
scheduling.IEEE TCAD, 25–4:651–663, 2006.

[11] G. Venkataramani, M. Budiu, et al. C to asynchronous dataflow
circuits: An end-to-end toolflow. InIWLS, June 2004.

[12] G. Venkataramani, T. Chelcea, et al. Modeling the global
critical path in concurrent systems. Technical Report
CMU-CS-06-144, Carnegie Mellon University, August 2006.

[13] A. Xie, S. Kim, et al. Bounding average time separations of
events in stochastic timed Petri nets with choice. InASYNC, pp.
94–107, April 1999.

