
Heterogeneous Latch-based Asynchronous Pipelines

Girish Venkataramani

Carnegie Mellon University

Pittsburgh, PA 15213

girish@cs.cmu.edu

Tiberiu Chelcea

Carnegie Mellon University

Pittsburgh, PA 15213

tibi@cs.cmu.edu

Seth C. Goldstein

Carnegie Mellon University

Pittsburgh, PA 15213

seth@cs.cmu.edu

Abstract

We present a technique to automatically synthesize hetero-

geneous asynchronous pipelines by combining two different

latching styles: normally open D-latches [19] for high per-

formance and self-resetting D-latches [5] for low power. The

former is fast but results in high power consumption due to

data glitches that leak through the latch when it is open. The

latter is normally closed and is opened just before data stabi-

lizes. Thus, it is more power-efficient but slower than normally

open D-latches.

We propose a module selection optimization that assigns

each pipeline stage to one of these two latching styles. This

is performed by an automated algorithm that uses two types

of heuristics: (1) it uses the Global Critical Path (GCP) [26],

to assign D-latches to stages that are sequentially critical, and

(2) it estimates potential datapath glitching to make SR-latch

assignment decisions. The algorithm has quadratic-time com-

plexity and experiments that apply the algorithm on several

media processing kernels indicate that, on average, the het-

erogeneous pipelining algorithm achieves higher performance

and is more energy efficient than either the homogeneous D-

latch or SR-latch pipeline styles.

1. Introduction

As technology shrinks and problems of clock distribu-

tion and timing closure become increasingly difficult, asyn-

chronous circuits become more attractive, since they offer a

modular design paradigm. The importance of finding energy

and performance efficient pipeline structures and seamlessly

integrating them with standard toolflows is reflected in a wide

body of literature on the subject. One integral aspect of these

pipeline structures is the choice of the pipeline data storage

unit, which can dramatically influence both performance and

energy efficiency.

In this paper, we examine and optimize the performance

and power properties of commonly used pipeline storage units,

which we refer to as pipeline latches (or just latches). Par-

ticularly, we identify two interesting pipeline latching styles,

D-latches [19] for their high-performance and Self-Resetting

Latches (SR-Latches) [5] for their energy efficiency, and pro-

pose an algorithm that automatically mixes and matches these

styles in the same asynchronous system. Such an algorithm

leverages on the modularity of asynchronous pipeline designs

to deliver heterogeneous pipelines with superior performance

and energy efficiency properties.

Latch-based pipeline styles are very common in asyn-

chronous pipelines [19, 9, 7, 21] due to their high-performance

properties. Latches are normally open, and thus eliminate the

control overheads associated with opening them. However,

precisely because of this, data glitches are allowed to pass

through the latch to downstream stages causing useless switch-

ing activity in the datapath. While these data glitches do not

cause correctness concerns, they result in an increase in datap-

ath power consumption.

Recently, Chelcea et. al. [5] proposed Self-Resetting latches

(SR-latches) to solve the power consumption problem. The

SR-latches are normally closed; a dedicated latch controller

opens them just before the output data stabilizes, allowing the

final result to pass downstream. This behavior prevents a ma-

jority of the data glitches from passing through thereby reduc-

ing datapath power consumption compared to the D-latch im-

plementations [5]. However, they have two major drawbacks:

(a) they are slower compared to a D-latch implementation and

(b) they require a dedicated SR-latch controller [5] which in-

creases area and control-path power.

In this paper, we present an optimization to manage this

trade-off between performance and power consumption. It is

described as a module selection problem that builds a heteroge-

neous latch-based pipeline by assigning each pipeline stage in

the design to use either a D-latch or an SR-latch style, with the

objective of sustaining both the energy efficiency benefits of a

homogeneous SR-latch pipeline and the performance benefits

of a homogeneous D-latch pipeline. The algorithm is founded

on a set of simple and intuitive heuristics that assess the power

and performance costs of assigning an SR-latch or a D-latch to

a given pipeline stage.

To assess the cost of performance, the algorithm leverages

knowledge of the Global Critical Path (GCP) [26], which was

shown to represent the sequential critical path of execution and

thus principal bottleneck in the system. The pipeline stages that

fall on the GCP are globally critical in that their latency of exe-

cution directly contributes to the system-wide cycle time [3, 6].

Derived from the GCP is the notion of global slack [24], which

describes how much a given stage can be slowed down without

affecting the GCP. If a stage falls on the GCP, its global slack

14th IEEE International Symposium on Asynchronous Circuits and Systems

1522-8681/08 $25.00 © 2008 IEEE
DOI 10.1109/ASYNC.2008.21

87

14th IEEE International Symposium on Asynchronous Circuits and Systems

1522-8681/08 $25.00 © 2008 IEEE
DOI 10.1109/ASYNC.2008.21

83

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

En

Delay

FU

Ao

oR

Do

A

HS

i

iR

Di

Rdy

D
−

L
a

tc
h

En

Delay HS

D
−

L
a

tc
h

FU

iR

Ai

Di

C

SR Ctrl

Do

oR

Ao

SR Ctrl STG

Done

EnSR
EnSR

Done

EnSR

Done

Rdy

Rdy

Rdy

(a) (b)

Figure 1. The two pipeline implementation styles: (a) D-latch based pipeline style for high-performance
and (b) SR-latch style for better energy efficiency.

value is zero, otherwise it is the minimum available slack along

any topological path leading to the GCP. Thus, global slack is

essentially the timing budget representing how much a pipeline

stage can be slowed down without degrading the system-wide

cycle time. The algorithm assigns an SR-latch to a pipeline

stage which has sufficient global slack.

The cost of power is most accurately assessed by a formal

model that estimates the possibility of data glitches in a given

datapath component. However, it is difficult to model glitch-

ing in a dynamic asynchronous circuit. The amount of glitches

is closely tied to the input data vectors and the topology and

speed of a given datapath component. Instead of modeling

this power consumption, we estimate the potential for datapath

glitches if a given stage were assigned a D-latch. For example,

if the consumer of a stage contains a complex functional unit

(e.g., a multiplier), then the potential for datapath glitches is

higher. This will prompt the algorithm to assign an SR-latch

to the current stage. Similarly, we have devised a set of heuris-

tics to roughly assess the potential for data glitches in a given

circuit sub-system.

Based on these heuristics, we formulate an algorithm that

first analyzes the GCP and global slack properties of a pipeline

in which all stages are uniformly assigned D-latches. Then,

we iteratively select candidate stages that exhibit benefits when

converted to an SR-latch implementation. Between iterations,

the timing properties like GCP and global slack are updated.

The result is a quadratic-time algorithm that synthesizes a het-

erogeneous, latch-based asynchronous pipeline circuit. In this

paper, we focus the algorithm on optimizing four-phase bun-

dled data asynchronous circuits, but we believe that the con-

cepts presented are extensible to other methodologies as well.

We have incorporated this optimization within CASH [2,

25], a hardware compiler that synthesizes asynchronous four-

phase bundled data handshake circuits from C programs. Ex-

perimental results from synthesizing several media processing

kernels from the Mediabench [12] suite indicate that the pro-

posed algorithm achieves the best energy-delay and energy-

delay-area properties when compared to homogeneous D-latch

and homogeneous SR-latch implementations. Moreover, the

performance of the heterogeneous pipelines are at par with or

superior to that of homogeneous D-latch pipelines, which are

known to be well suited for high-performance.

The rest of the paper is organized as follows. Section 2 ex-

amines previous work on pipeline latching styles. Section 3

motivates the problem and defines the optimization. Section 4

describes the set of heuristics used to assess performance and

power costs and Section 5 describes the overall algorithm. Sec-

tion 6 presents experimental results and we conclude in Sec-

tion 7.

2. Related Work

Since the seminal work of Sutherland [21], a primary focus

of asynchronous circuits research has been on pipeline style

implementations. These pipeline implementations can typi-

cally be classified as fine-grained or coarse-grained structures.

The former operates at the bit level while the latter operates at

the level of word-length operations or “functional units”.

Fine-grained pipeline structures were introduced by

Williams [30], and improved on by many others [18, 15, 17,

13, 32, 16, 22]. These pipeline templates are usually imple-

mented using dynamic logic, which provides intrinsic storage

capability, but are not amenable to automatic synthesis with

commercial standard-cell CAD tools.

Coarse-grained pipeline structures, which is the focus of

this work, can be implemented with standard-cell gates [21, 19,

9, 7]. Several latch and handshake protocol implementations

have been proposed in the past. The Sutherland [21] micro-

pipelines communicate with two-phase handshaking and use

pass-capture logic for the latches. Singh and Nowick [19]

proposed Mousetrap as a latch-based implementation for two-

phase handshake protocols. These latches are similar to the D-

latches we consider in this paper in that they are normally open

during the passive phase of the handshake and are closed dur-

ing the active phase. Furber and Day [9] have proposed several

different styles of latch implementations that could be used in

conjunction with strongly coupled and fully decoupled hand-

shake protocols. More recently, SR-latches [5] were proposed

as an energy-efficient version of normally transparent latches

like Mousetrap [19].

8884

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

Most CAD tools designed for synthesizing asynchronous

systems from high-level languages [8, 23, 29, 11, 1] may target

different implementation styles (e.g. choice of data encoding,

choice of data validity); however, these systems cannot synthe-

size heterogeneous systems, which mix a variety of pipeline

implementation styles.

There are two approaches closer to our work. The

TAST [20, 31] compiler allows the user to specify a desired

data encoding for each variable, which may result in a sys-

tem which contains a heterogeneous mix of data storage units

in pipelines. The designer can use profiling [20] or formal

methods [31] to decide how to assign encoding styles to dif-

ferent variables so that power and performance improvements

are achieved. However, this process is not automated.

Chelcea et al [4] have introduced some peephole and resyn-

thesis transformations for the Balsa synthesis system [8]. Some

of these transformations may change the data validity of data

items, which results in changes to the data storage units, thus

making the system heterogeneous. However, unlike our ap-

proach, theirs is not automated and is guided by the experience

of the designer.

To our knowledge, there exists no automated synthesis flow

for constructing asynchronous systems with heterogeneous

pipelines. Our work takes a step in this direction — we show

that it is possible to mix and match the benefits from differ-

ent pipeline implementation styles in order to deliver a well-

rounded solution. The main contribution of this paper is an

automated algorithm to build heterogeneous pipelines that is

designed to reap the benefits of modularity in asynchronous

circuits.

3. Problem Description

In this section, we will motivate the proposed optimiza-

tion by briefly describing and comparing two latching styles.

Then, we will clearly state the optimization problem and its

objectives. We restrict our attention to asynchronous pipelines

implementing a four-phase, bundled data handshake protocol

and examine the trade-offs involved in implementing different

latching styles in these pipelines.

3.1. Motivation

Fig. 1 shows the schematics of the two latch-based pipeline

styles implementing a four-phase bundled data handshake pro-

tocol. The request, acknowledge and data signals of the input

channel are represented by Ri, Ai and Di respectively, while the

equivalent signals in the output channel are represented by Ro,

Ao and Do respectively. The HS block implements the hand-

shake protocol.

In the D-latch style in Fig. 1a, the handshake controller

raises En, when input data has been processed. This will close

the D-latch and stabilize the data at the output. The critical

path to raise the Ro signal is summation of the latencies of the

Delay and HS blocks.

The SR-latch style [5], illustrated in Fig. 1b, includes a ded-

icated latch controller, SR Ctrl, which determines when the D-

Figure 2. A comparison between homogeneous

D-latch and homogeneous SR-latch styles. A
value higher than 1 indicates improvement over

the base case.

latch is opened and closed. The State Transition Graph (STG)

for the controller is also shown in Fig. 1b. The D-latch is nor-

mally closed. When Rdy is raised, the SR Ctrl opens the latch

by raising EnSR. Once the handshake controller determines

that the Ro signal can be raised, the C-element at the bottom

fires, which in turn closes the latch. Thus, the latch is open for a

small window of time, a little bit wider than the latency through

the handshake controller, HS. This style introduces more tim-

ing constraints that must be met; a detailed discussion of these

topics can be found in [5].

Notice that compared to the D-latch, the SR-latch latency

to raise Ro includes the additional latency of the C-element, in

comparison to the critical path of the D-latch in Fig. 1a. On

the other hand, since the latch is normally closed, the poten-

tial for data glitches to leak through the latch is minimized.

These differences are reflected in the performance results pre-

sented in Fig. 2. A set of benchmarks from the Mediabench

suite [12] were processed by the CASH compiler [2, 25] and

synthesized as both a homogeneous D-latch implementation as

well as a homogeneous SR-latch implementation. The kernels

are listed in Table 1. The C function in the table was the input

to the compiler, which translates the program to a predicated

dataflow graph representation [2]. Each node in this graph

is synthesized as a handshaking pipeline stage that includes

a pipeline latch. While the CASH compiler synthesizes the

control-path, the datapath is synthesized by Synopsys Design

Compiler. Post-layout simulations were performed in Model-

sim and using the switching activity file (.saif) from simula-

tion, power is estimated by Synopsys. The experiments were

performed with the [180nm/2V] ST Microelectronics standard

cell library.

The results in Fig. 2 show a comparison of end-to-end exe-

cution time, area and energy-delay for the two styles. A value

greater than one implies that the SR-latch pipeline is superior

to the D-latch pipeline. The results indicate that the homo-

geneous D-latch pipeline is superior to the homogeneous SR-

latch pipeline by about 7% and 18% in terms of performance

and area respectively. This is expected since the critical path

delay is longer through the SR-latch style (see Fig. 1) and the

additional controller (SR Ctrl) increases its area. However, in

8985

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

(a)

i1

v

o1 o2

i2

R i1
R i2

A v

R i1
R i2

R v A v

A o1 A o2

R v

A o1
A o2

i1

v

o1 o2

i2

R i1

R i2
A v

A v

R v

A o1 R v

A o2

(c)(b)

Figure 3. Understanding the pipeline’s control-path. We show an (a) example dataflow sub-graph, (b)

its asynchronous pipeline control-path implementation and (c) the execution model implementing the
underlying protocol.

terms of energy-delay, the SR-latch implementations are close

to 2x better than the D-latch ones. This is due to excessive dat-

apath glitching activity in the D-latch which is virtually elimi-

nated by SR-latches.

The goal of the heterogeneous latch synthesis algorithm is

to mix and match the two styles in the same pipeline design.

Thus, critical stages can use high-performance (and low area)

D-latches while non-critical stages may use low-power SR-

latches. We want to leverage the benefits of both styles in a

heterogeneous pipeline.

3.2. Problem Definition

We formulate heterogeneous latch synthesis as a module se-

lection problem. The goal of the optimization is performance-

sustaining power optimization—in other words, we want to im-

prove power and energy properties of a given design without

degrading its performance as compared to a D-latch implemen-

tation. The inputs to this optimization problem are:

• A dataflow graph, G = (V,E) representing the pipeline

stages in the design. Each node v ∈ V will contain a latch

on its output. Let Type(v) represent the latch style (D-latch

or SR-latch) deployed in v. Additionally, we define op(v) to

describe the ALU operation performed by stage v.

• The difference in latency between a D-latch and an SR-latch

is given as ∆sr, i.e., the D-latch is faster than the SR-latch by

∆sr time units.

A solution to the problem is to define a mapping Type :

V 7→ {D-Latch,SR-latch} that defines the latch implementa-

tion used in stage v ∈ V . The objective of the problem is to

minimize datapath glitch power with the constraint that the

system-wide cycle time [6, 26] of the solution is less than or

equal to the cycle time of the D-latch solution, i.e., a solution

where Type(v) = D-latch for all nodes.

4. Heuristic Cost Functions

Finding the optimal solution to this problem necessitates

solving two separate problems: one, finding all stages that can

afford to be a bit slower for using SR-latches and, two, esti-

mating the potential switching activity. While the former is

a reasonably well understood problem, the latter is an unde-

cidable problem since it depends on the input vectors to the

circuit, which are statically unknown. Further, switching ac-

tivity is extremely sensitive to the delay of gates [10]. Thus,

in the presence of variation and unknown input vectors, it is

very difficult to accurately estimate switching activity. Due to

these reasons, we rely on heuristic cost functions to guide our

algorithm toward better quality solutions.

Before presenting our algorithm, we will first describe the

set of heuristic cost functions that the algorithm is based on.

We use these heuristics to guide the algorithm toward higher

quality solutions. We use two classes of heuristics for this

problem: first, a system-level timing based cost function to

guage the impact on performance and, second, a set of heuris-

tics to guage the impact on datapath power.

4.1. Global Slack

The main constraint of the problem is that cycle time of the

new solution must not be worse than cycle time of the homo-

geneous D-latch solution. To enforce this constraint, we use

system-level timing analysis results, slack and the Global Crit-

ical Path (GCP) [26, 27].

We illustrate the concept of the GCP using Fig. 3. In (a),

it shows an example sub-graph of a dataflow graph, G, repre-

senting the application. Each edge, (u,v)∈ E , of the sub-graph

becomes a handshake channel and each node, v∈V , becomes a

pipeline stage. Fig. 3b shows the schematic for the RTL micro-

architecture. Communication between pipeline stages are con-

trolled by local handshaking based on a pre-defined protocol.

Fig. 3c shows the execution model (e.g., as an STG) of the

protocol implemented by the pipeline.

9086

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

1 heterogeneous Latch selection(G, Slack) {
2 ∀ v ∈V , Type(v) = D-latch;

3 Done = pre assign(G);

4 change = true; BestSlack = 0; BestOp = undef;

5 while (change) {
6 change = false;

7 foreach (v ∈V) {
8 if (v ∈ Done) continue;

9 if (GSlack(v) > BestSlack) {
10 BestOp = v; BestSlack = GSlack(v);
11 change = true;

12 }
13 }
14 if (change) {
15 Type(BestOp) = SR-latch;

16 update slack(BestOp, −∆sr);

17 Done.add(BestOp);

18 }
19 }
20 }

21 pre assign(G) {
22 Done = /0;

23 foreach (v ∈V) {
24 if (|Fo(v)| ≥ 2) {
25 Type(v) = SR-latch; Done.add(v);

26 update slack(v, −∆sr);

27 continue;

28 }
29 u = single fanout destination of v;

30 if (BitOps(u) ≥ BitOps) {
31 Type(v) = SR-latch; Done.add(v);

32 update slack(v, −∆sr);

33 continue;

34 }
35 }
36 return Done;

37 }

Figure 4. High-level overview of the heterogeneous latch selection algorithm.

This execution model can be analyzed to determine the cy-

cle time of the system [14, 26, 3]. In steady state, this is the

time difference between successive firings of a given event

(i.e., signal transition) in the model. Based on this analysis, we

can also determine other aspects of system-level timing. In par-

ticular, the model induces a partial firing order on the events.

In Fig. 3c, for example, event Av↓ can fire only after both Ri1↓
and Ri2↓ fire. Such ordering relationships are encoded in be-

haviors [26]; every behavior, b, has a set of input events, In(b),
which must fire before any output event in Out(b) can fire.

Based on the results of system-level timing analysis, we in-

fer three important timing properties:

• Slack(ei,b): In steady state, this represents how early an

input event, ei ∈ In(b), fires before all the inputs in In(b)
have fired. There exists a critical input, ec, that is the last

input event to fire. If each input, ei, fires at time, Ti, then

Slack(ei,b) = Tc −Ti, implying that slack for the critical in-

put is zero. If the delay to fire the behavior b is d(b), then the

output events in Out(b), fire at time (Tc + d(b)).
• Global Critical Path (GCP): is the longest sequence of zero-

slack events. It is a path, GCP = 〈e1, · · · ,ei,ei+1, · · · ,elast〉,
such that elast is the last event to fire in the execution, and

for every two consecutive events, ei and ei+1 on the GCP,

there exists a behavior, bi+1, such that ei ∈ In(bi+1) and

ei+1 ∈ Out(bi+1). Further, for every event on the GCP,

Slack(ei,bi+1) = 0. The latency of the GCP is equivalent to

the cycle time [26].

• GSlack(e): represents global slack of event e. It specifies

how long event e can be delayed without affecting the cy-

cle time or the GCP. It is defined as the minimum cumulative

slack along any output path to the GCP. It is recursively de-

fined as follows:

GSlack(b) =
Min

eo ∈ Out(b)
GSlack(eo)

GSlack(e) =
{

0, if e ∈ GCP,

Min
∀ b | e ∈ In(b)

(Slack(e,b) + d(b) + GSlack(b)), otherwise.

The key timing property we use for our optimization is

global slack. From its definition, we know that if we were

to slow down a given event by a value less than or equal to its

global slack value, then we are guaranteed that the GCP will

not change and thus the system-wide cycle time will not be af-

fected. We use global slack as the timing budget available to a

given stage for transforming its latch style to an SR-latch based

implementation. Essentially, a given pipeline stage, v ∈ V is

assigned an SR-latch if the following holds:

GSlack(Rv↑) ≥ ∆sr

V

GSlack(Rv↓) ≥ ∆sr (2)

The choice of the latching style only affects the timing of

events downstream, i.e., R↑ and R↓ events. Thus, we ensure

that there is sufficient global slack at v to tolerate a delay of ∆sr

at the output of both Rv↑ and Rv↓. As we show in Section 5, we

will iteratively examine stages, v ∈ V to determine if its type

should be set to SR-latch. If Type(v) is set to SR-latch, then we

update slack to propagate the change throughout the execution

model.

4.2. Power Costs

Now we will describe the power heuristics that help in es-

timating the extent of data glitches that may be saved using

SR-latches:

1. Fanout: Let Fo(v)= {u | (v,u)∈E}. Our first observation

is that the fanout, |Fo(v)|, of a node v∈V , is a factor in the

9187

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

amount of data glitches that may propagate to downstream

nodes if Type(v) = D-latch. If |Fo(v)| is large than every

data glitch from v is propagated to every fanout destina-

tion of v, thus increasing the probability of glitches. Thus,

we want to use SR-latches when we encounter any node

with a fanout. We assign an SR-latch to every stage with

a fanout greater than one:

|Fo(v)| ≥ 2 (3)

2. BitOps: Next, we observe that the amount of datapath

glitches in downstream stages depends on the complexity

of the datapath in these stages. For example, if a datapath

glitch were to leak through to a downstream stage con-

taining a multiplier, then the leak will cause much more

unnecessary switching as compared to a stage whose dat-

apath contains just a simple logic AND gate. Thus, to es-

timate the potential for datapath glitches in downstream

stages, we introduce the concept of BitOps(v) for each

stage. This value represents the number of 1-bit opera-

tions performed in the stage’s datapath—this is roughly

equivalent to the number of standard cell logic gates used

in the datapath. The larger the value of BitOps, the larger

is the potential for data glitches. We assign an SR-latch to

a stage, v ∈V , if any output stages from v contain a com-

plex datapath; thus, the SR-latch prevents glitches from

leaking through to these complex downstream stages. We

use an upper-bound, BitOps, to represent the maximum

allowable bit operations to tolerate glitches due to D-

latches. Specifically, an SR-latch is used in stage v ∈ V ,

if the number of bit-ops of a destination is larger than

BitOps.

∃ (v,w) ∈ E, s.t. BitOps(w) ≥ BitOps (4)

5. The Algorithm

Using these heuristics, we have formulated an iterative het-

erogeneous latch selection algorithm, as shown in Fig. 4. The

top-level function, heterogeneous Latch selection() takes as

input a graph G representing the asynchronous pipeline and

the performance analysis results (as described in Section 4.1)

from analyzing a homogeneous D-latch based pipeline. The

algorithm first performs a pre-assignment pass (Lines 21–37)

that sets the types of several nodes based on the heuristics

above: (a) multiple fanout nodes always contain SR-latches

(Lines 24–28) and (b) if the output of the node is computa-

tionally heavy-weight, as per (4), then we also pre-assign SR-

latches (Lines 29–34).

For every node, v, that is assigned an SR-latch, we must

update slack (see Line 16, 26 and 32). Without having to

re-compute slack through a complete timing re-analysis, it is

possible to update values of slack by adjusting the effect of

the timing change in the local area and propagating the effect

globally [28, 24]. This technique involves an analysis of the lo-

cal re-convergent paths surrounding the area of change. Once

identified, the slack at the join points of these re-convergent

Figure 5. Contribution of each heuristic in se-

lecting nodes that will use an SR-latch.

paths must be updated to reflect the change in timing along

the re-convergent paths. Then, any change in timing at the

join point is similarly propagated to the next join point and

so on. This slack update algorithm is linear in the number

of edges [28, 24]. In the presence of conditional behavior

(choice), the update is an approximation since it focuses only

on the most frequently executed paths. Still, for the set of

benchmarks reported here, the algorithm was shown to be fully

accurate in estimating new values of slack for about 75% of

all system events, consistently across all benchmarks [28], and

within an error of ±10% for more than 90% of all system

events. Once slack is updated, the GCP and global slack can

also be updated by a linear pass through the execution model.

After pre-assigning these nodes, the top-level algorithm it-

erates over the remaining nodes looking for candidates that can

use an SR-latch if they satisfy (2). In each iteration of the

while loop in Lines 5–19, we find the node, v, which has the

largest global slack on both its Rv↑ and Rv↓ events. Once, we

have evaluated all candidates, the best candidate is assigned

to use an SR-latch and slack is updated to reflect the change

(Lines 14–18). When no candidates are found in a given itera-

tion, the algorithm stops.

5.1. Computational Complexity

The algorithm has a quadratic complexity in the size of G.

This complexity is inferred as follows:

• pre assign(): The initial call to this function simply iterates

over all nodes; thus its complexity is ωpre = O(|V |).
• while: For a single iteration of the while, we again eval-

uate all nodes in the graph, in the worst case; ωwhile = O(|V |).
• iterations: In the worst-case, we may perform as many

while loop iterations as there are nodes in G; ωiter = O(|V |).
• update: the complexity of updating slack is O(|E|) [28, 24].

In the worst-case, we would call update for every node in the

graph. Thus, the complexity during iteration for the update is

ωup = O(|V | |E|).

Putting this together, the overall complexity of the algorithm

is quadratic in the size of the dataflow graph and is derived as

9288

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

follows:

ω = ωpre + ωup + ωwhile ωiter

= O(|V |) + O(|V | |E|) + O(|V |2)
= O(|V | |E| + O(|V |2))

6. Experimental Results

We applied the heterogeneous latch selection algorithm on

the Mediabench kernels [12] listed in Table 1. These kernels

were synthesized using the CASH compiler [25, 2] to target a

[180nm/2V] ST Microelectronics standard cell library. After

physical design, the circuit’s timing was extracted using Syn-

opsys Design Compiler (SDC) and simulated using Modelsim.

This gate-level simulation generates a switching activity file

(.saif), which is fed back into SDC to estimate power consump-

tion.

Table 1 reports on how many nodes in V were chosen for

using an SR-latch. The runtime of the algorithm is in the last

column. Of these nodes selected for SR-latches, Fig. 5 shows

the reasons (or heuristics) due to which a given node was cho-

sen for using SR-latches. The D-Latch segment of the bars in

the graph show the fraction of stages that were not changed to

SR-latches since they fall on the GCP. On average, the algo-

rithm selects about half of the total nodes to use SR-latches. In

some cases, K11.mpeg2 d and K13.mpeg2 e, for example, the

number of nodes chosen for using SR-latches is much larger

than the average case. This is because these kernels have cer-

tain sub-circuits that were never executed (due to conditional

behavior) in these testbenches. The timing analysis technique

used for extracting slack and GCP is profiling driven [26].

Thus, for these nodes, global slack is infinite.

Quantitative evaluations of the algorithm is shown in Fig. 6.

These graphs show the performance comparisons between a

homogeneous SR-latch implementation and the heterogeneous

latch implementations relative to the homogeneous D-latch im-

plementation, which is the base version. Thus, a value of one

on the Y-axis indicates that the performance is equivalent to

that of a homogeneous D-latch pipeline, while a value greater

than one shows an improvement over the performance of a

homogeneous D-latch pipeline. The timing graph in Fig. 6A

shows that there is virtually no performance penalty to selec-

tively assigning SR-latches to different nodes. In fact, in some

cases, performance seems to improve over a purely D-latch

implementation. Careful inspection of these kernels suggests

no fundamental reasons for this improvement; they are, rather,

side-effects of physical design since the post-layout datapath

latency (and thus the size of the matched delay) in some nodes

were reduced compared to the equivalent node in the homoge-

neous D-latch pipeline. On the other hand, the homogeneous

SR-latch implementation is, on average, about 7% slower than

homogeneous D-latches.

Energy delay, on the other hand, vastly improves in com-

parison with D-latches (see Fig. 6C). This is especially true

for the large benchmarks where the probability of data glitches

is much higher. On average, both the homogeneous SR-latch

implementation and the hybrid implementations achieve an im-

provement of roughly 2x over a D-latch based implementation,

with the hybrid algorithm performing marginally better.

In terms of area, a D-latch implementation is the best since

SR-latches require a separate SR-latch controller as shown

in Fig. 1. On average, the SR-latch and hybrid styles take

up roughly 15% and 12% more area than the D-latches re-

spectively. On the other hand, energy-delay-area improves

substantially compared to the D-latch pipelines. On aver-

age, the energy-delay-area products of the hybrid and SR-latch

pipelines are 1.78x and 1.69x better than the D-latch version.

In summary, we can draw the following the following con-

clusions from the experimental results:

• On average, across all benchmarks, each of the three

heuristics, global slack, BitOps and fanout, pick 42%,

34% and 16% of the nodes selected to use SR-latches.

This gives us an indication of their relative importance.

• It is not clear what the heuristic should be for nodes that

are seldom executed in a circuit with conditional exe-

cution. While they will not generate any data glitches

themselves, it is possible that glitches from upstream

stages may leak into these sub-systems causing unnec-

essary switching. In this algorithm, we simply assign

SR-latches to all these nodes. A more sophisticated pass

may choose to assign SR-latches to the nodes at the input

boundary of such regions and D-latches to nodes within

the region.

• For a given performance bound, the hybrid version is su-

perior to both a homogeneous D-latch and SR-latch im-

plementation. In other words, the use of global slack

enables us to accurately track performance and ensure

timing-sustaining power optimization. Thus, it is able to

achieve equivalent or better energy-delay properties com-

pared to an SR-latch implementation without sacrificing

the performance of D-latches. Further, since not all of the

nodes are chosen to be implemented as SR-latches, the

area penalty is also lesser than for a homogeneous SR-

latch implementation.

• The proposed algorithm is an efficient and effective

heuristic. The runtimes for the algorithm in the last col-

umn of Table 1 indicate that even the largest kernels take

no more than a couple of minutes to process, thus ensuring

the scalability of the algorithm. On average, the quality

of circuits produced by the hybrid algorithm is superior to

both a pure D-latch and a pure SR-latch implementation

in terms of performance, energy-delay and energy-delay-

area.

7. Conclusions

The choice of pipeline latching style plays a significant role

in determining the timing, power and area properties of a given

asynchronous bundled data pipeline design. D-latch pipeline

stages are known to be extremely fast [19], but produce a lot

9389

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

Kernel C Function Total Nodes SR-Latch Ops Runtime (secs)

K1.adpcm d adpcm decoder 281 161 12

K2.adpcm e adpcm coder 297 182 14

K3.g721 d fmult+quan 163 92 3

K4.g721 e fmult+quan 163 92 3

K5.gsm d LARp to rp 117 59 3

K6.gsm d Short term synthesis filtering 198 102 5

K7.gsm e Coefficients 27 39 84 34 1

K8.gsm e Short term analysis filtering 207 98 5

K9.jpeg d jpeg idct islow 972 539 161

K10.jpeg e jpeg fdct islow 418 230 20

K11.mpeg2 d form component prediction 1132 1020 56

K12.mpeg2 d idctcol 427 171 12

K13.mpeg2 e dist1 1013 787 76

K14.pgp d mp smul 142 75 3

K15.pgp e mp smul 142 75 3

Table 1. Results of applying the hybrid ASU selection algorithm. Of the total number of nodes, “SR-Latch

Ops” nodes were chosen to use an SR-latch ASU. The runtime is in the last column. These experiments
were performed on Sparc machine with 4GB memory.

(A) Timing (B) Area

(C) Energy-Delay (D) Energy-Delay-Area

Figure 6. The improvements in overall performance, area, energy-delay and energy-delay-area due to

op-chaining. Each of the graphs shows four series representing the four experiments and compares the
performance, area and energy of the op-chained system to the base (initial) configuration. A bar higher

than one indicates an improvement over the base run.

9490

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

of data glitches leading to increase in dynamic power con-

sumption. Self-Resetting latches (SR-latches) [5], on the other

hand, reduce the number of glitches produced in latch-based

pipelines but are slower and take up more area.

We have formulated a module selection problem for assign-

ing one of these two latching styles for each of the pipeline

stages in a given design. The problem is solved by an au-

tomated algorithm that uses knowledge of system-level tim-

ing in order to assign D-latches to critical pipeline stages and

SR-latches to stages where the probability of glitch produc-

tion is greater. The algorithm uses a set of heuristics to es-

timate the effects on timing and power when making latch-

ing choices in different stages. The algorithm is effective and

scalable. Experimental results from applying the algorithm

on media processing kernels indicate that the proposed algo-

rithm achieves the best performance, energy-delay and energy-

delay-area properties compared to equivalent homogeneous D-

latch and homogeneous SR-latch pipelines. We believe that the

algorithm exploits the modularity properties of asynchronous

pipelines to mix and match the pipelining needs with the power

budgets.

8 Acknowledgments

This research has been funded by NSF grants CCF-0702640

and CCR0205523.

References

[1] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin,

and C. Sotiriou. Handshake protocols for de-synchronization. In

Proc. International Symposium on Advanced Research in Asyn-

chronous Circuits and Systems, pages 149–158. IEEE Computer

Society Press, Apr. 2004.

[2] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein.

Spatial computation. In ASPLOS, pages 14–26, Boston, MA,

October 2004.

[3] S. M. Burns. Performance Analysis and Optimization of Asyn-

chronous Circuits. PhD thesis, California Institute of Technol-

ogy, 1991.

[4] T. Chelcea and S. M. Nowick. Resynthesis and peephole trans-

formations for the optimization of large-scale asynchronous

systems. In DAC, pages 405–410, New York, NY, USA, 2002.

ACM Press.

[5] T. Chelcea, G. Venkataramani, and S. C. Goldstein. Self-

resetting latches for asynchronous micro-pipelines. In DAC,

pages 986–989, New York, NY, USA, 2007. ACM Press.

[6] A. Dasdan. Experimental analysis of the fastest optimum cycle

ratio and mean algorithms. TODAES, 9(4):385–418, 2004.

[7] P. Day and J. V. Woods. Investigation into micropipeline latch

design styles. IEEE Transactions on VLSI Systems, 3(2):264–

272, June 1995.

[8] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware

synthesis language. The Computer J., 45(1):12–18, 2002.

[9] S. Furber and P. Day. Four-phase micropipeline latch control

circuits. IEEE Transactions on Very Large Scale Integration

Systems, 4-2:247–253, 1996.

[10] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of

average switching activity in combinational and sequential cir-

cuits. In DAC, pages 253–259, Los Alamitos, CA, USA, 1992.

IEEE Computer Society Press.
[11] A. Kondratyev and K. Lwin. Design of asynchronous circuits

using synchronous cad tools. IEEE Transactions on Design and

Test of Computers, pages 2–12, 2002.
[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Media-

Bench: a tool for evaluating and synthesizing multimedia and

communications systems. In MICRO, pages 330–335, 1997.
[13] A. M. Lines. Pipelined asynchronous circuits. Master’s thesis,

California Institute of Technology, Computer Science Depart-

ment, 1995. CS-TR-95-21.

[14] C. D. Nielsen and M. Kishinevsky. Performance analysis based

on timing simulation. In DAC, pages 70–76, 1994.
[15] R. O. Ozdag and P. A. Beerel. High-speed QDI asynchronous

pipelines. In ASYNC, pages 13–22. IEEE Computer Society,

2002.
[16] R. O. Ozdag and P. A. Beerel. A channel based asynchronous

low power high performance standard-cell based sequential de-

coder implemented with QDI templates. In ASYNC, pages 187–

197. IEEE Computer Society, 2004.
[17] R. O. Ozdag, P. A. Beerel, M. Singh, and S. M. Nowick.

High-speed non-linear asynchronous pipelines. In DATE, pages

1000–1007. IEEE Computer Society, 2002.
[18] M. Singh and S. M. Nowick. High-throughput asynchronous

pipelines for fine-grain dynamic datapaths. In ASYNC, page

198. IEEE Computer Society, 2000.
[19] M. Singh and S. M. Nowick. MOUSETRAP: Ultra-high-speed

transition-signaling asynchronous pipelines. In ICCD, pages 9–

17. IEEE Computer Society, 2001.
[20] K. Slimani, Y. Remond, G. Sicard, and M. Renaudin. Tast pro-

filer and low energy asynchronous design methodology. In Pro-

ceedings of the 14th International Workshop on Power and Tim-

ing Modeling, Optimization and Simulation (PATMOS 2004),

pages 268–277, 2004.
[21] I. Sutherland. Micropipelines: Turing award lecture. CACM, 32

(6):720–738, June 1989.
[22] I. Sutherland and S. Fairbanks. GasP: A minimal FIFO control.

In ASYNC, pages 46–53. IEEE Computer Society Press, March

2001.
[23] K. van Berkel. Handshake Circuits: An Asynchronous Architec-

ture for VLSI Programming, volume 5 of Intl. Series on Parallel

Computation. Cambridge University Press, 1993. Tangram.
[24] G. Venkataramani. System-level Timing Analysis and Optimiza-

tions for Hardware Compilation. PhD thesis, Carnegie Mellon

University, October 2007.

[25] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein.

C to asynchronous dataflow circuits: An end-to-end toolflow. In

IWLS, pages 501–508, Temecula, CA, June 2004.
[26] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein.

Global critical path: a tool for system-level timing analysis. In

DAC, pages 783–786, New York, NY, USA, 2007. ACM Press.
[27] G. Venkataramani, T. Chelcea, M. Budiu, and S. C. Goldstein.

Modeling the global critical path in concurrent systems. Techni-

cal Report CMU-CS-06-144, Carnegie Mellon University, Au-

gust 2006.
[28] G. Venkataramani and S. C. Goldstein. Leveraging protocol

knowledge in slack matching. In ICCAD, pages 724–729, New

York, NY, USA, 2006. ACM Press.
[29] W. Wang, T. K. Tan, J. Luo, Y. Fei, L. Shang, K. S. Vallerio,

L. Zhong, A. Raghunathan, and N. K. Jha. A comprehensive

high-level synthesis system for control-flow intensive behav-

iors. In GLSVLSI, pages 11–14. ACM Press, 2003.

9591

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

[30] T. E. Williams. Self-timed rings and their application to di-

vision. PhD thesis, Stanford University, Stanford, CA, USA,

1991.

[31] E. Yahya and M. Renaudin. Qdi latches characteristics and

asynchronous linear-pipeline performance analysis. In Proceed-

ings of the International Workshop on Power and Timing Mod-

eling, Optimization and Simulation (PATMOS’06), pages 583–

592, 2006.

[32] K. Yun, P. Beerel, and J. Arceo. High-performance asyn-

chronous pipeline circuits. In Proceedings of the Second In-

ternational Symposium on Advanced Research in Asynchronous

Circuits and Systems, 1996, pages 17–28, March 8-21 1996.

9692

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 29, 2008 at 13:33 from IEEE Xplore. Restrictions apply.

