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Typical System Design Flow

Spec.
Scalability Issues:

Mapping + Allocation

System Partitioning
Simulation takes minutes to hours
Synthesis takes many hours
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Proposed Design Flow
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Timing Analysis

Key Contributions

Spec.

Mapping + Allocation

System Partitioning

Update timing in IRMapping + Allocation

IR

Update timing in IR

Traditional
System replace with

New 
Optimization

Loop

Code Emission Optimize Design

1 Slack is a distributed representation of system timing

Design 
Loop

Loop

Physical Synthesis

RTL (*.v, *.vhd)Simulation1. Slack is a distributed representation of system timing
2. Linear-time update algorithm based on slack
3. > 100x reduction in total design time:

• Optimization Loop      runs in seconds/minutes while 

4

y y

Timing Analysis

• System Design Loop  runs in hours/days



Outline

• Motivation

• Timing Metricsg
– Cycle time
– Slack: An alternative view of cycle timey

• Slack Update AlgorithmSlack Update Algorithm
• Experimental Evaluation
• Conclusions
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• Conclusions

The Intermediate Representation (IR)p ( )

• Models a dynamic system

• Concurrent sub-systems
– PE, FSM, S/W, Memory

Sub-
System

Sub-
System

… …

• Communication between 
sub-systems based on pre-
defined protocols

Network

defined protocols
– FIFOs, NoC, shared bus

Sub-
System

Sub-
System… …

Transaction Level Modeling (TLM) [Cai ISSS 03]
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Transaction-Level Modeling (TLM), [Cai, ISSS 03]
Adopted by System-C, Bluespec, Balsa, Tangram

Marked Graphs

• Model dynamic system 
i t tiinteractions

• Events and transitions
S1 S2

token

• Events and transitions
– Event: An edge acquires a 

token
T iti N d S– Transition: Node consumes 
inputs and generates 
outputs

S3

• Encode the 
communication protocols
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Timing Analysis of IR

• Time Separation between Event (TSEs)
– TSE between consecutive firings of same event in steady state is 

the mean cycle time

• Mean Cycle Time, CT

)( CT
i
i

N
CMax=

cycleon   tokensofnumber  is N             
cycle,graph  a oflatency  isC  :

i

  iwhere
iC

Max
∀

• Computing CT is about O(|E|3) complexity [Dasdan 04]
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Computing CT is about O(|E| ) complexity [Dasdan 04]



Slack as a Timing Metric

• Distributed representation of cycle time
– Different type of TSE– Different type of TSE
– Defined on each (input edge, node) pair
– How early this input arrives

Slack(S1, S3) = 3( )
Slack(S2, S3) = 0
Slack(S3, S1) = 0
Slack(S3, S2) = 0

* 2 5S1 S2

locally
critical

• Zero-slack input is locally critical 8S3

critical

• Longest chain of zero-slack events yields the critical cycle or the 
Global Critical Path (GCP)

Cycle time = Latency of the GCP
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– Cycle time = Latency of the GCP
– Given slack values, computing cycle time has linear complexity

Slack is an Annotation on the IR
Sub-

System
Sub-

System
… …

Network

Sub- Sub-
System System… …
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Helps in discovering hotspots and applying optimizations

Outline

• Motivation
• Timing Metrics

• Slack Update Algorithm

• Experimental Evaluation
• Conclusions
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Optimizations Change the IR

Spec.

Mapping + Allocation

System Partitioning

Update timing in IRMapping + Allocation

IR
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Update timing in IR
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Causes changes in component delays,
in turn changing in slack values
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y y in turn, changing in slack values

Need to update slack on each change



Problem Description

• Given a graph model and its current slack g p
values, compute new values of slack when 
latency of a node changes by a given Δy g y g

2 5S1 S2

8S3 6,  Δ = -2
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Insight behind Update Algorithm

• Slack is also latency 
difference of two branches

sfork

difference of two branches 
of a re-convergent fork-join

P
P2

+Δ sc

• If delay of node, sc, 
increases by Δ

e1 e2

P1

increases by Δ
– Update slack in surrounding 

re-convergent fork-joins
– Propagate change globally

sjoin

Assume δ(P1) > δ(P2), 
Di δ(P ) δ(P )

Propagate change globally
Di = δ(P1) - δ(P2)
Slack(e1, sjoin) = 0
Slack(e2, sjoin) = Di
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Update (let Δ ≤ Di):
Slack(e2, sjoin) = Di + Δ

Insight behind Update Algorithm

1. If there is a path from 
h i t t

sfork+Δ
change point to every 
input of sjoin, then no 
change in slack +Δ scg

2. If not, then slack 
h e echanges occur

sjoin

e1 e2
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Easy for acyclic graphs, but what about scc graphs?

Insight for Cyclic Graphs

• Use token knowledge
– Count tokens from change point to every input
– If value is equal for all inputs, then no change in slack values

2 5S1 S2 2,  Δ = -3

# toks = 1
#

8S3

# toks = 2

Ch i l k i t
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Change in slack exists



Insight for Cyclic Graphs

• Use token knowledge
– Count tokens from change point to every input
– If value is equal for all inputs, then no change in slack values

# toks = 0 # toks = 0

2 5S1 S2

8S3 6,  Δ = -2

N h i l k
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No change in slack

Algorithm Summary

• Initially, find # tokens between every pair of y y p
nodes in the graph
– Problem formulated as a flow lattice
– Invoked once, complexity is O(|M0| |V|)

• After inducing every change in graph
C t l k h t h d– Compute slack change at each node

– Propagate new change to neighboring outputs
O ll l it i O(|V|)
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– Overall complexity is O(|V|)

Outline

• Motivation
• Timing Metrics
• Slack Update Algorithm• Slack Update Algorithm

• Experimental Evaluation

• Conclusions
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Experimental Setup

• Slack Update loop incorporated into CASH compiler [ASPLOS 04, 
DAC 07]DAC 07]
– Synthesizes asynchronous circuits from ANSI-C programs

A li d th diff t ti i ti• Applied three different optimizations
– SM: Slack Matching [ICCAD 06]
– OC: Operation Chaining [ICCAD 07]

ASU H t Pi li S th i– ASU: Heterogeneous Pipeline Synthesis [Async 08]

• Benchmarks: Fifteen frequently executed kernels from Mediabench 
suite, [Lee 97]

• All results are post-synthesis mapped to ST Micro 180nm library
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Absolute Accuracy

• After SM, compare computed values of p p
slack against actual values of slack for 
adpcm_d_
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change)

• 1.2x performance speedup

0
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 o

• Update inaccuracy due to 
unknown latency values 
during circuit transformation
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-100 -50 0 50 100

% Slack Difference = [(Actual - Estimate)*100 / Actual]

g

Design Loop Experiments

Spec.

Run the same N optimizations in 
both loops and compare:
1. Overall Performance change
2 O ll d i i

Mapping + Allocation

System Partitioning

Update timing in IR

2. Overall design time

Mapping + Allocation

IRSystem
Design 

Update timing in IR

Optimization
Loop

Code Emission

g
Loop

Optimize Design

Physical Synthesis

RTL (*.v, *.vhd)Simulation
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Timing Analysis

Design Loop Experiments

• Three optimization sequencesp q
1. SM-ASU: Slack matching followed by 

Heterogenous latch insertion
2. ASU-SM
3. SM-ASU-OC

• Compare final circuit timing and loop• Compare final circuit timing and loop 
traversal (design) times between the two 
methodologies
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methodologies

Design Loop Experiments
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• About ~500 circuit changes, on average
• Design Loop time: 0.5 – 4 hours
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• Optimization loop: 10 - 100 seconds



Design Loop Experiments: SM-ASU-OC
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• About ~1000-3000 circuit changes, on average
• Design Loop time: 1 10 hours

K K K
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• Design Loop time: 1 – 10 hours
• Optimization loop: 20 - 200 seconds

300x Speedup

Outline

• Motivation
• Timing Metrics
• Slack Update Algorithm• Slack Update Algorithm
• Experimental Evaluation

• Conclusions
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Conclusions

• Slack update algorithm to speed up design loop 
in TLM-based workflows

• Use slack to track system-level timing changes

• Orders of magnitude reduction in design time at 
negligible loss in accuracy

• New optimizations loop enables scalability in 
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iterative system design flows


