
Journal of VLSI Signal Processing Systems 24, 129–146, 2000.
c© 2000 Kluwer Academic Publishers. Printed in The Netherlands.

Pipeline Reconfigurable FPGAs∗

HERMAN H. SCHMIT, SRIHARI CADAMBI AND MATTHEW MOE
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

SETH C. GOLDSTEIN
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract. While reconfigurable computing promises to deliver incomparable performance, it is still a marginal
technology due to the high cost of developing and upgrading applications. Hardware virtualization can be used to
significantly reduce both these costs. In this paper we describe the benefits of hardware virtualization, and show
how it can be achieved using the technique of pipeline reconfiguration. The result is PipeRench, an architecture
that supports robust compilation and provides forward compatibility. Our preliminary performance analysis on
PipeRench predicts that it will outperform commercial FPGAs and DSPs in both overall performance and in
performance normalized for silicon area over a broad range of problem sizes.

1. Introduction

Components in a signal processing system are typ-
ically implemented in one of two ways: (1) custom
hardware or (2) software running on a processor. The
advantage of implementation in hardware is that it can
exploit the correct amount of parallelism in order to
meet performance constraints while minimizing either
the power or per-unit cost of the system. The chief prob-
lem with hardware implementations of signal process-
ing components is the time and money consumed by
the many steps of the design process and the high non-
recoverable costs of fabrication. As a result of these
high costs, hardware solutions are only feasible in sys-
tems that are either cost-insensitive, where the high
development cost is tolerated, or systems that are pro-
duced in very high volume, where the development cost
is absorbed by the lower per-unit cost of a hardware
implementation.

Field-programmable Gate Arrays (FPGAs) have en-
abled the creation of hardware designs in standard,
high-volume parts, thereby amortizing the cost of mask
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sets and significantly reducing time-to-market for hard-
ware solutions. However, engineering costs and de-
sign time for FPGA-based solutions still remain signifi-
cantly higher than software-based solutions. Designers
must frequently iterate the design process in order to
meet system performance requirements while simul-
taneously minimizing the required size of the FPGA.
Each iteration of this process takes hours or days to
complete.

Another way to reduce the effective costs of hard-
ware design would be to frequently re-use hardware
components in multiple systems. However, hardware
designs are difficult to port to different process tech-
nologies. Furthermore, it is inefficient or impossible
to re-use a component in a system that requires signifi-
cantly more or less performance than the original com-
ponent, because the parallelism exploited by a compo-
nent is fixed by the original designer.

In this paper, we describe a technique, called
hardware virtualization, that solves the problem of
hardware re-use. We present techniques to virtualize
pipelined applications using existing FPGA architec-
tures. Based on the shortcomings of these techniques,
we present a new method of hardware reconfiguration,
calledpipeline reconfiguration, that enables efficient
hardware virtualization for pipelined applications.
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1.1. Hardware Virtualization

Hardware virtualization frees a designer to create a
hardware design that exploits a very large amount of
parallelism but also consumes a great deal of silicon
area. This large hardware design can be emulated on
a much smaller amount of physical hardware at a re-
duced level of performance. The emulation of the large
design (orvirtual hardware design) is accomplished by
time-multiplexing programmable hardware.

The closest analog to the ideal of virtual hardware is
virtual memory in processor systems. In virtual mem-
ory, a small physical memory is used to emulate a
large logical memory by moving infrequently accessed
memory into slower cheaper storage media. This has
numerous advantages for the process of software devel-
opment. First, neither programmers nor compilers need
know exactly how much physical memory is present in
the system, which speeds development time. Second,
different systems, with different amounts of physical
memory can all run the same programs, despite differ-
ent memory requirements. A small physical memory
will limit the performance of the system, but if this per-
formance is unacceptable, the user simply buys more
memory. Furthermore, since the price of memory is
ever decreasing, newer systems will have more mem-
ory and therefore the memory performance of legacy
software will improve until these programs fit entirely
into the physical memory in the system.

Similarly, an ideal virtualized FPGA would be capa-
ble of executing any hardware design, regardless of
the size of that design. The execution speed would
be proportional to the physical capacity of FPGA,
and inversely-proportional to the size of the hardware
design. Because the virtual hardware design is not con-
strained by the FPGA’s capacity, generation of a func-
tional design from an algorithmic specification would
be much easier than for a non-virtual FPGA and could
be guaranteed from any legal input specification. Op-
timizing the virtual hardware design would result in
faster execution, but would not be required to initially
implement or prototype the application. Thus, hard-
ware virtualization enables FPGA compilers to more
closely resemble software compilers, where unopti-
mized code generation is extremely fast, and where
more compilation time can be dedicated to performance
optimization when necessary. This accompanying
benefit to hardware virtualization is calledrobust
compilation.

A family of virtualized FPGAs could be constructed
that all share the ability to emulate the same virtual

hardware designs, but that differ in physical size. The
members of this family with larger capacity will ex-
hibit higher performance because they emulate more of
the virtual design at any one time. Future members of
this family, built in newer generations of silicon, could
emulate virtual hardware designs at higher levels of
performancewithout redesign, much like the way mi-
croprocessor families run binaries from previous gen-
erations without re-compilation. This benefit, which
we call forward-compatibility, increases the return on
investment in FPGA applications. In other words, the
expense of generating (or purchasing) virtual hardware
designs can be amortized for many systems with differ-
ent performance and cost requirements, over multiple
generations of silicon.

1.2. Pipeline Reconfiguration

This paper focusses on the virtualization of hardware
applications that can be formulated as a pipeline. A
pipeline is a systolic array [1] where all data flow goes
in one direction and there is no feedback. Figure 1 illus-
trates two stages of a FIR filter application transformed
in such a way to meet these requirements. Transforming
algorithms into pipelines is a well-understood prob-
lem. Some of the techniques for transforming algo-
rithms into pipelined implementations are presented
in [2–4]. Fortunately, a large percentage of computa-
tionally challenging applications can be implemented
as pipelines, including many in the domains of three-
dimensional rendering, signal and image processing,

Figure 1. A pipelined FIR filter. All wires propogate in a single
forward direction. One additional benefit to this design is that all
multiplications have one constant operand, allowing further hard-
ware optimization.
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Figure 2. Pipeline reconfiguration. An example of mapping a five stage pipeline onto a FPGA with the ability to hold two stages.

and cryptography. Furthermore, extremely fine-grained
pipelining is the most important technique used by re-
configurable systems to obtain high throughput [5]. If
reconfigurable systems become widely used, they will
be predominately applied to pipelineable applications.

Pipeline reconfigurationis a new way to use the re-
configurability of FPGAs to virtualize pipelined appli-
cations. In pipeline reconfiguration, the configuration
bits corresponding to each pipeline stage are brought
into the executing FPGA fabric, one stage every cycle.
When the FPGA fabric is fully populated by active
pipeline stages, older pipeline stages are replaced by
newer pipeline stages.

Figure 2 shows an example of pipeline reconfigura-
tion for a five stage pipeline running on an FPGA with a
capacity of two active pipeline stages. In this example,
there are two results produced every five cycles. The
FPGA “scrolls” through the pipelined application, and
each run through the application takes five cycles and
produces two results. Therefore the throughput of this
implementation is two-fifths of the throughput possi-
ble without virtualization. The input and output beha-
vior of this implementation is modified from the non-
virtualized implementation. Input and output from the
virtualized pipeline occurs in two-cycle bursts that re-
peat every five cycles. Ideally, virtualized FPGA should
accomodate this burstiness without requiring the in-
volvement of the pipeline designer.

In Section 2, we first present ways to virtualize
pipelines using traditional FPGA reconfiguration tech-
niques. We quantify the latency and throughput of these
techniques based on system parameters such as FPGA
capacity and reconfiguration time. Then we compare
these techniques to pipeline reconfiguration. We show
that reconfiguration time is the most important fac-
tor in the performance of all these systems. We also

show that pipeline reconfigurable devices avoid many
of the other problems with traditional reconfiguration,
including pipeline fill and empty penalties and memory
capacity problems.

In the remainder of the paper, we address a number
of architectural challenges for pipeline reconfiguration
FPGAs. Each section addresses one of the three signifi-
cant problems for these architectures. The first problem
is reconfiguration time. For maximum performance, a
pipeline reconfigurable FPGA should be able to config-
ure a computationally significant pipeline stage in one
cycle. Section 3 describes the PipeRench architecture,
which is designed to minimize the impact of reconfig-
uration time on performance. The second problem is
how to control the pipeline reconfiguration at run-time
in order to accurately virtualize hardware. Section 4
presents the PipeRench configuration controller, which
controls the movement of configuration data between
storage and active FPGA fabric. The third problem,
as illustrated in Fig. 2, is that the schedule of inputs
and outputs to the pipeline is dependent on the virtual-
ization and must be determined at run-time. Section 5
presents the PipeRench data controller, which performs
these functions. Section 6 presents the estimated per-
formance of PipeRench for a set of pipelined FIR filters
and compare to both commercial FPGAs and DSPs,
and Section 7 presents some comparisons of pipeline
reconfiguration to related work in FPGA and computer
architecture.

2. Pipeline Virtualization

In this section, we evaluate methods to virtualize
pipelined applications on standard FPGAs using con-
ventional reconfiguration, and we compare it to pipe-
line reconfiguration in terms of throughput and latency.
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2.1. Component-Level Reconfiguration

Popular commercial FPGAs such as the Xilinx 4000
family [6] and the Altera FLEX family [7] have ex-
clusive operational and configuration modes. There is
no mechanism to allow simultaneous operation and
configuration or even partial modification of a con-
figuration that is already loaded. The atomic unit of
reconfiguration is the whole chip, therefore the chip is
only capable ofcomponent-level reconfiguration. Con-
figuration data itself is fed into these FPGAs through
a small number of I/O pins. Configuration times can
therefore be thousands or hundreds of thousands of
times longer than the operating cycle time of a de-
sign. As we will show, this long configuration time
hurts throughput, latency and memory requirement for
pipelined application.Dynamic partial reconfiguration
is a variation on component-level reconfiguration that
allows the configuration memory to be written simul-
taneously with the operation of the chip. It was present
in the Xilinx 6200 family [8]. This mode needs to be
very carefully used, as it does not prevent the reconfig-
uration from interfering with the computation on the
device.

Another type of configuration mechanism is the
multiple-context configuration, as discussed in [9–11].
This mechanism is similar to that in a standard FPGA,
except that instead of having one configuration stored
in the FPGA,n complete configurations are loaded into
the FPGA. A global selection bus determines which one
of the n configuration should be used during the cur-
rent cycle. Logical reconfiguration of the entire FPGA
can be accomplished in a time comparable to the exe-
cution cycle time of the design, but the atomic unit of
reconfiguration remains the whole chip.

While multiple-context configuration solves config-
uration speed problem, it does have limitations. First,
the process of switching contexts moves a large amount
of configuration data in a short period of time. Context-
switching is therefore a power-intensive operation.
Furthermore, the amount of “virtual” hardware emu-
lated by a multiple-context FPGA is limited ton times
the physical hardware in that FPGA. Reconfiguration
beyondn contexts must take place on a low-speed,
narrow configuration bus. Finally, as we shall demon-
strate, component-level reconfiguration has significant
disadvantages for virtualization of pipeline designs.

2.1.1. The Application. The application we will ex-
amine is a very deeply pipelined application, such as a

Figure 3. Example pipeline application: Four stages implemented
on two FPGAs.S= 4 andN = 2.

high-order FIR filter implemented as shown in Fig. 1.
Assume that this application hasS identically-sized
pipeline stages. Further assume that there areD bytes
of data flowing between each stage of the filter every
cycle, and between the filter input and output. This last
assumption rarely holds in real pipelined applications.
In most pipelines, the intermediate data between any
two stages is much greater thanD. This assumption
greatly simplifies the following analysis, however.

To implement this application, we have FPGAs with
a fixed logic capacity. Assume that in order to stati-
cally implement the whole filter we would requireN of
these FPGAs, as illustrated in Fig. 3. If the clock cycle
time of the FPGA, as determined by the most complex
pipeline stage isT , then the throughput of the static,
N-FPGA implementation of this filter isD/T bytes
per second. To simplify the analysis, we will not con-
sider the time that it takes to configure this application
initially, or to swap between different applications.

2.1.2. Virtualization. We will use component-level
reconfiguration to implement this filter in one FPGA of
similar capacity. The theoretical maximum throughput
of the 1-FPGA implementation of this filter using Run-
Time Reconfiguration (RTR) isD/(N T) simply due to
the reduction in computing hardware. We will examine
the implementation of this filter using component-level
reconfiguration in terms of its performance character-
istics and memory requirements.
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Using component-level reconfiguration, theN dif-
ferent FPGA configurations from theN-FPGA design
sequentially configure a single FPGA. This level of re-
configuration has also been calledGlobal RTR[12].
The configuration controller loads one configuration,
and allows the FPGA to perform operations onX words
of data. It takesS/N cycles to get the first result from
this configuration, andX − 1 cycles to get the remain-
ing results. Therefore, the time required to complete
these computations, in seconds, is:

T(X − 1+ S/N) (1)

After this computation is complete, the system con-
troller reconfigures the FPGA with the next configura-
tion in the sequence as illustrated in Fig. 4. If it takes
C cycles to reconfigure the FPGA, then the through-
put of this implementation can be described using the
formula:

DX

N T(X − 1+ S/N + C)
(2)

= D

T
(
N + S−N

X + NC
X

) (3)

Throughput falls short of the ideal due to the pipeline
penalty and a reconfiguration penalty. The pipeline

Figure 4. Component-level reconfiguration: Virtualization of
pipelined application through reconfiguration of one FPGA with
RAM to store intermediate results.

Figure 5. Throughput versus configuration time: Component-level
configuration for various values ofX. S= 100 andN = 10. This
is a log-log plot.

penalty, which is expressed in the(S− N)/X term,
is the penalty suffered for having to repeatedly fill
and empty the pipeline between reconfigurations. The
reconfiguration penalty, which is expressed in the
(NC)/X term, is caused by the non-zero reconfigu-
ration time of the device. The relationship ofC, X and
throughput is shown in Fig. 5. In this graph,S= 100
andN = 10. The ideal performance of this implemen-
tation is D/(10T). The value on they-axis indicates
how actual throughput compares to this ideal. For the
moment, assumeX is small. (Note: whenX = 10 the
pipeline is just filled, and then emptied.) WhenC is
large, as in the case of standard FPGAs, the throughput
is unacceptably low. WhenC is small, as is the case
with the multiple-context FPGAs, the pipeline penalty
limits throughput.

IncreasingX will increase the throughput of the im-
plementation regardless ofC, but by increasingX the
latency of the implementation is also increased. The
latency for this implementation is:

N T

(
X + S

N
− 1+ C

)
(4)

The second problem with increasingX is that it is
necessary to have enough memory to store all the data
output from one block during reconfiguration so that it
can be used as the input to the next block of the pipeline.
The required amount of memory isDX.

In addition, assuming input data arrives as a rate not
greater than the throughput rate, any virtualized imple-
mentation will require a buffer to store inputs while the
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Table 1. Commercial FPGA configuration
times (clock frequency: 33 MHz).

Part Config. time C

XC4028EX [6] 8.35 ms 275,000

XC6216 [8] 92µs 3036

lower stages of the pipeline are being executed. This
buffer would also need to have a capacity ofDX bytes.

If X is very large, it will be difficult to meet these
memory requirements on the same chip as the FPGA.
If this is the case, the time required to access off-chip
memory may increaseT , degrading performance of the
whole system.

Table 1 shows typical values ofC for two avail-
able Xilinx components using the fastest configuration
mode available for that component. These results were
computed assuming a modest operating frequency of
33 MHz. Obviously, reconfiguration time is going to
play a critical role in determining throughput, latency
and memory requirements for applications which use
these components.

Multiple-context FPGAs have aC value of one cy-
cle or less. While this effectively eliminates the con-
figuration penalty, it does not reduce the effect of the
pipeline penalty. In addition, multiple-context FPGAs
only have a lowC if the number of contexts held in
the device is greater thanN for the particular applica-
tion. If a multiple-context FPGAs can have inactive
configurations modified while simultaneously execut-
ing another configuration, then it would be possible to
extend the virtualization. But this would requireX to
be large enough to hid the reconfiguration time of the
inactive configuration.

2.2. Pipeline Reconfiguration

Pipeline reconfiguration is a restricted form of local
RTR [12], in which the pipeline is separated intoS
components, each corresponding to one pipeline stage.
The FPGA can holdP of these pipeline stages, and the
reconfiguration happens in an incremental manner. In
order to normalize the capacity to the previous anal-
ysis, P = S/N. During each stage of the computa-
tion, we add one additional stage to the configuration,
and remove (or overwrite) a stage if necessary to keep
the amount of configuration within the capacity of the
FPGA. Figure 2 illustrates this procedure. Reconfigu-
ration in this manner can be visualized as the scrolling
of a window through the computation.

2.2.1. Virtualization. As with component-level re-
configuration, we will assume that the time it takes
to execute a pipeline stage isT in seconds, and the
number of FPGAs required to hold the whole applica-
tion is N. The number of execution cycles required to
reconfigure the entire FPGA isC. Therefore, the time
required to substitute a new pipeline stage into the con-
figuration is, ideally,T C/P. For one complete sweep
through the application,S stages must be configured,
requiringT CS/P = T C N seconds. Execution of the
entire pipeline will takeS cycles for the first element
of data, andP − 1 cycles to process the remaining
data in the pipeline. Therefore, the throughput of this
implementation is equal to:

DP

T(S+ P − 1+ C N)
(5)

= D

T
(
N + 1− 1

P + (N2C)/S
) (6)

The best-case latency of this implementation is:

T(S+ C N) (7)

Figure 6 shows the relationship of throughput to the
configuration cycles,C. For comparison, two curves
for component-level reconfiguration withX = 100 and
X = 10 are shown. Figure 7 shows the plots of latency
for the same three implementations. These graphs show
that whenC is small, the pipeline reconfigured im-
plementation exhibits both high throughput and low

Figure 6. Throughput versus configuration time: Pipeline recon-
figuration compared to component-level configuration.S= 100 and
N = 10.
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Figure 7. Latency versus configuration time: Pipeline reconfigu-
ration compared to component-level configuration.S = 100 and
N = 10.

latency. WhenC is large, the throughput exhibited
by the pipelined reconfigured design exhibits behav-
ior very similar to the component-level reconfigured
implementation withX = S/N.

These graphs again demonstrate the importance of
configuration cycles,C, in the throughput and latency
equations. AsC approaches zero, the throughput and
latency of the pipeline reconfigured FPGA approach
their respective theoretical optima. Component-level
reconfigured implementations can only trade through-
put for latency, and can therefore never optimize both
quantities simultaneously.

Another advantage of pipeline stage reconfiguration
is that all intermediate results remain stored in the ap-
propriate pipeline stage. There is no need for supple-
mental storage. The front-end storage to buffer arriv-
ing inputs must still be present, but it needs only store
DS/N bytes, as opposed toDX bytes.

The most important characteristic of incremental
pipeline reconfiguration is that the presence of more
hardware transparently results in higher throughput.

Pipeline reconfiguration requires the ability to mod-
ify only a portion of the FPGA at a time. Therefore it
is only possible using dynamically reconfigurable FP-
GAs, such as the Xilinx 6200 [8]. Using the Xilinx
6200 to virtualize pipelines was described in [13]. The
primary problem with using pipeline reconfiguration
on an on-line reconfigurable FPGA like the XC6200
series is that the relatively low bandwidth of the con-
figuration bus may make the effective value ofC quite
large. This limitation could be fixed by incorporating

an on-chip configuration cache and widening the con-
nection between the memory and the FPGA fabric.

For these reasons, we have designed an FPGA archi-
tecture specifically for pipeline reconfiguration, which
we call PipeRench. PipeRench is capable of configur-
ing a stage of the pipeline concurrently with the exe-
cution of the rest of the pipeline. Because of this con-
currency,C effectively equals zero (even though the
entire device still requiresT P to be configured), and
the performance approaches the theoretical maximum.
The architecture and operation of PipeRench will be
described in the following section.

3. PipeRench Architecture

In order to achieve high-performance and forward-
compatibility, a pipeline reconfigurable device must
have two architectural features. First, the architecture
must support the configuration of a computationally
significant pipeline stage every cycle, while concur-
rently executing all other pipeline stages in the FPGA,
i.e. C = 0. Second, the architecture must allow dif-
ferent pipeline stages to be placed in different abso-
lute locations in the physical device at different times.
Only relative placement constraints should need to be
observed, so that a pipeline stage can get its inputs
from the previous stage and send its outputs to the sub-
sequent stage. No existing FPGA has these features.
This section describes how these features are provided
in PipeRench.

In order to configure a pipeline stage every cycle,
a pipeline-reconfigurable architecture requires a very
high-throughput connection to the configuration mem-
ory that stores the virtual hardware design. Configu-
ration storage in PipeRench is on-chip and connected
to the FPGA fabric with a wide data bus, so that one
memory read will configure one pipeline stage in the
fabric. This wide configuration word is written into one
of many physical blocks in the FPGA fabric. We call
these blocksstripes, and they define the basic unit of
reconfiguration in the architecture. We use the word
stripe to describe both the physical structures to im-
plement the functionality of a pipeline stage (aphysi-
cal stripe), and the configuration word itself (avirtual
stripe), which may or may not be resident in a physi-
cal stripe. Since a virtual stripe can be written into any
physical stripe, all physical stripes must have identical
functionality and interconnect.

Designing the stripe to provide adequate function-
ality for a wide range of applications with a limited
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Figure 8. Generalized stripe functionality.

number of configuration bits is a critical and complex
task, the description of which is beyond the scope of
this paper. In general, the functionality within a stripe
can be described as a combinational function of three
inputs: the registers within that stripe, the registers
from the previous stripe, and a set of global intercon-
nects, as shown in Fig. 8. The combinational function
f ( ) is defined by the configuration bits in the virtual
stripe.

Note the feedback path from the register in a stripe
back into the combinational functionf ( ). If this path
is used by an application, the register bits that are fed
back contain state information that must be maintained
by the device. We call this informationstripe state.

PipeRench is currently envisioned as a coprocessor
in a general-purpose computer (see Fig. 9). It is a mem-
ory mapped device, and has access to the same memory
space as the primary processor. All the virtual stripes

Figure 9. Shifting and stationary configuration.

for all the applications that are to run on PipeRench
are stored in main memory. A PipeRench “executable”
consists of configuration words, which control the fab-
ric, and data controller parameters, which determine
the application’s memory read/write access pattern.
The processes of loading the configuration memory
and data controllers from off-chip, and configuring the
fabric from the configuration memory, are the respon-
sibilities of the configuration controller, described in
Section 4.

Figure 10 illustrates two possible layouts for physi-
cal stripes. In Fig. 10(a), the virtual stripes move ev-
ery cycle into a different physical stripe. This has two
advantages: the interconnect between adjacent virtual
stages is very short, and new virtual stripes are written
into only one physical stripe (on the bottom). The chief
disadvantage with this layout is that all the configura-
tion data must move every cycle. This is a tremendous
power sink, and it reduces performance because now
the clock cycle must include the time it takes for the
configuration data to move and settle.

An alternative layout is illustrated in Fig. 10(b),
which shows the physical stripes arranged in a ring,
allowing the configuration to remain stationary. There
are two disadvantages to this approach. First, it requires
configuration data to be loaded anywhere in the fabric.
Second, there is a longer worst-case interconnect be-
tween adjacent stripes (at the bottom and the top). But
because only one stripe needs to be reconfigured, it is
possible to configure that one stripe while simultane-
ously executing the application in the remaining stripes.
In Fig. 10(b), five stripes are computing, despite the

10
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Figure 10. Architecture overview. Sold lines are data paths, dashed
lines are address and control paths.

fact that there are six physical stripes in the fabric. We
believe that the disadvantages of this approach are out-
weighed by the power and performance advantages.

There are three types of interconnect necessary for
a stripe: intra-stripe, local inter-stripe and global inter-
stripe. Intra-stripe routing is used to interconnect the
elements of a stripe to create the functionality of the
pipeline stage.

Local inter-stripe interconnect receives inputs from
the previous stripe and sends outputs to the next stripe
in the pipeline. Since this is a pipelined application, and
each stripe contains a pipeline stage, there is no need
for non-registered interconnect between non-adjacent
stripes. It is essential that all local inter-stripe inter-
connects be registered, and that the configuration bits
from one stripe cannot change anything in the path be-
tween that stripe’s registers and its interconnection to
the following stripe. For example, in Fig. 10, the com-
putation in stage 2 at cyclet + 1 requires the result
of the computation in stage 1 at cyclet . But in cycle
t + 1 the configuration for stage 1 is being removed
from the fabric or overwritten. If a change to the con-
figuration effects the ability of stage 2 to see stage 1’s
last computation, the results can not be guaranteed.

Global inter-stripe interconnect is used to get
operands to any input stripe, get results from any out-
put stripe, and to save and restore the stripe state when
it is removed or inserted from the FPGA fabric. The
stripe state may also be initialized using the restore
functionality.

At the end of each global data bus is a data con-
troller, which handles processing of the inputs and out-
puts from the application. Because the sequence of data
writes and reads from the fabric depends upon the num-
ber of physical stripes in the FPGA and the number or
virtual stripes in the application, the data controller
must do run-time scheduling of memory accesses. In

order to provide the necessary memory bandwidth, the
data controllers may contain memory caches to take
advantage of data locality, or FIFOs to deal with the
“bursty” memory traffic that is caused by virtualizing
the application. All the data controllers access off-chip
memory through a shared memory bus control unit.
This unit arbitrates access to a single memory bus. The
memory bus control unit is also the path used to load
the configuration memory.

Two of the data controllers have additional function-
ality that allow them to deal with the problem of saving
and restoring a stripe state when it is removed and later
returned to the FPGA fabric. The physical stripes in
PipeRench are constructed to have a special path from
a global bus into and out of the registers on that stripe.
This path is enabled when the stripe contains state that
would be lost if that stripe was removed from the fab-
ric. The state information for each stripe is stored in an
on-chip state memory. This memory has one location
for each location in the configuration memory, and can
therefore hold the state for any application that can fit
into the configuration memory. In order to keep track
of which virtual stripe is placed in each physical stripe,
there is an Address Translation Table (ATT in Fig. 9)
with one entry per physical stripe.

4. Configuration Management

In this section we describe how the virtual stripes of
an application are mapped to the physical stripes of the
hardware fabric. Since pipelined reconfigurable archi-
tectures can map an application of any size to a given
physical fabric, the configuration controller must han-
dle the time-multiplexing of the application’s stripes
onto the physical fabric, the scheduling of the stripes,
and the management of the on-chip configuration mem-
ory. Additionally, the controller is the interface between
the host, the configuration memory, the fabric, and the
data controllers.

We assume the interface between the FPGA and the
CPU host resembles a typical slave co-processor, like
a floating-point unit. After a general description appli-
cable to all pipelined reconfigurable architectures, we
present the controller used by PipeRench. The interac-
tion between the configuration controller and the data
controller is discussed in Section 5.

4.1. Characteristics of a Configuration Controller

We break down the tasks of managing the configura-
tions into four sub-tasks: interfacing (between the host
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and the fabric), mapping (the configuration words to
the fabric), scheduling (time-multiplexing and manag-
ing virtualization), and managing the on-chip configu-
ration memory.

The controller manages the interface between the
CPU host and the fabric. At the very least the interface
must allow the host to initiate execution of a particu-
lar configuration, and allow the FPGA co-processor to
indicate that it has completed execution. If the con-
figuration information is stored in main memory, it is
possible to specify the application by giving the main-
memory address of the first configuration word of an
application, the number of iterations to be performed,
and the main-memory addresses for data input and out-
put. The co-processor could signal the completion of
the application through an interrupt or a status register
that is polled by the CPU.

The mapping task involves loading the virtual stripes
into the on-chip configuration memory and the fabric
itself. If the application fits in the fabric, the task is
greatly simplified. If, however, the application is larger
than the available hardware, stripes need to be swapped
out during execution. Therefore, given an applica-
tion, the controller must detect the case when virtual-
ization is required and time-multiplex the application
appropriately.

The controller schedules individual stripes of an ap-
plication to ensure that each virtual stripe is present
in the fabric long enough to process all the data: if a
virtual stripe needs to be swapped out prematurely, it
is reloaded later. Figure 11 shows the extent of time
that the first and last virtual stripe spend in the fabric
for the virtualized and the non-virtualized case. In the
virtualized case, i.e.,V > P whereV is the number of

Figure 11. Active cycles example: Variation of the active cycles with time for (a) the non-virtualized and (b) the virtualized case. (a) Shows
the case for 8 virtual stripes on 8 physical stripes while (b) shows the case for 8 virtual stripes on 5 physical stripes. The two curves represent
the first and the last virtual stripes (VS0 and VS7).

virtual stripes andP is the number of physical stripes,
the number of active cycles for each stripe has a plateau
of length (V − P+ 1) which occurs when the stripe is
swapped out of the physical fabric. Each time a virtual
stripe is loaded into the fabric it remains there for at
most P − 1 active cycles. The controller thus has to
swap stripes in and out at regular intervals. Points F0
and F1, and L0 and L1 in Fig. 11 indicate the initial
loading and completion points of the two stripes; the
stripes are swapped out at the points F2 and L2, and
swapped back in at F3 and L3 respectively.

Finally, the controller must use the on-chip configu-
ration memory efficiently, since going off-chip to fetch
a configuration word is time-consuming, and may lead
to pipeline stalls. If an application or multiple applica-
tions have common configuration words, these may be
shared; shared configuration words need appear only
once in the on-chip memory. Thus space utilization is
enhanced as are the chances of fitting an application in
the on-chip memory.

4.2. PipeRench’s Configuration Controller

Here we present our implementation of a configuration
controller for PipeRench. For the sake of simplicity,
we omit discussion of pipeline stalls and present a con-
troller that loads the entire application into the on-chip
memory before beginning execution.

The CPU initiates the execution of an application on
PipeRench by loading a set of control registers with
the starting address of the executable in main mem-
ory, and the number of iterations to perform using this
executable.
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Figure 12. Configuration word. The structure of a configuration
word consisting of the configuration data that goes to the fabric, the
next address field, and a set of flags. The flags comprise indicators
for the first and the last virtual stripes, and other fields described in
Section 5.

In PipeRench, an “executable” is composed of a se-
ries of configuration words each of which includes
three fields: fabric configuration bits, a next-address
field, and a set of flags used by the configuration and
data controllers (see Fig. 12). The flags relevant to
the configuration controller are the first- and the last-
virtual-stripe flags. The controller uses these to deter-
mine the iteration count and the number of stripes in the
application.

The general architecture of the controller is shown
in Fig. 13. When theIDLE line is asserted, the host can
start a new application by specifying a start address and
the number of iterations. The controller then deasserts
the IDLE line until the application has completed the
number of iterations specified.

4.2.1. Mapping the Configuration. Each virtual
stripe in an application includes a next-address field

Figure 13. Configuration controller architecture: The configuration controller, and its interface to the host, main memory, on-chip memory,
and the fabric.

which is used by the controller to find and then load
the next stripe in the application. When the stripe is
placed in the on-chip configuration memory, the next-
address field is translated to an address in the on-chip
memory. A record of this translation is maintained in
a fully-associative on-chip Stripe Address Translation
Table (SATT), shown in Fig. 13. Fortunately, the num-
ber of entries in the SATT is small compared to the size
of the application, therefore it will not be on the critical
path.

A counter is used to maintain the number of vir-
tual stripes in the application. If the number of virtual
stripes is larger than the number of physical stripes in
the fabric, the controller will time-multiplex the appli-
cation onto the fabric.

4.2.2. Configuring Physical Stripes. On every cycle
the controller enables a specific physical stripe to be re-
configured. PipeRench uses a counter modulo the num-
ber of physical stripes to sequentially generate physical
stripe addresses. This simple method automatically en-
sures that if the application is too big to fit in the fabric,
configured stripes are overwritten and the hardware is
virtualized over the entire physical fabric.

4.2.3. Tracking the Iterations. Once stripes are over-
written, they may need to be reloaded since all the re-
quested iterations may not have been performed (i.e.,
each stripe may not have processed all the data re-
quired). In order to do this and execute an application

13
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Figure 14. Virtualization I/O: Comparing input/output and state management with no virtualization and virtualization. (a) With enough
hardware (no virtualization) there is no need to save state and input/output timing remain unchanged, (b) with less than enough hardware
(virtualization) a stripe’s state must be saved and input/output timing changed.

for a certain number of iterations, we use two of the
flag bits: the first-virtual-stripe flag and the last-virtual-
stripe flag.

When the first virtual stripe is loaded into the fab-
ric, the controller records the cycle it was loaded. By
monitoring this record during loading and swapping
stripes, it can ascertain the number of cycles the first
virtual stripe has spent in the fabric (i.e., the number of
iterations it has executed). In addition to monitoring
the first stripe, the controller also monitors when the
last virtual stripe is swapped into the fabric.

Using the first and the last stripe, the iteration count
may be managed in the following manner: when the
first virtual stripe completes its required number of it-
erations, it does not need to be reloaded ever again.
Hence the loading of the application can now stop (and
a new application may be started) after loading the last
virtual stripe.

4.3. Summary

In this section, we analyzed and described the four main
sub-tasks of configuration management for pipelined
reconfigurable architectures: interfacing, mapping,
scheduling and memory utilization. In our implemen-
tation of the configuration controller for PipeRench, we
use a next-address field to access configuration words
from memory, use a counter (modulo the number of
physical stripes) to generate the physical stripe ad-
dresses, and identify the first and last stripes by flags
in order to keep track of iterations. This simple con-
figuration controller can map an application with any
number of virtual stripes onto a fabric with a given
physical size.

5. Data Management

Managing the flow of data for virtualized pipelines is
one of the main challenges in designing a pipelined

reconfigurable architecture. Virtualization can cause
disruptions in the flow of data, requiring the explicit
management of execution state. The design goal in
PipeRench’s to make these disruptions transparent to
the designer. This section presents our data controller
architecture and shows how it manages the virtualiza-
tion of a convolution kernel.

When there is no virtualization, there is no need to
store and restore state or change input/output timing.
Figure 14(a) shows the execution of a simple pipeline
with no virtualization. Though PEs may contain func-
tions of their own registered outputs, there is no need to
save state because all the configurations remain in the
fabric. Also, inputs and outputs are needed every cycle
since the stripes that need input and output remain in
the fabric.

However, when such pipelines are virtualized, the
stripe state may need to be remembered and the in-
put/output timing changed. Figure 14(b) shows the
execution of the same pipeline, which now requires
virtualization since there are only three physical stripes
for the four virtual stripes. When stripes are functions
of their own registered outputs, the state of that stripe
must be stored while its configuration is not in a physi-
cal stripe and restored when it is returned to the fabric.
Furthermore, input and output are only needed when
the stripes that consume or produce data are in the fab-
ric. In the example in Fig. 14, input (output) is only
needed when the first (last) stripe is in the fabric.

5.1. Data Controller Architecture

The data controller architecture consists of four sepa-
rate data controllers (see Fig. 9). Each controller man-
ages one global bus that is dedicated to either state
storing, state restoring, data input or data output per ap-
plication. When dedicated to storing or restoring state,
the data controller interfaces between the fabric and
the state memory. When a controller is dedicated to
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Figure 15. Store/Restore. Restoring (a) and storing (b) state between fabric, configuration memory, state memory and ATT.

data IO, the controller interfaces between the fabric and
the memory bus controller. To determine which task
each data controller performs, controllers contain con-
trol registers which describe functionality. The control
registers specify the beginning data address, stride, and
whether that bus is used for input, output, store, or
restore.

5.1.1. Managing Stripe State. When needed, a
stripe’s state is kept in the state memory (see Fig. 16),
which is addressed differently for stores and restores.
During a restore, which takes place in the configura-
tion cycle, the state memory address is the same ad-
dress as that used to access the configuration memory.
As Fig. 15(a) shows, when a stripe’s configuration is
written into the fabric, that stripe’s state and flags are
also written. In order to remember the address in the
state memory for that stripe’s state, the configuration
memory address is written into the Address Translation
Table (ATT). When storing state, the ATT supplies the
state memory address, as shown in Fig. 15(b).

5.1.2. Managing Data IO. When managing In-
put/Output, configured stripes communicate with the
input and output controllers through flags, and these
controllers communicate via address and control logic
with the memory bus controller. Each controller re-
ceives the flag bits that show the read and write data re-
quests for its corresponding bus (Read Flags and Write
Flags in Fig. 12). The flag bits are part of each stripe’s
control word and specify if that stripe reads or writes
to each of the four buses. The data controllers receive
these flag bits from the fabric and generate the nec-
essary address and control lines for the memory bus
controller (see Fig. 16). Therefore, when a stripe is
configured to produce data on a bus, the controller

Figure 16. Data controller architecture. Solid lines are data and
dashed lines are address or control.

generates the appropriate signals to write the data (like-
wise for a read).

The data controller is also responsible for generat-
ing the addresses for both the input and output data
streams. We currently can generate addresses that are
affine functions of the loop index. The starting address
is supplied by the host when the application starts and
the stride is specified as part of the application. When
the fabric performs a read or write, the next address is
in the sequence is generated by incrementing the cur-
rent address by the stride. We are examining ways of
generating addresses for a richer set of applications.

5.2. Example: Convolution Data Flow

To make the function of the data controllers more con-
crete, we now illustrate how the application presented
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Figure 17. Systolic convolution. (a) Each stage’s function contains a double pipelined X input, single pipelined Y output, and stationary weight
W, (b) example of the data flow for this implementation. The dashed lines indicate how Y is accumulated as time progresses. The dashed arcs
indicate state store and restore.

in Fig. 1 is virtualized on PipeRench. In the terminology
presented in Kung [1], this is a strictly systolic imple-
mentation with theX input stream doubly pipelined. In
[14], we also present a semi-systolic implementation
of this same application, and illustrate the significant
difficulties caused by an operand broad-cast over mul-
tiple stripes. For this reason, PipeRench current only
supports strictly systolic implementations.

Figure 17 shows a fully systolic implementation of
the application, which contains a single pipelined out-
put Y, a double pipelined input X, and stationary weight
W. In this example, we will assume that the function-
ality for one tap of this convolution can be supplied
by one stripe. The X’s enter the pipeline from the first
stage. Every cycle a new X with a higher index is in-
serted. The data controller for this bus addresses the
data memory from the beginning address supplied in
its control registers. The data is driven on the bus and
is read by the first stripe. When the first stripe asserts
the corresponding read flag, the data controller incre-
ments the memory address by the contents in the stride
register (in this case, 1) and readies the next piece of
data on the bus. A controller for the pipelined Y output
is similar, with the exception that it monitors the write
flags and writes the data into memory instead.

In this example, some of the data in a stripe needs its
state stored or restored. The double pipelined X con-
tains state that needs to be stored and restored; the
registered feedback is from the first register delay to
the second register delay in the same stripe. The single
pipelined Y value does not require storing or restoring
since the stripe’s functions do not contain registered
feedback.

5.3. Summary

Data management should be transparent to applications
no matter how many physical stripes are present and
virtual stripes are needed. Our data controller archi-
tecture handles this transparency with communication
between the stripes in the fabric and the data controllers.
Through several flags in the control word of each stripe,
the data controllers can tell what is needed by the fabric
and the status of execution.

6. Performance

In this section we compare the expected performance
of our architecture against commercial FPGAs with
similar processing technology and area, and against
commercial DSP processors on FIR filters of varying
sizes.

Based on our design of the PipeRench prototype in
0.5 micron silicon, we believe that in 50 mm2 of 0.35
micron silicon it is possible to have 28 stripes, each
with a 128-bit wide datapath. Expected cycle time for
this datapath is 100 MHz. An SRAM for configuration
memory will consume another 50 mm2 of area, and will
store 256 configuration words of 768 bits each. One
128-bit wide stripe is capable of holding one tap of a
8-bit FIR filter with 12-bit coefficients. The total area
for this chip would be 100 mm2.

As shown in Fig. 18 the virtualization enables an
FIR filter with less than 29 taps to run at the full clock
rate of 100 MHz. Larger filters demonstrate a graceful
degradation of performance out to around 256 taps, at
which point the on-chip configuration storage is full.
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Figure 18. Performance on 8-bit FIR filters. PipeRench, Xilinx
FPGA using parallel and serial arithmetic and Texas instruments
DSP.

For larger filters, smart cache management techniques
can be used to continue the degradation, albeit at a
steeper rate due to the need to fetch some configuration
data from off-chip.

Based on measurements of Xilinx FPGAs built in
0.35 micron technology [15], 100 mm2 of area is equiv-
alent to about 1750 CLBs. Given this amount of logic,
and using parallel distributed arithmetic, it is possible
to create filters that run at around 60 MHz and have up to
48 taps [16]. More than 48 taps will not fit. No widely
known techniques can increase the throughput of this
implementation. To implement larger filters, it is nec-
essary to transform the algorithm to use a more efficient
arithmetic. Using double-rate distributed arithmetic, it
is possible to construct filters with up to 260 taps given
the same amount of silicon [16]. Due to the serial na-
ture of these implementations however, the maximum
sampling rate of these filters is 14 MHz. There is a
larger space of filters that are unfulfilled by this solu-
tion. The discontinuities in this graph make it diffi-
cult to compute the cost/performance of the device. In
addition, the discontinuities represent a significant re-
design effort. The two types of arithmetic used in this
case require complete new run through the synthesis
and physical design tools.

The Texas Instruments TMS320C6201 [17] is a
commercial DSP which runs at 200 MHz and con-
tains two 16- by 16-bit integer multipliers. For filters
with less than four taps, the high clock speed of this
device yields the highest possible performance. This
performance decays rapidly with an increasing num-
ber of taps due to the presence of only two multipliers.
PipeRench exhibits a very similar curve to this DSP,
only the capacity of the device is significantly higher.

PipeRench can hold about 29 taps until the hardware
is time-multiplexed. Due to the word-oriented func-
tional units in PipeRench, the maximum clock rate
is significantly higher than the FPGA. And like the
DSP, the degradation in performance has no large dis-
continuities, and requires no re-design to adapt to less
hardware.

7. Related Work

PipeRench provides robust compilation by allowing an
application to transparently exceed the logical capac-
ity of the physical FPGA at runtime. The Virtual Wire
“softwire” compiler [18] provided a degree of robust-
ness by virtualizing the I/Os between FPGAs in a multi-
FPGA logic emulation system at compile time. The
challenge faced by most FPGA-based logic emulators
is that the input netlist is usually too large to fit into
one FPGA. The netlist must be partitioned across mul-
tiple devices and meet FPGA I/O constraints. When I/O
constraints are violated, the “softwire” compiler time-
multiplexes different logical I/Os on a single physical
I/O. The I/O constraint violation is fixed by reducing
performance. PipeRench is a single-chip FPGA com-
puting devices, not a logic emulator. Our objective is
to deal with large logical netlists, not by overflowing
into other devices and dealing with I/O constraints, but
by time-multiplexing the on-chip logic to emulate the
desired design at a degraded level of performance.

Multiple context FPGAs [9–11, 19], have been pro-
posed as a way to create logically larger devices through
rapid reconfiguration. These architectures do allow idle
logic to be stored outside of the active FPGA fabric, and
allow the active fabric to change very rapidly. They can
be used to virtualize hardware, but because they can-
not be incrementally reconfigured they suffer from the
pipeline fill and empty penalty. Furthermore, the task
of compilation for these architectures is more complex
than it is for a flat, single context FPGA, because the
compiler needs to place and route multiple, interdepen-
dent contexts simultaneously. PipeRench simplifies the
compilation process by allowing the compiler to create
a pipeline of unbounded length. The only real design
constraint is making the individual pipeline stages fit
into PipeRench stripes.

A form of pipeline reconfiguration for commercial
FPGAs, such as the XC6200, has been described [13].
The XC6200 cannot be reconfigured at the same rate
as the data flow, and it is therefore necessary to seg-
ment the pipeline. PipeRench has the configuration
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bandwidth necessary to support pipeline reconfigura-
tion, and includes mechanism for control of the con-
figuration stream and data stream with respect to the
virtualization.

Other devices are capable of partial, run-time re-
configuration, such as GARP [20], NAPA [21], and
Chimeara [22], and could potentially operate using
pipeline reconfiguration. Exploration of the interface
between FPGAs and CPUs has been investigated in
[20–24].

PipeRench also addresses many of the problems
faced by other computer architectures. The most-
insightful comparisons are to MMX, VLIW, and vector
machines.

The mismatch between application data size and na-
tive operating data size has been addressed by extend-
ing the ISAs of microprocessors to allow a wide data
path to be split into multiple parallel data paths, as in
Intel’s MMX [25]. Obtaining SIMD parallelism to uti-
lize the parallel data paths is non-trivial, and works
only for very regular computations where the cost of
data alignment does not overwhelm the gain in paral-
lelism. PipeRench has a rich interconnect to provide
for alignment and allows PEs to have different config-
urations so that parallelism need not be strictly SIMD.

VLIW architectures are designed to exploit dataflow
parallelism that can be determined at compile time [26].
VLIWs have extremely high instruction bandwidth de-
mands. A single PipeRench stripe is similar to a VLIW
processor using many small, simple functional units.
In PipeRench, however, a stripe remains configured
for a number of cycles, and the same computation is
performed on a larger data set, thereby amortizing the
instructions over more data.

The instruction bandwidth issue has been addressed
by vector machines such as the T0 [27] and IRAM [28].
In many ways, PipeRench is similar to vector machines
with an unbounded vector size and with VLIW func-
tional units. The problem with classical vector archi-
tectures is the vector register file is a physical or logical
bottleneck that limits scalability. Allocating additional
functional units in a vector processor requires addi-
tional ports on the vector register file. The physical
bottleneck of the register file can be ameliorated by
providing direct forwarding paths to allow chained op-
erations to bypass the register file, as in the Cray-1 [29].
PipeRench eliminates these constraints by eliminating
the vector register file. All connections in PipeRench
are local, and the chaining is explicit. Therefore, the
number of functional units can grow without increasing
the complexity of the issue and control hardware.

8. Conclusions

Pipeline-reconfigurable FPGAs provide the high-
performance associated with FPGAs for DSP appli-
cations. In addition, they provide the forward-
compatibility and robust compilation that is associated
with more traditional processors. We believe these ben-
efits enable the development of FPGAs that have the
performance advantages for DSP applications associ-
ated with current FPGAs, and the ease and economy of
development associated with microprocessors.

Managing the configuration and data flows is a
significant issue in the design of these devices.
PipeRench’s configuration controller performs run-
time mapping and scheduling of configuration trans-
fers, interfaces to the host processor, and manages
the configuration storage. The data controllers provide
mechanisms for storing and restoring of state, as well
as access to operand data for a variety of systolic and
semi-systolic pipeline implementations.
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