
Slack Analysis in the System
D i LDesign Loop

Girish Venkataramani Carnegie Mellon University,
The MathWorks

Seth C Goldstein Carnegie Mellon UniversitySeth C. Goldstein Carnegie Mellon University

Typical System Design Flow

Spec.
Scalability Issues:

Mapping + Allocation

System Partitioning
Simulation takes minutes to hours
Synthesis takes many hours

Mapping + Allocation

System
Design

IR

Code Emission

g
Loop

Physical Synthesis

RTL (*.v, *.vhd)Simulation

Too slow!

2

y y

Proposed Design Flow

Spec.

Mapping + Allocation

System Partitioning

Update timing in IRMapping + Allocation

IRTraditional
System

Update timing in IR

New
Optimization

Loopreplace with

Code Emission
Design
Loop Optimize Design

Loop

Physical Synthesis

RTL (*.v, *.vhd)Simulation

3

y y

Timing Analysis

Key Contributions

Spec.

Mapping + Allocation

System Partitioning

Update timing in IRMapping + Allocation

IR

Update timing in IR

Traditional
System replace with

New
Optimization

Loop

Code Emission Optimize Design

1 Slack is a distributed representation of system timing

Design
Loop

Loop

Physical Synthesis

RTL (*.v, *.vhd)Simulation1. Slack is a distributed representation of system timing
2. Linear-time update algorithm based on slack
3. > 100x reduction in total design time:

• Optimization Loop runs in seconds/minutes while

4

y y

Timing Analysis

• System Design Loop runs in hours/days

Outline

• Motivation

• Timing Metricsg
– Cycle time
– Slack: An alternative view of cycle timey

• Slack Update AlgorithmSlack Update Algorithm
• Experimental Evaluation
• Conclusions

5

• Conclusions

The Intermediate Representation (IR)p ()

• Models a dynamic system

• Concurrent sub-systems
– PE, FSM, S/W, Memory

Sub-
System

Sub-
System

… …

• Communication between
sub-systems based on pre-
defined protocols

Network

defined protocols
– FIFOs, NoC, shared bus

Sub-
System

Sub-
System… …

Transaction Level Modeling (TLM) [Cai ISSS 03]

6

Transaction-Level Modeling (TLM), [Cai, ISSS 03]
Adopted by System-C, Bluespec, Balsa, Tangram

Marked Graphs

• Model dynamic system
i t tiinteractions

• Events and transitions
S1 S2

token

• Events and transitions
– Event: An edge acquires a

token
T iti N d S– Transition: Node consumes
inputs and generates
outputs

S3

• Encode the
communication protocols

7

p

Timing Analysis of IR

• Time Separation between Event (TSEs)
– TSE between consecutive firings of same event in steady state is

the mean cycle time

• Mean Cycle Time, CT

)(CT
i
i

N
CMax=

cycleon tokensofnumber is N
cycle,graph a oflatency isC :

i

 iwhere
iC

Max
∀

• Computing CT is about O(|E|3) complexity [Dasdan 04]

8

Computing CT is about O(|E|) complexity [Dasdan 04]

Slack as a Timing Metric

• Distributed representation of cycle time
– Different type of TSE– Different type of TSE
– Defined on each (input edge, node) pair
– How early this input arrives

Slack(S1, S3) = 3()
Slack(S2, S3) = 0
Slack(S3, S1) = 0
Slack(S3, S2) = 0

* 2 5S1 S2

locally
critical

• Zero-slack input is locally critical 8S3

critical

• Longest chain of zero-slack events yields the critical cycle or the
Global Critical Path (GCP)

Cycle time = Latency of the GCP

9

– Cycle time = Latency of the GCP
– Given slack values, computing cycle time has linear complexity

Slack is an Annotation on the IR
Sub-

System
Sub-

System
… …

Network

Sub- Sub-
System System… …

10

Helps in discovering hotspots and applying optimizations

Outline

• Motivation
• Timing Metrics

• Slack Update Algorithm

• Experimental Evaluation
• Conclusions

11

Optimizations Change the IR

Spec.

Mapping + Allocation

System Partitioning

Update timing in IRMapping + Allocation

IR
+

slack

Update timing in IR

New
Optimization

Loop

Code Emission

slack

Optimize Design

Loop

Physical Synthesis

RTL (*.v, *.vhd)Simulation

Causes changes in component delays,
in turn changing in slack values

12

y y in turn, changing in slack values

Need to update slack on each change

Problem Description

• Given a graph model and its current slack g p
values, compute new values of slack when
latency of a node changes by a given Δy g y g

2 5S1 S2

8S3 6, Δ = -2

13

Insight behind Update Algorithm

• Slack is also latency
difference of two branches

sfork

difference of two branches
of a re-convergent fork-join

P
P2

+Δ sc

• If delay of node, sc,
increases by Δ

e1 e2

P1

increases by Δ
– Update slack in surrounding

re-convergent fork-joins
– Propagate change globally

sjoin

Assume δ(P1) > δ(P2),
Di δ(P) δ(P)

Propagate change globally
Di = δ(P1) - δ(P2)
Slack(e1, sjoin) = 0
Slack(e2, sjoin) = Di

14

Update (let Δ ≤ Di):
Slack(e2, sjoin) = Di + Δ

Insight behind Update Algorithm

1. If there is a path from
h i t t

sfork+Δ
change point to every
input of sjoin, then no
change in slack +Δ scg

2. If not, then slack
h e echanges occur

sjoin

e1 e2

15

Easy for acyclic graphs, but what about scc graphs?

Insight for Cyclic Graphs

• Use token knowledge
– Count tokens from change point to every input
– If value is equal for all inputs, then no change in slack values

2 5S1 S2 2, Δ = -3

toks = 1
#

8S3

toks = 2

Ch i l k i t

16

Change in slack exists

Insight for Cyclic Graphs

• Use token knowledge
– Count tokens from change point to every input
– If value is equal for all inputs, then no change in slack values

toks = 0 # toks = 0

2 5S1 S2

8S3 6, Δ = -2

N h i l k

17

No change in slack

Algorithm Summary

• Initially, find # tokens between every pair of y y p
nodes in the graph
– Problem formulated as a flow lattice
– Invoked once, complexity is O(|M0| |V|)

• After inducing every change in graph
C t l k h t h d– Compute slack change at each node

– Propagate new change to neighboring outputs
O ll l it i O(|V|)

18

– Overall complexity is O(|V|)

Outline

• Motivation
• Timing Metrics
• Slack Update Algorithm• Slack Update Algorithm

• Experimental Evaluation

• Conclusions

19

Experimental Setup

• Slack Update loop incorporated into CASH compiler [ASPLOS 04,
DAC 07]DAC 07]
– Synthesizes asynchronous circuits from ANSI-C programs

A li d th diff t ti i ti• Applied three different optimizations
– SM: Slack Matching [ICCAD 06]
– OC: Operation Chaining [ICCAD 07]

ASU H t Pi li S th i– ASU: Heterogeneous Pipeline Synthesis [Async 08]

• Benchmarks: Fifteen frequently executed kernels from Mediabench
suite, [Lee 97]

• All results are post-synthesis mapped to ST Micro 180nm library

20

p y pp y

Absolute Accuracy

• After SM, compare computed values of p p
slack against actual values of slack for
adpcm_d_

80

90

100

• Close to 100 changes applied
(algo invoked for each

40

50

60

70

of
 T

ot
al

 E
ve

nt
s

(algo invoked for each
change)

• 1.2x performance speedup

0

10

20

30%
 o

• Update inaccuracy due to
unknown latency values
during circuit transformation

21

-100 -50 0 50 100

% Slack Difference = [(Actual - Estimate)*100 / Actual]

g

Design Loop Experiments

Spec.

Run the same N optimizations in
both loops and compare:
1. Overall Performance change
2 O ll d i i

Mapping + Allocation

System Partitioning

Update timing in IR

2. Overall design time

Mapping + Allocation

IRSystem
Design

Update timing in IR

Optimization
Loop

Code Emission

g
Loop

Optimize Design

Physical Synthesis

RTL (*.v, *.vhd)Simulation

22

y y

Timing Analysis

Design Loop Experiments

• Three optimization sequencesp q
1. SM-ASU: Slack matching followed by

Heterogenous latch insertion
2. ASU-SM
3. SM-ASU-OC

• Compare final circuit timing and loop• Compare final circuit timing and loop
traversal (design) times between the two
methodologies

23

methodologies

Design Loop Experiments

1.8
Design Loop

1.8
Design Loop

SM-ASU ASU-SM

0.8

1

1.2

1.4

1.6

-u
p

ov
er

 B
as

e

Design Loop
Optimization Loop

0.8

1

1.2

1.4

1.6

du
p

ov
er

 B
as

e

Design Loop
Optimization Loop

0

0.2

0.4

0.6

m_d m_e
21

_d
21

_e m_d m_d m_e m_e g_
d

g_
e

2_
d

2_
d

2_
e

p_
d

p_
e

Sp
ee

d-

0

0.2

0.4

0.6

cm
_d

cm
_e

72
1_

d
21

_e
sm

_d
sm

_d
sm

_e
sm

_e
eg

_d
eg

_e
g2

_d
g2

_d
g2

_e
gp

_d
gp

_e

Sp
ee

d

K1.a
dp

cm
_

K2.a
dp

cm
_

K3.g
72

1_
K4.g

72
1_

K5.g
sm

_
K6.g

sm
_

K7.g
sm

_
K8.g

sm
_

K9.j
pe

g_
K10

.jp
eg

_
K11

.m
pe

g2
_

K12
.m

pe
g2

_
K13

.m
pe

g2
_

K14
.pg

p_
K15

.pg
p_

K1.a
dp

cm
K2.a

dp
cm

K3.g
72

K4.g
72

K5.g
sm

K6.g
sm

K7.g
sm

K8.g
sm

K9.j
pe

g
K10

.jp
eg

K11
.m

pe
g

K12
.m

pe
g

K13
.m

pe
g

K14
.pg

p
K15

.pg
p

• About ~500 circuit changes, on average
• Design Loop time: 0.5 – 4 hours

24

• Optimization loop: 10 - 100 seconds

Design Loop Experiments: SM-ASU-OC

1 4

1.6

1.8
se

Design Loop
Optimization Loop

0.8

1

1.2

1.4

up
 o

ve
r B

as Optimization Loop

d

0

0.2

0.4

0.6

Sp
ee

d

0

K1.a
dp

cm
_d

K2.a
dp

cm
_e

K3.g
72

1_
d

K4.g
72

1_
e

K5.g
sm

_d
K6.g

sm
_d

K7.g
sm

_e
K8.g

sm
_e

K9.j
pe

g_
d

K10
.jp

eg
_e

K11
.m

pe
g2

_d

K12
.m

pe
g2

_d

K13
.m

pe
g2

_e
K14

.pg
p_

d
K15

.pg
p_

e

• About ~1000-3000 circuit changes, on average
• Design Loop time: 1 10 hours

K K K

25

• Design Loop time: 1 – 10 hours
• Optimization loop: 20 - 200 seconds

300x Speedup

Outline

• Motivation
• Timing Metrics
• Slack Update Algorithm• Slack Update Algorithm
• Experimental Evaluation

• Conclusions

26

Conclusions

• Slack update algorithm to speed up design loop
in TLM-based workflows

• Use slack to track system-level timing changes

• Orders of magnitude reduction in design time at
negligible loss in accuracy

• New optimizations loop enables scalability in

27

iterative system design flows

