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Abstract. Cryptographic algorithms are more efficiently implemented
in custom hardware than in software running on general-purpose proces-
sors. However, systems which use hardware implementations have sig-
nificant drawbacks: they are unable to respond to flaws discovered in
the implemented algorithm or to changes in standards. In this paper we
show how reconfigurable computing offers high performance yet flexible
solutions for cryptographic algorithms. We focus on PipeRench, a recon-
figurable fabric that supports implementations which can yield better
than custom-hardware performance and yet maintains all the flexibility
of software based systems. PipeRench is a pipelined reconfigurable fabric
which virtualizes hardware, enabling large circuits to be run on limi-
ted physical hardware. We present implementations for Crypton, IDEA,
RC6, and Twofish on PipeRench and an extension of PipeRench, Pipe-
Rench+. We also describe how various proposed AES algorithms could
be implemented on PipeRench. PipeRench achieves speedups of between
2x and 12x over conventional processors.

1 Introduction

Most cryptographic algorithms function more efficiently when implemented in
hardware than in software. This is largely because customized hardware can
take advantage of bit-level and instruction-level parallelism that is not accessi-
ble to general-purpose processors. Hardware implementations, lacking flexibility,
can only offer a fixed number of algorithms to system designers. In this paper
we describe a reconfigurable fabric which delivers high performance hardware
implementations with the flexibility of general-purpose processors.

The efficiency of an implementation is directly related to the degree to which
it is customized to perform a given task. Hardware implementations are even
more efficient when they are customized for a specific instance of an algorithm.
For example, a hardware multiplier with one constant operand will generally
take much less area than a general-purpose two operand multiplier.
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Of course implementing circuits with such a high degree of specificity in VLSI
is generally infeasible because the cost of development and manufacturing must
be offset by the chip’s applicability. Furthermore, to be responsive, a system must
have some control over its embedded algorithms. For example, if a particular
algorithm is discovered to be insecure, the system is rendered useless unless
a different algorithm can be implemented. Reconfigurable hardware strikes a
balance between customization and performance on the one hand and flexibility
and cost on the other hand by permitting any algorithm to be highly customized.

Reconfigurable hardware is a general term that applies to any device which
can be configured, at run-time, to implement a function as a hardware circuit.
Reconfigurable devices occupy a middle ground between traditional computing
devices, e.g., microprocessors, and custom hardware. Microprocessors compute
a function over time by multiplexing a limited amount of hardware using in-
structions and registers. They are thus general-purpose and can compute many
different functions. At the other end of the spectrum, custom hardware is used to
implement a single function, fixed at chip fabrication time. A reconfigurable de-
vice, of which the most common is a Field Programmable Gate Array (FPGA),
has sufficient logic and routing resources that it can be configured, or program-
med, to compute a large set of functions in space. Later, it can be re-programmed
to perform a different set of functions. It shares attributes of microprocessors,
in that it can be programmed post-fabrication, and of custom hardware, in that
it can implement a circuit directly; avoiding the need to multiplex hardware.

The primary ways in which reconfigurable devices are tailored to an appli-
cation are by matching application parallelism with as many function units as
needed, by sizing function units to the word size of the application, by creating
customized instructions, by introducing pipelining, and, by eliminating control
overhead associated with the multiplexing of function units as in a microproces-
sor.

In the next section, we describe how reconfigurable computing devices can
achieve the efficiency of highly customized designs while maintaining both cost-
effectiveness and security. Section 3 focuses on how the components of typical
cryptographic algorithms map to reconfigurable devices. Section 4 describes a
pipelined reconfigurable device called PipeRench which overcomes many of the
problems of using commercial FPGAs to implement datapaths. In particular
PipeRench supports hardware virtualization which, like virtual memory, allows
designs that do not fit on the physical device to run. Section 5 describes our
implementations of several algorithms on PipeRench and our support of on-
the-fly customization even in embedded systems. Related work is covered in
Section 6. We conclude in Section 7.

2 Reconfigurable Computing

Functions for which a reconfigurable fabric can provide a significant benefit ex-
hibit one or more of the following features:
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1. The function operates on bit-widths that are different from the processor’s
basic word size.

2. The data dependencies in the function allow multiple function units to ope-
rate in parallel.

3. The function is composed of a series of basic operations that can be combined
into a single specialized operation.

4. The function can be pipelined.
5. Constant propagation can be performed, reducing the complexity of the

operations.
6. The input values are reused many times within the computation.

These functions take two forms. Stream-based functions process a large data
input stream and produce a large data output stream, while custom instructions
take a few inputs and produce a few outputs. Notice that cryptographic algo-
rithms possess many of the features described above. They can be implemented
as stream-based functions which run completely on a reconfigurable device, or,
when impractical to implement completely on the a reconfigurable device, pieces
of them can be implemented on the reconfigurable device as custom instructions.
After presenting a simple example of a custom instruction to illustrate how a
reconfigurable fabric can improve performance, we discuss the ways in which a
fabric can be integrated into a complete system.

2.1 Custom Instructions: The qx Permutation from TwoFish

In Twofish [27], in order to generate the key dependent S-boxes, multiple invo-
cations of the q function are required. This function combines XOR, rotation,
bit truncation, and table lookups. One way to accelerate the creation of the key
dependent S-boxes is to implement a custom instruction, the q-instruction, on
a reconfigurable fabric. This instruction takes an 8-bit operand and produces
an 8-bit result. The custom instruction exploits the ability of the reconfigurable
fabric to operate on small bit-width operands (4-bits), to execute many opera-
tions in parallel, and to combine a sequence of operations into a single operator
(through the use of lookup tables).

2.2 A System Architecture

Reconfigurable fabrics enhance performance mainly by providing the compu-
tational datapath with more flexibility. Their utility and applicability is thus
influenced by the manner in which they are integrated into the datapath. We
recognize three basic ways in which a fabric may be integrated into a system:
as an attached processor on the I/O or memory bus, as a co-processor, or as a
functional unit on the main CPU. They are most widely useful when integrated
into the processor as a reconfigurable function unit (RFU). The RFU has access
to both the register file and the primary cache. The main reason for this is that
the they may be used to implement custom instructions which can operate on
data in the processor registers. Furthermore, the bandwidth between the fabric
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and the processor (and the data in the processor’s cache) is highest when the
fabric can directly access the cache. As we will show in the rest of the paper, this
organization leads to a system which can significantly enhance the performance
of all cryptographic algorithms.

A fourth possible system organization is the system-on-a-chip approach used
in embedded computing systems. In such an organization the fabric is closely
coupled with a processor, but not so tightly coupled as to be on the processors
datapath.

3 Cipher Components

Most ciphers can be specified as dataflow graphs consisting of a few different
components. In this section we will enumerate the most common of these com-
ponents and discuss how they map onto reconfigurable hardware.

• Simple Arithmetic Operations
Simple operations such as addition and subtraction appear frequently in cryp-
tographic algorithms. These operations map easily to hardware, but due to
their simplicity they offer no real gain for reconfigurable systems.

• Narrow and Unusual Bit-widths
Operations involving narrow bit-widths appear often in stream ciphers, and
they are important in highly customized ciphers of any type. Standard micro-
processors are notoriously bad at performing narrow bit-width operations,
particularly if the values are not multiples of the natural word length of the ar-
chitecture. Customized hardware supports operations on values of any width,
avoiding the computation of unneeded values and the costly masking of un-
desired bits. Implementing a highly customized design with a constant key
allows all datapaths to be reduced to their minimum widths, eliminating the
need for paths wide enough to support all possible key combinations.

• Multiplication
Multiplication is a difficult task to perform in hardware, in that simple hard-
ware multipliers consume a large amount of hardware and compute their re-
sults very slowly. Because there are many different ways to improve their per-
formance, multipliers are a prime candidate for optimization and acceleration.
Here we consider three different types of multiplier.
• General-Purpose

General-purpose multipliers (where both operands may take any value) are
costly to implement in hardware. However, in many cryptographic algo-
rithms, the result of nxn multiplies is often only n bits wide. On a reconfigu-
rable device, the size and number of the adders can be reduced accordingly,
eliminating the need to compute bits which are later ignored.

• Multiplication by a Constant
Implementing highly customized cryptographic hardware, for example when
the key has been set to a constant value, can serve to change many (or
all) of the general-purpose multipliers in a design into constant multipliers
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(multipliers where one operand is a constant). Constant multipliers can
be made considerably smaller and faster in hardware than general-purpose
multipliers.
Suppose that one operand of a multiplier set to a constant. The multiplier
requires only as many partial products as there are 1’s in the constant
operand. On average, single-operand multipliers of this type are half the
size and twice as fast as their general-purpose counterparts.

• Multiplication Using a Redundant Coding Scheme
A great deal of space can be saved when performing constant multiplication
through the use of a redundant coding scheme. For example, it is straight-
forward to transform a constant into canonical signed digit, or CSD, form.
CSD vectors reduce the number of partial products needed for multiplica-
tion by permitting bits in the constant operand to take on negative values.
For example, the number 7 in binary is 0111, or 22 +21 +20. Multiplication
by this constant requires three partial products; one for each 1 in the binary
representation. The CSD representation of 7, however, is 100(−1), or 23−20.
Multiplication by this constant vector requires only two partial products.
As long as addition and subtraction take the same amount of time, no
hardware overhead is incurred in implementing this type of multiplier. On
average, a constant CSD multiplier will be about 75% smaller than a general-
purpose multiplier because the number of partial products in constant CSD
multipliers scales with the number of sequences of ones in the original con-
stant.

• Parallel Logical Operations
Hardware allows many logical operations to be performed in parallel. This
instruction level parallelism is one of the fundamental advantages of hardware
over software in computation. Reconfigurable devices can be programmed to
perform such complex logical operations in parallel, harnessing all the paralle-
lism available to a hardware implementation. Furthermore, since the number
and kind of function units needed at any point in the computation is confi-
gured for the application, the parallelism is never artificially constrained by a
lack of function units (as might happen in a VLIW architecture, for example).

• Sequences of Logical Operations
Most reconfigurable architectures, including standard commercial Xilinx
FPGAs the PipeRench architecture discussed later in this paper, implement
function units using lookup tables. Thus a sequence of operators can often be
combined into a single operator by setting the lookup-table appropriately.

• Table Lookup
Most block ciphers include a substitution box, or S-box. S-boxes are generally
not easily expressible as linear transformations and are therefore implemented
as table look-ups. Many reconfigurable architectures can implement tables of
this kind, while others may need external scratch memory to store the S-box
values.

• Rotation and Shifting
Lastly, two very common operations in cryptography are bitwise shifts and ro-
tations. Microprocessors, particularly if programmed in C, are very inefficient
at performing operations of this type.
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Fig. 1. Hardware virtualization in PipeRench overlaps computation with reconfigura-
tion and provides the illusion of unlimited hardware resources.

Hardware, on the other hand, can shift and rotate numbers easily. Variable
shifts and rotates can be accomplished with barrel shifters, and constant shifts
and rotates do not require any resources at all, as they can be achieved by
simply reordering the actual wires.
Reconfigurable hardware can accomplish all of the benefits associated with
hardware while providing even more opportunities for optimization. In hig-
hly customized designs such as fixed-key implementations, variable shifts and
rotations may become fixed, reducing running time and freeing resources.

4 PipeRench

PipeRench is a reconfigurable fabric being developed at CMU. It is an instance
of the class of pipelined reconfigurable fabrics [26]. From the point of view of
implementing cryptographic algorithms the three most important characteri-
stics of PipeRench are: it supports hardware virtualization, it is optimized to
create pipelined datapaths for word-based computations, and it has zero appa-
rent configuration time. Hardware virtualization allows PipeRench to efficiently
execute configurations larger than the size of the physical fabric, which relieves
the compiler or designer from the onerous task of fitting the configuration into
a fixed-size fabric. PipeRench achieves hardware virtualization by structuring
the fabric (and configurations) into pipeline stages, or stripes. The stripes of an
application are time multiplexed onto the physical stripes (see Figure 1). This
requires that every physical stripe be identical. It also restricts the computations
it can support to those in which the state in any pipeline stage is a function of
the current state of that stage and the current state of the previous stage in
the pipeline. In other words, the dataflow graph of the computation cannot have
long cycles.
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Fig. 2. The interconnection network bet-
ween two adjacent stripes. All switching
is done at the word level. All thick arrows
denote B-bit wide connections.

Fig. 3. The structure of a processing ele-
ment. There are N PEs in each stripe. De-
tails about the zero-detect logic, the fast
carry chain and other circuitry are left
out.

Each stripe in PipeRench is composed of N processing elements (PEs). In
turn, each PE is composed of B identically configured 3-LUTS, P B-bit pass
registers, and some control logic. The three inputs to the LUTS are divided into
two data inputs (A and B) and a control input similar to [8]. Each stripe has an
associated inter-stripe interconnect used to route values to the next stripe and
also to route values to other PEs in the same stripe. An additional interconnect,
the pass-register interconnect, allows the values of all the pass registers to be
transferred to the pass registers of the PE in the same column of the next stripe.

The structure of the interconnect is depicted in Figures 2 and 3. Both the
inter-stripe interconnect and the pass-register interconnect switch B-bit wide
buses, not individual bits. A limited set of bit permutations are supported in the
interconnect by barrel shifters, which can left shift any input coming from the
inter-stripe interconnect. Currently, the inter-stripe interconnect is implemented
as a full crossbar.

From the perspective of cryptographic algorithms, the current version of Pi-
peRench has one significant drawback: It cannot perform large table lookups.
Thus S-boxes with more than a few entries cannot be efficiently supported direc-
tly in the current version of PipeRench. One proposed extension to PipeRench,
PipeRench+, allows the individual stripes to make memory accesses. This would
allow PipeRench to efficiently support S-boxes and thus all the operations listed
in Section 3. Without the memory extension, algorithms with S-box operati-
ons would be best supported by decomposing the algorithm into pieces where
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the non-S-box portions are implemented as custom instructions and the S-box
lookups are performed in the processor core.

The performance numbers we use in this paper are for an implementation in a
0.25 micron process. After an analysis described in [12] we determined that each
stripe will have 16 8-bit PEs, yielding a 128-bit wide stripe. Each PE contains
8 pass registers. The final chip will use 100mm2 for 28 stripes and an on-chip
cache capable of holding more than 512 virtual stripes.1

Along with the development of the PipeRench fabric, a fast compilation
framework was built [6]. Except where noted, all performance numbers are on
simulations of a 28-stripe N = 16, B = 8, P = 8 instance of PipeRench running
configurations created automatically by the compiler. For PipeRench+, we con-
sider PipeRench to be augmented by a small scratchpad memory of 1K bytes. We
consider two versions, PipeRench+16, which allows up to 16 simultaneous reads,
and PipeRench+4, which supports up to 4 simultaneous reads. They increase
the total area by 5% to 20%.

5 Applications

In this section we describe how IDEA, Crypton, RC6, and Twofish can be imple-
mented on PipeRench, yielding high performance. We also describe how these
algorithms would be aided by PipeRench+. As an example of the flexibility of
reconfigurable systems we describe how key-specific instances of IDEA can be
easily created on the fly, without a compiler. We then evaluate reconfigurable
implementations for the proposed algorithms of AES.

5.1 IDEA

The IDEA block cipher [28] is comprised entirely of three fundamental operations
described in Section 3: addition modulo 216, 16-bit XOR, and 16x16 multipli-
cation modulo 216 + 1. The 128-bit key is used to generate 52 16-bit subkeys.
Throughout the algorithm there are no backwards paths for data. In addition,
one operand of every multiplication operation in the algorithm is a subkey, and
for a highly-customized implementation it may be treated as a constant.

This means that the algorithm maps exceptionally well onto PipeRench. The
forward-only datapath permits the entire application to be constructed as a
single, long virtual pipeline. PipeRench is sufficiently wide to receive one com-
plete 64-bit cleartext block and to return one 64-bit ciphertext block per cycle.

Multipliers are the best candidates for optimization in this algorithm. If
implemented as general-purpose two-operand shift-and-add multipliers, they re-
quire 16 partial products each. The modulo 216 +1 operation can be packed into
one stripe and computed using only three operations [18].

A simple key-specific implementation can be created if the compiler is given
the subkeys as constants. The compiler performs constant propagation reducing
1 First silicon for a prototype of PipeRench implemented in 0.35 micron technology is
expected in October 1999. It will have 16 stripes.
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Table 1. Comparison of IDEA implementations.

Processor Clock Speed Clocks Throughput
per Block (MBytes/sec)

PipeRench (template) 100 MHz 6.3 126.6
PipeRench (compiler) 100 MHz 12 66.3
Pentium-II using MMX [21] 450 MHz 358 10.0
Pentium [23] (scaled) 450 MHz 590 6.1
IDEACrypt Kernel [22] 100 MHz 3 90.0

the number of partial products to an average of 8 per multiplier. Further opti-
mization can be performed by transforming the shift-and-add multiplier into a
constant CSD multiplier.

In Table 1 we compare both the template- and compiler-generated IDEA to
optimized software implementations running on state-of-the-art processors, and
to custom VLSI designs. PipeRench outperforms the processors listed by over
10x.

Somewhat surprisingly, PipeRench outperforms the .25 micron IDEACrypt
Kernel from Ascom [22]. This is due to several factors: first, the PipeRench im-
plementation of IDEA does not include the time taken to generate keys. This is
because PipeRench targets streaming media applications, in which key genera-
tion comprises only a small preprocessing step. Secondly, because of the pipelined
nature of PipeRench, IDEA has effectively been pipelined into 177 stages. If a
custom silicon implementation were built with such a high degree of pipelining,
the circuit would allow a fast clock (at the cost of silicon area.) Lastly, there is
a 177-cycle latency through the pipeline. Nonetheless, it is noteworthy that the
raw throughput of PipeRench is 40% faster than full-custom silicon.

5.2 IDEA in Embedded Systems

One of the challenges of placing a PipeRench fabric running IDEA in an embed-
ded system is to reduce the time to generate a single-key configuration. While
the compiler for PipeRench can compile a complete, single-key optimized IDEA
application in less than one minute, this is too long for an embedded system.
One method for accomplishing this is the use of precompiled CSD multiplier
templates.

An 8-round IDEA pipeline (with the output transformation) contains 34
16x16 bit constant multipliers. The vast majority of the compilation time in
generating a single-key IDEA pipeline is spent propagating constants through
these multipliers, reducing them to the minimum required number of partial
products. This operation is very important since nearly all the efficiency gained
by fixing the key is a result of this reduction.

The task of compilation can be separated into two components: optimization
and generation of the multipliers, and generation of the rest of the pipeline. If an
interface is agreed upon by the multipliers and the rest of the pipeline, the two
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tasks can be performed independently. We have developed a system for creation
of IDEA with template-based multiplication.

The non-multiplier portions of the pipeline were hand-compiled beforehand
to give maximum performance. They interact with the template-generated mul-
tipliers according to a pre-defined interface, and they do not place any important
data in the registers which are used by the multiplier. The multipliers are thus
treated as black boxes, and the non-multiplier operations are wrapped tightly
around the multipliers to perform all the necessary computations in the mini-
mum possible number of stripes.

To generate the multipliers themselves, a system is required that rapidly re-
turns configuration bits for the stripes that perform the multiplication. Rather
than expending a tremendous amount of effort and silicon area on hardware
which actually computes these bitstreams, it is preferable to simply construct a
lookup table which converts constant multiplicands into the necessary configu-
ration bits.

Such an implementation would consist of nothing more than a ROM pre-
loaded with the appropriate values. To reduce the size of the ROM, each 16-bit
constant is broken into two 8-bit constants. The 8-bit constant is used as an
index into a table of stripe configurations which implement that portion of the
multiplier. The ROM would need approximately 256 120-bit entries. Although
there is some overhead when recombining the two portions of the constant,
using CSD representations we can still build the entire multiplier in two or three
stripes. (Three stripes are required only for certain “bad” CSD vectors, which
occur in only 1/16 of the entries. The multiplier interface is maintained whether
the multiplier needs two or three stripes.)

Because the design of the template-generated multipliers and the logic placed
between them only needs to be done once, great care can be taken to make
the design very efficient. A single round of IDEA generated by this system is
generally only 20 or 21 stripes long, resulting in a complete IDEA pipeline of
only 177 stripes. This is a tremendous improvement over the 338-stripe compiler-
generated pipeline. This improvement is primarily due to the compiler’s not using
registered feedback within a stripe.

5.3 Crypton

The Crypton [20] cipher can be implemented as a complete stream-function on
PipeRench, with reasonable speedup. There are, however, operations within the
Crypton cipher which are difficult to accomplish on the PipeRench architecture.

Most parts of the cipher map easily onto PipeRench. The byte transposition
τ can be implemented entirely in the interconnect of PipeRench and does not
require any computational resources at all. The bit permutations, πo or πe, can
each be completed in four stripes. The key addition, σk, takes only one stripe.

The nonlinear S-box substitution, γ, however, is not easy to implement on
PipeRench. Each of the three small 4x4 Px s-boxes can be implemented either
as logic or as a look-up table. In either case, because the PEs on PipeRench
operate only on 8-bit quantities, 7/8 of each PE is wasted. Each PE generates
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Table 2. Comparison of different PipeRench systems and the speedups they achieve
over the best versions in the cited papers. The “method” column indicates how the
code was created: ’C’ indicates it was automatically generated by the compiler. ’A’
indicates a hand-coded version in CVHASM [15].

Cipher System method Clocks/block Throughput Speedup
(Mbytes/sec)

RC6 [25] PipeRench A 28 58.8 4.7x
Crypton [20] PipeRench A 65 24.8 1.3x

PipeRench+4 A 50 32.5 1.8x
PipeRench+6 A 19 86.8 4.7x

Twofish [27] PipeRench+4 C 51 15.6 2.8x
PipeRench+16 C 15 54.3 9.7x
PipeRench+4 A 36 36.0 3.9x
PipeRench+16 A 9.7 164.7 14.6x

only a single bit, which is later combined by other PEs into a 4-bit quantity.
When implemented by hand, this process requires three stripes per Px.

A single round of Crypton uses 16 S-boxes, with three Px units in each S-
box. As a result, a single round of Crypton requires about 150 stripes, causing
the entire 12-round cipher to occupy 1800 virtual stripes. PipeRench may have
difficulty handling an application of that size due to limitations on the storage
space for virtual stripes. The application can be re-pipelined on the inside in
order to re-use the S-box in each round on all four 32-bit words. This cuts the
length of the virtual pipeline by a factor of four, but it incurs a considerable
amount of overhead in re-pipelining, and so reduces the overall throughput of
the application.2 Even with this large number of stripes, the application still
gives 24.8 MByte/sec of throughput (with tremendous latency), compared with
18.46 MByte/sec on a 450 MHz Pentium Pro (coded with in-line assembly).

When implemented on PipeRench+, Crypton is significantly smaller and
faster. Each of the S-boxes requires only a single stripe—the stripe that contains
the load. Thus, the entire round takes only 24 stripes yielding a total of 288
stripes. Due to the limit on memory accesses per cycle this implementation
yields 87 MByte/sec on PipeRench+16.

5.4 RC6

RC6 [25] is easy to implement as a stream function, but is only 5x faster than
a 200Mhz Pentium-Pro due to the general purpose 32-bit multiplies (2 in each
round). Unlike IDEA, neither operand of the multiplier is a constant. However,
because the multiplier result is only 32-bits, the size of the multiplier is reduced
by half. The variable rotates also require a significant amount of hardware: six
stripes to do both rotates in parallel.
2 Another solution is to chain multiple PipeRench chips together making a bigger
pipeline. This solution also doubles performance.
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5.5 Twofish

The Twofish [27] algorithm, like many others makes substantial use of S-boxes
which is unsuitable for PipeRench. However, as described in Section 2.1, pieces
of the algorithm can be mapped to custom instructions. For example, the q-
function can be mapped to ten stripes on PipeRench. The space-consuming part
of the function is again the four table lookups. In spite of this, using PipeRench
to compute the S-boxes reduces the time for key setup making “full keying” a
viable option even when very few blocks are encrypted with a single key.

However, on PipeRench+, the S-box lookups are easily handled. Each round
requires 16 loads (from the g0 and g1 functions) and some rotating, XORing, and
addition all of which are easy to accomplish on PipeRench+. Both the compiler
and hand-coded versions achieve a speedup of about 3x on PipeRench+4 over the
fastest assembly version running on a 200Mhz Pentium Pro/II. Interestingly, this
is in spite of the fact that the compiler version is twice as large. This is because
the compiler version spaces out the loads so there are very few stalls. The extra
memory bandwidth of PipeRench+16 allows the hand-coded version to get more
than 14x speedup.

5.6 Other AES Algorithms

We now discuss the AES algorithms which cannot be fully implemented on
PipeRench. However, certain operations in the algorithms can be implemented
as custom instructions, resulting in faster overall performance. In addition, most
could be implemented on PipeRench+.

Cast-256 [1], like many of the proposed AES algorithms is heavily based on
S-boxes which are not amenable to the current version of PipeRench. However,
for each of the three keyed-round operations there are key-specific left rotations
which can be optimized to constant rotations. Thus custom instructions can be
created based on the subkeys which reduce the time to compute the S-box input
to one cycle.

Performance of DFC [33] would improve by implementing the necessary mul-
tiprecision arithmetic as custom instructions.

The Hasting Pudding Cipher [29] gains significant performance as a series of
custom instructions. The basic operations are all easily performed on PipeRench,
but the entire cipher cannot be implemented as a stream function due to the
large tables needed to hold the key expansion.

Both the key schedule and encryption/decryption in LOKI97 [5] can be sped
up with a custom instruction which implements all but the S-box of the g-
function and the data routing.

Deal [17], E2 [31], FROG [11], MAGENTA [3] and MARS [7] appear to be
unsuitable for implementation on PipeRench due to the use of large table lookups
in both key formation and encryption/decryption.

When encrypting or decrypting using Rijndael [10] each round consists of 4
basic functions of which three can be implemented as custom instructions.
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SAFER+ [9], like HPC, DFC, Cast-256, Rijndael, and LOKI97, can benefit
from using custom instructions, although the entire cipher cannot be implemen-
ted on PipeRench due to the large M matrix.

Serpent [2] uses S-boxes for the entire process except for the initial and final
permutations which could be custom instructions.

6 Related Work

There is a growing body of work on using reconfigurable devices to implement
cryptographic algorithms. Reconfigurable implementations of DES [32,14] and
RSA [30] have all achieved significant speedups over general-purpose processors.
However, in none of these cases were key-specific hardware implementations
generated. The impact on the hardware size and throughput of key-specific im-
plementations of DES using Xilinx FPGAs is discussed in [19].

In [16] FPGA-based implementations of DES are described that make use
of many of the helpful attributes of reconfigurable devices which are used on
PipeRench, including loop unrolling (which PipeRench requires) and pipelining
(which PipeRench does implicitly). The acceleratation of modular multiplication
and exponentiation (as used in RSA) using arithmetic architectures which have
been optimized for use on FPGAs is described in [4].

More generally, PipeRench is one of several approaches towards making re-
configurable hardware more applicable to computation of the sort needed by
cryptographic applications. PRISC [24] is among the earliest work on integra-
ting a reconfigurable function unit with a processor. GARP [14], Chimaera [13],
and One-Chip [34] are more recent examples of such work. The main difference
between these systems and PipeRench is that PipeRench supports virtual hard-
ware, freeing the application designer from fixed hardware constraints.

7 Conclusions

The use of reconfigurable hardware in cryptographic systems has many advan-
tages. Reconfigurable implementations benefit from the hardware-based perfor-
mance of custom VLSI while maintaining the flexibility and adaptability of soft-
ware. Unlike fixed hardware, reconfigurable devices deliver highly customized,
efficient solutions that are adaptable and robust to changing system needs.

The PipeRench reconfigurable architecture is well suited to many crypto-
graphic tasks. Because it supports hardware virtualization, it can implement
designs which are larger than the amount of physical hardware available. This
is important, as many of the algorithms which can be mapped entirely to re-
configurable devices require tremendous amounts of physical hardware. Some
algorithms which cannot be mapped completely onto PipeRench can still be ac-
celerated by building custom instructions. PipeRench has two drawbacks; both
relating primarily to table lookups. For small tables, such as the P tables in
Crypton, the 8-bit PEs are very inefficient. For larger tables, such as S-boxes
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found in many of the algorithms, PipeRench does not have any facility for per-
forming memory accesses. We explore an extension to PipeRench, PipeRench+,
which overcomes this second drawback.

Finally, key-specific circuits for PipeRench can be generated in embedded
systems: with the use of a simple table lookup operation, the full performance of
PipeRench can be obtained without waiting for software-based compilation. In
the case of IDEA, we are able to exceed the performance of custom hardware.

Acknowledgements

This work was supported by DARPA contract DABT63-96-C-0083. We would
like to thank the PipeRench group for tools and ideas, especially Mihai Budiu
and Hari Cadambi for their help with the compiler.

References

1. C. Adams. The CAST-256 encryption algorithm.
www.entrust.com/resources/pdf/cast-256.pdf.

2. R. Anderson, E. Biham, and L. Knudsen.
SERPENT. www.cl.cam.ac.uk/˜rja14/serpent.html.

3. E. Biham, A. Biryukov, N. Ferguson, L. Knudsen, B. Schneier, and A. Shamir.
Cryptanalysis of MAGENTA. www.ii.uib.no/˜larsr/papers/magenta.pdf.

4. T. Blum and C. Paar. Montgomery modular exponentiation on reconfigurable
hardware. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic
(ARITH-14), Adelaide, Australia, April 1999.

5. L. Brown and J. Pieprzyk. Introducing the new LOKI97 Block Cipher.
www.adfa.oz.au/˜lpb/research/loki97/.

6. M. Budiu and S.C. Goldstein. Fast compilation for pipelined reconfigurable fa-
brics. In Proceedings of the 1999 ACM/SIGDA Seventh International Symposium
on Field Programmable Gate Arrays, Feb. 1999.

7. Burwick, Coppersmith, D’Avignon, Gennaro, Halevi, Jutla, Matyas Jr., O’Connor,
Peyravian, Safford, and Zunic. MARS - a candidate cipher for AES.
www.research.ibm.com/security/mars.html.

8. D. Cherepacha and D. Lewis. A datapath oriented architecture for FPGAs. In
Second Int’l ACM/SIGDA Workshop on Field Programmable Gate Arrays, 1994.

9. Cylink Corporation. SAFER+. www.cylink.com/SAFER.
10. J. Daemen and V. Rijmen. AES Proposal: Rijndael.

www.esat.kuleuven.ac.be/˜rijmen/rijndael/.
11. D. Georgoudis, D. Leroux, and B.S. Chaves. The “FROG” encryption algorithm.

www.tecapro.com/aesfrog.htm.
12. S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, and

R. Laufer. Piperench: A coprocessor for streaming multimedia acceleration. In
Proceedings of the 26th Annual International Symposium on Computer Architec-
ture, pages 28–39, May 1999.

13. S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chimaera reconfigurable
functional unit. In IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM ’97), pages 87–96, April 1997.



A High-Performance Flexible Architecture for Cryptography 245

14. J.R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. In IEEE Symposium on FPGAs for Custom Computing Machines,
pages 24–33, April 1997.

15. Kevin Jaget. Cvhasm: An assembler for pipelined reconfigurable architectures.
Master’s thesis, Carnegie Mellon University, 1998.

16. J.-P. Kaps and C. Paar. Fast DES implementation for FPGAs and its application
to a universal key-search machine. In Selected Areas in Cryptography ’98, volume
1556 of Lecture Notes in Computer Science, Kingston, Ontario, Canada, August
1998. Springer-Verlag.

17. L. Knudsen. DEAL: A 128-bit block cipher. Technical Report 151, Department of
Informatics,University of Bergen, Norway, Feb 1998.

18. X. Lai and J.L. Massey. A proposal for a new block encryption standard. In
Advances in Cryptology Eurocrypt ’90, pages 389–404, 1991.

19. J. Leonard and W. H. Mangione-Smith. A case study of partially evaluated hard-
ware circuits: Key-specific DES. In Field-programmable Logic and Applications:
7th International Workshop (FPL’97), London, UK, September 1997.

20. C. H. Lim. “CRYPTON”. crypt.future.co.kr/˜chlim/crypton.html.
21. H. Lipmaa. IDEA: A cipher for multimedia architectures? In Selected Areas in

Cryptography ’98, volume 1556 of Lecture Notes in Computer Science, pages 248–
263, Kingston, Ontario, Canada, August 1998. Springer-Verlag.

22. Ascom Systec Ltd. IDEACrypt Kernel. www.ascom.ch/infosec/idea/kernel.html.
23. B. Preneel, V. Rijmen, and A. Bosselaers. Recent developments in the design

of conventional cryptographic algorithms. In Computer Security and Industrial
Cryptography, volume 1528 of Lecture Notes in Computer Science, pages 106–131.
Springer-Verlag, 1998.

24. R. Razdan and M.D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. In MICRO-27, pages 172–180, November 1994.

25. R. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. The RC6 Block Cipher.
theory.lcs.mit.edu/˜rivest/rc6.ps.

26. Herman Schmit. Incremental reconfiguration for pipelined applications. In J. Ar-
nold and K. L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, pages 47–55, Napa, CA, April 1997.

27. Schneier, Kelsey, Whiting, Wagner, Hall, and Ferguson. Twofish: A 128-bit block
cipher. www.counterpane.com/twofish.html.

28. Bruce Schneier. Applied cryptography: Protocols, algorithms, and source code in C,
chapter 13, pages 319–325. John Wiley and Sons, Inc., 1996.

29. R. Schroppel. The Hasty Pudding Cipher. www.cs.arizona.edu/˜rcs/hpc.
30. M. Shand and J. Vuillemin. Fast implementations of RSA cryptography. In 11th

IEEE Symposium on COMPUTER ARITHMETIC, 1993.
31. Nippon Telegraph and Telephone Corporation. The 128-bit block cipher E2.

info.isl.ntt.co.jp/e2/.
32. K. W. Tse, T. I. Yuk, and S. S. Chan. Implementation of the data encryption

standard algorithm with FPGAs. In W. Moore and W. Luk, editors,More FPGAs:
Proceedings of the 1993 International workshop on field-programmable logic and
applications, pages 412–419, Oxford, England, September 1993.

33. S. Vaudenay. DFC. www.dmi.ens.fr/˜vaudenay/dfc.html.
34. R. Wittig and P. Chow. OneChip: An FPGA processor with reconfigurable logic.

In IEEE Symposium on FPGAs for Custom Computing Machines, 1996.


	Introduction
	Reconfigurable Computing
	Custom Instructions: The $q_x$ Permutation from TwoFish
	A System Architecture

	Cipher Components
	PipeRench
	Applications
	IDEA
	IDEA in Embedded Systems
	Crypton
	RC6
	Twofish
	Other AES Algorithms

	Related Work
	Conclusions

