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Abstract. Closely coupling a reconfigurable fabric with a conventional processor has been
shown to successfully improve the system performance. However, today’s superscalar pro-
cessors are both complex and adept at extracting Instruction Level Parallelism (ILP), which
introduces many complex issues to the design of a hybrid CPU-RFU system. This paper
examines the design of a superscalar processor augmented with a closely-coupled recon-
figurable fabric. It identifies architectural and compiler issues that affect the performance
of the overall system. Previous efforts at combining a processor core with a reconfigurable
fabric are examined in the light of these issues. We also present simulation results that
emphasize the impact of these factors.

1 Introduction

The continued scaling of the minimum feature size of CMOS technology provides the
chip real estate necessary to place a sizable reconfigurable fabric on the same die as a
processor. Reconfigurable computing devices have been shown to achieve substantial
performance improvements over conventional processors on some computational ker-
nels [4]. These benefits arise from hardware customization, which avoids the mismatch
between the basic requirements of the algorithms and the architectures of the proces-
sors. Previous research has shown that closely coupling conventional processor cores
with such reconfigurable fabrics is the preferred method of deploying these devices,
since these devices can be ill-suited in executing entire applications due to space limita-
tions, and inefficiency in implementing some operations (e.g. floating-point arithmetic).

Modern superscalar architectures present powerful techniques to exploit Instruction
Level Parallelism (ILP) from a dynamic instruction stream. These processors allow mul-
tiple instruction issue and out-of-order execution. Augmenting these processors with a
reconfigurable fabric may offer many opportunities to significantly boost performance,
since several instructions, from the CPU and Reconfigurable Functional Unit (RFU),
can be executed concurrently.

We focus on automatically mapping general-purpose applications to a hybrid archi-
tecture, and identify critical factors that can affect this system’s performance. These fac-
tors fall into two broad categories – the CPU-RFU interface design, and compiler sup-
port. The former is heavily influenced by the CPU architecture. For example, the ability
to concurrently execute CPU instructions and RFU configurations can better exploit
the features of superscalar architectures. However, if they are both allowed to access
a shared address space, then memory consistency becomes an issue. Compiler support
determines what kind of code regions (instruction sequences, loops, whole functions)
will form RFUops. An RFUop is an operation that executes on the fabric.



This paper identifies and describes a number of factors that represent potential bot-
tlenecks to performance. Resolving these problems gives direction to the design of the
hybrid system. In Section 2, we present the architectural issues that are relevant in hy-
brid machine design. In Section 3, we examine the necessary compiler support required
to boost performance. In Section 4, we describe our tool-chain. Our experimental frame-
work is presented in Section 5, where we also analyze our results. In Section 6, we
discuss previous hybrid designs in the light of the issues presented in this paper.

2 The Hybrid Architecture

Many choices face the designer of a hybrid processor. For every feature under consid-
eration, the costs and benefits must be weighed. The costs may come in the form of
additional hardware support, runtime overheads, and complexity. The primary benefit
of adding a new capability to the reconfigurable fabric is enlarging the selection space
of possible RFUops that can be placed on the fabric, leading to increased performance.

2.1 ISA Additions

An RFUop may be represented as a series of instructions that trigger the RFUop’s exe-
cution, allow access to data, and write back results. This can either be done with a single
instruction or with multiple instructions. We have chosen to use multiple instructions,
since it gives us more flexibility to experiment with the design. We defineinputrfu
to be an instruction that will transfer the RFUop’s input data from the CPU’s register
file to the fabric. Thestartrfu instruction triggers the execution of the RFUop. This
instruction must specify the RFUop’s identification number to select the RFUop. The
outputrfu instruction transfers the results of the RFUop back to the register file.

The number of registers that can be specified with a singleinputrfu (or out-
putrfu ) instruction is limited by the instruction encoding width. Multipleinputrfu
(or outputrfu ) instructions are used if necessary.

2.2 Effect on the Superscalar Pipeline

Superscalar architectures are characterized by a multiple instruction issue, out-of-order
core, with the ability to execute speculatively. In our hybrid architecture, the RFUop in-
structions go through the pipeline just like the rest of the instructions. When an RFUop
is executing, theoutputrfu instruction does not commit until the RFUop completes.
Since, instructions are always committed in order, no instructions beyond theoutpu-
trfu instructions can commit. This causes a structural hazard, since the reorder buffer
will soon fill up.

The effect of this hazard can be ameliorated by re-ordering instructions such that
theoutputrfu instruction appears as late in the instruction stream as possible (e.g.
just before the first instruction that is data dependent on the RFUop). Similarly, thein-
putrfu andstartrfu instructions can be moved up the instruction stream, in order
to start RFUop execution as soon as possible. The instructions appearing between the
startrfu andoutputrfu instructions can execute and commit, thereby reducing
the pipeline congestion.



2.3 Memory Interface

The most suitable type of memory access interface depends intimately on the kind of
applications that are targeted. Some previous research has focused exclusively on accel-
erating streaming multimedia and image processing applications on the reconfigurable
fabric. In such cases, it is often useful to have Direct Memory Access (DMA), since
access patterns are regular and predictable [10, 5].

Our research focuses on general-purpose C programs. In such applications, it is
difficult to gather RFUops of reasonable sizes without including load/stores. Since both
the CPU and the RFU can access a share address space, the memory interface needs to
synchronize all accesses to ensure consistency.

In superscalar processors, memory accesses are dispatched from a structure such
as a load-store queue (LSQ). The LSQ checks for dependencies between its entries,
thereby ensuring memory consistency. When the CPU executes concurrently with an
RFUop, there is a possibility that memory accesses from the RFUop arrive at the LSQ
after a memory reference instruction that follows the RFUop in the program order. In
this situation, memory inconsistency could arise if both the memory references access
the same memory blocks. We can imagine three different scenarios:
� No Memory Accesses by RFUop: In the trivial case, the memory instructions fol-

lowing the RFUop can be issued freely.
� CPU and RFU access disjoint memory addresses: These accesses can also be per-

mitted.
� CPU and RFU access common memory addresses: To maintain memory consistency,

there has to be a mechanism to serialize such accesses.
While ensuring memory consistency, it is important to limit the negative impact

on performance that this can potentially cause. Thus we define a protocol which al-
lows memory access from the first two classes to execute in parallel with the RFUop
while those in the third class are not issued until the RFUop completes. The accesses
from the first and second cases can be scheduled between thestartrfu andout-
putrfu instructions, while the memory accesses in the third case must appear after
theoutputrfu instruction. However, implementing this policy effectively is difficult
since completely disambiguating memory accesses is hard even with the best pointer
analyses [7].

An orthogonal issue is the sequence of accesses that originate from the fabric alone.
Due to the placement of the RFUop on the fabric, it may be the case that memory
references don’t arrive at the LSQ in program order, although they are issued in order.
A memory reference from later in the program may be placed closer to the fabric’s
external interfaces, and thus may arrive at the LSQ before an earlier reference.

2.4 Concurrent Active Configurations

With superscalar processors, it is possible to issue multiplestartrfu instructions
concurrently. However, support for multiple active configurations introduces other com-
plexities - contentions for fabric resources, like external I/O pins, and space availability.
When the RFUops contain memory references, memory consistency is an issue. If all
the references in two RFUops cannot be disambiguated, then they may have to be seri-
alized.

Not allowing concurrent execution of RFUops, on the other hand, could severely
restrict the pipeline. Starting with the second RFUop all instructions will stagnate in
the fetch queue, waiting for the first RFUop to complete. Compiler directed instruction



re-ordering can help in this case if instructions that are not dependent on the second
RFUop are scheduled before it.

3 Compiler Support

In this paper we are interested in automatic compilation of high-level languages to hy-
brid systems. The compiler support is thus essential for the successful utilization of an
RFU. In addition to standard optimizations, the key component of such a compiler is to
partition the code between the RFU and the CPU and to generate the configurations for
the RFU, as well as the interface code between the two. We are addressing here just the
automatic application partitioning.

The primary objective of code partitioning is to identify code fragments that can be
accelerated by execution on the fabric. A number of architectural constraints may re-
strict the types of the RFUops that are eventually extracted. Some operations may be too
costly to implement in reconfigurable hardware (e.g., floating point computations), or
may require complex non-computational processing (e.g., procedure calls, exceptions,
system calls).

The potential search space for RFUop selection is huge. Hence, we need to develop
a systematic approach to finding the code segments that are most likely to form RFUops.
The selected segments should have sufficient parallelism, and should be sufficiently
large to amortize the overhead cost of the RFUop invocation. From a structural point of
view, the following types of code fragments can be selected for implementation as an
RFUop:
� Short sequences of dependent instructions which do not fully utilize the processor

datapath. These can be collapsed intocustom instructions, which are implemented
very efficiently on the RFU.

� Basic blocks: are attractive since they are relatively easy to analyze. However, the
average size of basic blocks is small, resulting in small RFUops which often cannot
amortize the RFU invocation overhead.

� Loops: are a natural candidate for classical parallelizing compilers. Similarly, they
are attractive as RFUops, as loops can concentrate a large percentage of the program
running time, and can benefit from pipelining.

� Hyperblocks: are contiguous groups of basic blocks, having a single control-flow
entry point, but possibly multiple exits. Hyperblocks offer the potential for increased
ILP through the use of predicated execution, which removes control dependences by
speculating execution along many control-flow paths.

� Single Entry—Single Exit (SESE) Regions: hyperblocks implemented as RFUops
raise the additional complication of returning not only data from the RFU, but also
control-flow information on RFUop execution termination, which requires a more
complicated hardware-software interface. SESE regions do not suffer from this prob-
lem. Moreover, natural loops often form SESE regions.

� Whole functions: are particular cases of SESE regions. Prior research has not consid-
ered this partitioning strategy, as RFUops were mostly constrained by the available
hardware resources. The exponential increase of hardware resources however will
make this factor less important, and will thus make whole function selection an at-
tractive solution. The main advantage of this approach is simplicity: there are few
alternatives to consider, no new interfaces have to be introduced into the program,
functions represent “autonomous” regions of computation, with relatively few inputs
and outputs, and program ILP profiles roughly correspond to function divisions.
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Fig. 1.The Compiler-Simulator tool chain of the system.

� Larger application fragments. The best reported speed-ups for hybrid systems in-
volve hand-partitioned applications, where the portions with high parallelism are
implemented on the RFU, and the rest of the computation is handled by the CPU.
However, automatic parallelism extraction from large application fragments is still
an elusive goal of compiler research.

4 Tool Chain

In this section we describe the tool chain we have used to conduct our experiments
(Figure 1). It has two parts: Compilation, and CPU-RFU simulation. There are two
major phases in compilation - RFUop selection and configuration code generation for
the RFU.

The RFUop selection pass is influenced by a number of independent parameters and
constraints. These parameters may be classified under two broad categories—architectural
and policy-driven. The architectural constraints define the boundaries of the RFU and
the CPU-RFU interface. Currently, we support the parameterization of the following
architectural constraints—whether memory operations are permissible from the fabric,
and the maximum number of permissible RFUop inputs and outputs. The policy-driven
parameters aid in refining the potential RFUop search space within the given architec-
tural constraints. These variables define the structural profile of the selected RFUops.
We define the following policies:
� Select only natural loops
� Select only short sequences of dependent instruction sequences; i.e., custom instruc-

tions
� Restrict the minimum size of RFUops (in terms of the number of instructions)

Further, we assume that there are two hard architectural constraints that are not
parameterizable—RFUops must have only one control exit, and RFUops must be self-
contained, i.e., RFUops cannot invoke other RFUops or other functions meant to exe-
cute on the CPU.

We can view these constraint categories as filters that help in selecting the best
RFUops. In addition to these two filters, it is essential to have another filter that di-
agnoses the goodness of the RFUops selected by the first two filters. This filter will
use heuristics like RFUop latency, area and average-ILP estimates to determine RFUop
goodness. Without this, the selection process blindly generates too many RFUops. This
increases total execution time for two reasons. First, it increases the RFUop invoca-
tion overhead. Second, and most importantly, it reduces the effectiveness of traditional
compiler optimizations by creating regions of the program which are opaque to the
compiler; effectively disallowing certain instruction sequences from being considered



Fig. 2. Performance comparison between a (single-
issue, in-order) MIPS core with the same core aug-
mented with an RFU

Fig. 3. Performance comparison between a (4-
issue, out-of-order) superscalar core with the same
core augmented with an RFU

by the optimizer. In our present compiler, this filter uses a simple heuristic that com-
putes a quick estimate of the Cycles-per-instruction (CPI) of the RFU. If this CPI is
greater than a threshold, then the RFU is rejected.

The compiler translates the selected RFUops to hardware implementations by ag-
gressively speculating and exposing various parallelism forms, such as bit-, instruction-,
pipeline- and loop-level parallelism [2]. Currently, it generates a C program that repre-
sents a custom timing and functional simulator of the RFUop; a Verilog back-end is in
progress.

The compiler is implemented within the SUIF1 compiler infrastructure [13]. The
SUIF-based compiler partitions the code and generates a lower level C program that
is then compiled with gcc and simulated for measurements. Our experience with this
tool flow indicates that the interaction between the base SUIF passes and gcc tends to
introduce extraneous instructions in the application, creating a substantial amount of
noise in our measurements. For instance, SUIF introduces a number of temporaries in
the source code, which causes gcc to create register spills. For the decoder version of
theepic benchmark from Mediabench [8], compiling with SUIF and then gcc causes
the the execution time to increase by 10% compared to when it is compiled just with
gcc. Further, the number of memory references increases by about 30%.

We use a modified version of the SimpleScalar simulation infrastructure [1] to
measure the performance of the various benchmarks on our architectural model. Our
simulation framework has two components—RFUop Simulation and CPU simulation.
For the former, we use the automatically generated RFU simulator, as described above.
A modified version of the SimpleScalar out-of-order simulator is used to perform cycle-
accurate CPU simulation [12]. The ISA is augmented to includeinputrfu , startrfu
andoutputrfu instructions. When astartrfu instruction is encountered, a sepa-
rate RFUop simulation thread is invoked.



Fig. 4. Relative breakdown of total execution time
by Fetch Queue sizes. The fetch queue is almost
always full during RFUop execution, implying that
the pipeline mostly stalls during RFUop execution

Fig. 5. Effect of RFUops containing memory refer-
ences.

5 Experimental Results

We set up our experiments to compare the performance of our hybrid system with a CPU
core. We compiled benchmarks from the Mediabench [8] and SPEC95 [11] benchmark
suites. Most programs in the Mediabench suite have an encoder and a decoder version;
these are indicated withe and d suffixes respectively. In the graphs where we compare
performance, we have always normalized the execution times.

Figure 2 compares a hybrid system with a single-issue, in-order core, and the same
core augmented with an RFU. We can see that in almost all cases the hybrid system
outperforms the CPU-only version. Figure 3 compares a 4-issue, out-of-order super-
scalar processor, and an RFU augmented to the same processor. We compare two kinds
of RFUop selection policies in these figures—when only loops are chosen, and when
custom instructions are selected. In spite of the fact that the same compilation and map-
ping techniques were used in the two hybrid systems, we see that the performance of
the superscalar+RFU system does not always match the performance of the superscalar
processor. This implies that the techniques employed in the in-order hybrid architecture
do not scale to the superscalar hybrid architecture. We attribute the slowdown to four
principal factors:
� Parallelism: Currently, we do not reschedule any independent instructions between

theinputrfu /startrfu andoutputrfu instructions. Hence, the re-order buffer
becomes a structural hazard when an RFUop is executing. Moreover, our current
model does not support concurrent execution of multiple RFUops. This can severely
affect the CPU pipeline. Figure 4 shows the relative breakdown of total execution
time (of the adpcmd benchmark) by fetch queue sizes. Notice that the fetch queue
is almost always full during RFUop execution, which implies that the CPU is unable
to issue any instructions as the pipeline stalls. Figure 6 shows the effect of stalling
the CPU when an RFUop executes. In one case, the CPU is not allowed to issue any
instructions after astartrfu is dispatched. The second is the default case when in-



Fig. 6.Effect of stalling CPU during RFUop execu-
tion

Fig. 7. Effect of restricting the minimum RFUop
size (in terms of number of instructions)

structions are issued, but not committed until theoutputrfu commits. Even with
the restricted model in the latter case, there is up to 18% performance speedup. This
shows that there is a lot of opportunity to issue more instructions in the CPU during
RFUop execution. If the compiler can reorder instructions such that independent in-
structions are inserted betweenstartrfu andoutputrfu , the performance can
only improve.

� RFUop selection: The code partitioning pass needs to be refined. The policy filter
may need to be different. Selecting just instruction sequences or loops restricts us
to a smaller domain of candidate RFUops. Moreover, our heuristic for diagnosing
RFUops is simplistic. This tends to generate RFUops that produce more overhead
than benefits. In Figure 7, we describe the effect of restricting the minimum RFUop
size. When the minimum size of all RFUops is 15 static instructions, the performance
is much better than when the minimum RFUop size is 5. Using a simple policy
decision, we see that we can reduce some of the unnecessary overhead.

� Speculation: If an RFUop contains an entire loop, the compiler synthesizes a circuit
that supports extensive pipelining and speculation. However, we do not speculate
across loop iterations. This can cause a cascaded effect on performance if the criti-
cal path of the loop body contains memory references (with potentially large laten-
cies). On the superscalar processor, speculation is supported across all conditional
branches. Figure 5 shows that the performance of the system is better when RFUops
don’t contain memory references.

� Our tool flow introduces a substantial amount of noise. Hence, in some cases, the
results are not indicative of a realistic evaluation.

6 Related Work

We can classify previous research based on the host CPU: those that augment a in-order
core, and those that use a superscalar processor.



PRISC [9] is the first to explore the feasibility of a RFU on the datapath of a MIPS
processor. All custom instructions must fit within a two-input/one-outputsignature, read
and write the register file, and take a single processor cycle to execute.

GARP [3] augments an RFU co-processor to a MIPS core. The compiler attempts
to accelerate loops by pipelining them using techniques similar to those used in VLIW
compilers. The RFUops are chosen from hyperblocks that have loops embedded within
them. The RFU can access the processor’s caches and main memory directly.

The T1000 architecture [14] is an extension of the PRISC, although the CPU is a
superscalar processor. The focus of this work is on developing a selective algorithm that
is used to extract RFUops. Each RFUop is always assumed to execute in a single cycle,
no matter how big it is, and the RFUops are not allowed to contain memory instructions.
Also, the architecture has multiple RFUs on its datapath. Hence, concurrent RFUop
execution comes naturally.

Chimaera [6] uses a superscalar processor in its model. It relies on fine-grained opti-
mizations to obtain speedups. Hence, the compiler tries to extract sub-word parallelism
from ALU instructions and map such sequences to RFUops. Memory instructions are
not included in the RFUops.

OneChip [5] focuses on exploiting ILP in streaming multimedia applications. The
host CPU is a superscalar processor. The architecture supports DMA, and assumes
that all RFUops access a regular memory block, perform certain operations, and write
back results to another regular memory block. Their compiler doesn’t extract candidate
RFUops, but requires the programmer to use a library, which contains calls to load con-
figurations and access memory. These calls make all RFU memory accesses explicit,
regular and predictable. Memory coherence is maintained by using techniques similar
to those used in multiprocessors to maintain cache coherence.

7 Conclusions

While the idea of integrating a reconfigurable functional unit (RFU) into a general-
purpose RISC processor has been studied extensively in the past, there have been few
studies that have examined the new issues that arise when augmenting a high-performance
superscalar architecture with a reconfigurable fabric. In fact, previous spectacular re-
sults often overlook progress that has been made in traditional architectures. Many pre-
vious studies either hand-code applications, ignore the extra ILP that can be extracted
by out-of-order processors, or ignore negative interactions between an RFU and the
main pipeline of the CPU.

Our work focuses on how to positively integrate an RFU into a superscalar pipeline.
We target general-purpose applications and require automatic compilation of programs
to the target hybrid architecture. The critical component of such a system is the com-
piler that can automatically map applications written in high-level languages to such
architectures. The compiler must be cognizant of the factors that could influence per-
formance. It is imperative that the compiler employs good heuristics in the code par-
titioning phase, so that performance is maximized and overhead is minimized. When
using a shared memory space, memory consistency is a factor. While consistency must
be maintained, the compiler must attempt to minimize the negative impact this can
have on performance. In superscalar architectures, it is important to exploit all system
resources and to minimize pipeline stalls. It is clear that much work needs to be done
before an RFU can successfully boost total performance on an entire application.



Acknowledgments

This research is funded by the National Science Foundation (NSF) under Grant No.
CCR-9876248.

References

1. Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure for computer system model-
ing. Computer, 35(2):59–67, February 2002.

2. Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient intermediate representation. Technical
Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

3. Timothy J. Callahan and John Wawrzynek. Instruction Level Parallelism for Reconfigurable Computing.
In Hartenstein and Keevallik, editors,FPL’98, Field-Programmable Logic and Applications, 8th Interna-

tional Workshop, Tallinin, Estonia, volume 1482 ofLecture Notes in Computer Science. Springer-Verlag,
September 1998.
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