
Tartan: Evaluating Spatial Computation for Whole Program
Execution

Mahim Mishra,† Timothy J. Callahan,† Tiberiu Chelcea,† Girish Venkataramani,† Mihai Budiu‡

and Seth C. Goldstein†
†Carnegie Mellon University ‡ Microsoft Research

Pittsburgh, PA Mountain View, CA
{mahim,tcal,tibi,girish,seth}@cs.cmu.edu mbudiu@microsoft.com

Abstract
Spatial Computing (SC) has been shown to be an energy-efficient
model for implementing program kernels. In this paper we explore
the feasibility of using SC for more than small kernels. To this end,
we evaluate the performance and energy efficiency of entire appli-
cations on Tartan, a general-purpose architecture which integrates
a reconfigurable fabric (RF) with a superscalar core. Our compiler
automatically partitions and compiles an application into an in-
struction stream for the core and a configuration for the RF. We
use a detailed simulator to capture both timing and energy numbers
for all parts of the system.

Our results indicate that a hierarchical RF architecture, designed
around a scalable interconnect, is instrumental in harnessing the
benefits of spatial computation. The interconnect uses static con-
figuration and routing at the lower levels and a packet-switched,
dynamically-routed network at the top level. Tartan is most energy-
efficient when almost all of the application is mapped to the RF, in-
dicating the need for the RF to support most general-purpose pro-
gramming constructs. Our initial investigation reveals that such a
system can provide, on average, an order of magnitude improve-
ment in energy-delay compared to an aggressive superscalar core
on single-threaded workloads.

Categories and Subject DescriptorsC.1.3 [Processor Architec-
tures]: Data-flow architectures, Hybrid systems; B.6.3 [Design
Aids]: Automatic synthesis, Simulation; B.8.1 [Performance and
Reliability]: Reliability, Testing and Fault-Tolerance; D.3.4 [Pro-
cessors]: Compilers

General Terms Design, Performance

Keywords spatial computation, dataflow machine, reconfigurable
hardware, asynchronous circuits, low power, defect tolerance.

1. Introduction
Market demand and technology push, in the guise of thermal dis-
sipation, energy-density, complexity constraints and wire-delay,
are changing the equation that has, until recently, made complex
out-of-order superscalar designs the workhorse of computing. No
longer can architects rely on increasing the clock speed and com-
plexity of the pipeline as the major means of improving perfor-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00.

mance. In fact, demand for low power devices may mean that per-
formance may no longer be the crucial metric of success. This
changing landscape has prompted many to explore alternative ar-
chitectures that harness coarse-grained parallelism; for example,
commercial multi-core chips capitalize on parallelism by replicat-
ing a number of simple cores, thereby boosting scalability. While
these chips are focused on server workloads which are rich in
threads, it is not yet clear how single-threaded applications can
benefit from such architectures. The research community has re-
sponded with tile-based architectures [30, 37, 38] that harness
coarse-grained parallelism on an array of light-weight processors.
In this paper, we explore an alternative array-based architecture that
uses spatial computation (SC) to improve energy efficiency as mea-
sured by the energy-delay product.

Spatial computation (SC) is a model of computation optimized
for wires: it lays out the computation in space rather than in time.
In earlier work [8], we presented one instantiation of SC: a compi-
lation framework that can synthesize ANSI-C programs into gate-
level asynchronous circuit descriptions, which are then laid out as
ASICs using commercial tools. The previous evaluation was re-
stricted to selected media processing kernels, on which we demon-
strated that the synthesized ASIC was better than an aggressive
4-wide superscalar by up to three orders of magnitude in energy
efficiency, while delivering comparable performance. In Garp [9],
speedups of up to 10x are achieved when mapping small kernels
compiled from C to a reconfigurable fabric. These results raise the
question: can the SC model be used to form the basis of a scalable
general-purpose processing system for whole program execution?

To answer this question we explore a hybrid architecture, Tar-
tan, which integrates a large reconfigurable fabric (RF) with a sim-
ple processor core. Tartan is designed to be:
• General Purpose: The system must be able to execute a wide va-

riety of programs written in standard high-level languages, e.g.,
ANSI-C. Applications are compiled into an instruction stream
and an RF configuration. The instruction stream is executed on
Tartan’s processor core, which is more efficient for control in-
tensive tasks such as the OS. The configuration describes an SC
circuit and is loaded onto the RF, which is more efficient for com-
putation intensive tasks.

• Energy Efficient: Tartan uses its RF to reduce energy consumption—
an RF configuration describes an application-specific dataflow
machine, thereby saving on the power consumed by instruction
fetch and decode in (processor) grid architectures. Further, the
RF is implemented as a fully distributed asynchronous circuit
which has been shown to be energy efficient [8].

• Fabrication Friendly: Future technologies will place stringent de-
mands on manufacturing. Tartan’s RF reduces these demands
by tolerating manufacturing defects and both intra- and inter-
die parametric variation. Tartan implements an extreme version

of SC on the RF—computation structures are never shared, and
each program operation is implemented on a dedicated functional
unit. This results in circuits which use only local communication,
require neither broadcast nor global control, and are self-timed.
The distributed nature of the SC circuits combined with the asyn-
chronous RF enables placement and routing around defects [17].
While this strategy affects local timing around the defective area,
the absence of a global clock ensures that timing closure is not
an issue. Furthermore, many styles of self-timed circuits are nat-
urally tolerant of parametric variation [14]. Finally, the regular
layout of the RF eliminates many of the issues that arise in deep-
submicron lithography and fabrication.
Tartan’s many advantages arise directly from the extreme form

of SC that it implements. However, this comes at a cost: as more
of the program is placed on the RF, the distance (and thus latency)
between two functions on the RF and between a function on the RF
and shared memory increases. The heart of this paper (Section 5) is
an exploration of the tradeoffs involved in resolving this fundamen-
tal tension in SC when implementing large programs on an RF. In
particular, we examine the cost of communicating across the fab-
ric, the cost of maintaining memory coherence, the effect of vary-
ing page sizes, and the impact of defect tolerance. These trade-offs
are evaluated in terms of area usage, execution time, power, and
most importantly, energy-delay. We use a timing and energy accu-
rate simulator (described in Section 4) of both the CPU core and
the RF to carry out our experiments. Our simulator allows us to
not only determine the overall performance of a design, but to also
quantify the time and energy spent in various circuit components.

Sections 2 and 3 describe the Tartan architecture and compi-
lation methodology. Section 6 covers related work. In Section 7
we conclude. Our results show that a hybrid architecture such as
Tartan is capable of harnessing—for whole programs—the energy
and power benefits shown for kernels implemented as ASICs [8].
Tartan is up to an order of magnitude more energy efficient than an
aggressive superscalar core. We found, however, that to harness this
energy efficiency, it is important to execute as much of the program
on the RF as possible. To achieve this, it is essential for the RF to
directly implement most common programming constructs (such
as procedure calls) and to act as a peer of the CPU core, invoking
services from it. This also allows Tartan to use a simple processor
core instead of an aggressive, power-hungry superscalar core. Fi-
nally, our results indicate that supporting large programs with good
performance requires distributing memory on the fabric.

2. System Architecture
Tartan is a hybrid architecture consisting of a RISC CPU core
and a hierarchical, medium-grained, clockless reconfigurable fab-
ric (RF). Figure 1a shows a high-level view of the system. The
user application is partitioned into two parts, one executing on
the CPU and the other on the RF. The CPU and RF interact as
peers in this system [7]: each part invokes services from the other
through automatically-generated stubs, much like Remote Proce-
dure Calls [26]. Both compute engines share the same memory
space; this can be accessed through a shared L1 data cache (shown
in Figure 1a and evaluated in this paper), or through separate,
hardware-coherent L1 caches. Our design currently has only a sin-
gle thread of control, which may be active on the CPU or RF. How-
ever, in principle, there could be multiple threads both on the CPU
and RF, with both parts of the design active simultaneously.

We first describe the CPU and required ISA extensions for
communicating with the RF, followed by a description of the RF.

2.1 CPU Core

The CPU runs the operating system, bootstraps user applications,
and executes control-intensive parts of the application that do not

L1
I−cache

L2 cache

Main Memory

Memory Bus

Front−end

Synthesis,
circuit generation

Layout

Partitioning
(function boundaries)

Optimizer

C compiler

Shared memory

CPU Fabric (RF)
Reconfigurable

L1
D−cache

RF

Dataflow IR

RF configuration

C Program

Assembly

CPU
core

Config

data

Linker

Unified executable

Figure 1. (a) Tartan Architecture (b) Compiler Flow

INITRFU k: initialize RF routinek.
IPRFUI R1,R2,R3: send three integer register values to the RF.
IPRFUF F1,F2,F3: send three fp register values to the RF.
STRFU k: start the execution of RF routine with IDk.
OPRFUI R1,R2: read into integer registers up to two values from the RF.
OPRFUF F1,F2: read into fp registers up to two values from the RF.
CONTRFU R1: block the core until the RF raises an interrupt; on

wakeup, copy one value from the RF bus registerR1.

Table 1. New instructions in the CPU core to interact with the RF

map efficiently to the RF. The CPU can also be used to run library
routines and legacy applications which, in the absence of source
code, cannot be recompiled to run on the RF. In principle, the
CPU core can be anything which fits the application requirements
and the transistor and power budget. If a significant portion of the
application is expected to run on the CPU, it can be a superscalar,
out-of-order core. However, if the major portion of execution time
is expected to be spent on the RF, then a narrow-issue in-order core
is appropriate. In this paper, we evaluate both a wide-issue out-of-
order core as well as a narrow in-order core.

2.2 CPU-RF Interface

The CPU and RF are connected by a wide bus to transfer data
and control information. The bus is as wide as the number of read
ports into the CPU’s register file; we model a 96-bit bus for 3 read
ports. There are also a small number of control lines for instruction
identification and interrupt signaling.

We augment the core ISA with instructions from [7], as shown
in Table 1. TheINITRFU and STRFU instructions put the RF
function identifier on the data bus and set the appropriate control
lines. If the core does not have any useful computations to perform
after invoking the RF, it can execute theCONTRFUinstruction. This
blocks the core until an interrupt is received from the RF indicating
that it has finished computation or wants to call something on the
core. If the RF computation is expected to be of long duration, the
core can shut down (by clock-gating or stopping its clock entirely)
to save power. It may also be possible to implement many sleep
modes on the core, each of which will save progressively more
power and will take longer to wake up from on an RF interrupt. An
IPRFU instruction transfers up to 3 data values from the register
file to the data bus; anOPRFUinstruction transfers up to 2 values
from the bus to the register file.

Page

Cluster

I

E

X

T

A
R
B.

STRIPE

Dynamic Arbitration

Tree

Page

NoC Router
Interface

Network−on−Chip (NoC)

NoC RouterCPU
Interface

R−LSQ
Interface

Island−style FPGA

Interconnect

PAGE

CLUSTER

FABRIC

Figure 2. The hierarchical RF architecture

We use mixed-timing FIFOs (based on [11]) to interface be-
tween the synchronous CPU and clockless RF. When sending data
from the CPU to the RF, the RF can read data from the FIFOs when-
ever available, without synchronization overheads. When sending
data from the RF to CPU, the FIFOs synchronize the asynchronous
packets to the CPU’s clock, with an added latency of one cycle.

2.3 RF architecture

The Tartan RF, as shown in Figure 2, is hierarchical. At the lowest
level (bottom-left image), a small number of stackedstripesof pro-
cessing elements constitute an RFpage. A small array of pages are
grouped into acluster (right image). Finally, clusters are stitched
together into a fabric by the Network-on-Chip (NoC). Each level
has a different interconnect architecture specialized to the amount
and pattern of communication expected at that level. Each element
of the computation and interconnect architecture is designed using
self-synchronized, clockless circuits. We next describe each level
of the design hierarchy.
RF Page.An RF page resembles the Piperench architecture [15]. It
consists of a vertical stack of 16 stripes, and each stripe consists of a
set of medium-grained (ALU-based as opposed to LUT-based) pro-
cessing elements (PEs). We follow [15] in using 16 PEs per stripe
with a default PE width of 8 bitops, adding up to 128 bitops per
stripe. Tartan makes extensive use of predicated execution (as de-
scribed in Section 3); to support this, we also add some single-bit
PEs to the stripes. ALU operations of wider bitwidths can be per-
formed by connecting multiple PEs together. Some operations, e.g.,
integer multiply, may require multiple stripes, and the architecture
naturally supports pipelined multiplication. It is not necessary for
all the stripes to be homogeneous; we envisage a mix of stripes
where some have PEs of wider granularities or specialized imple-
mentations of operations. We are in the process of identifying a mix
that would be a good fit for a wide range of applications.

Data always enters at the top of the page, and flows down
the page through stripes of computation. There are no feedback
connections within a page and the stripe-to-stripe interconnect is
a partial crossbar. The page is designed to be a natural fit for the
predicated hyperblocks generated by our compiler (see Section 3)
and each hyperblock is mapped to one or more pages.

There are two exceptions to the straight-line computation rule—
memory accesses and procedure call operations. These split-phase
operations use the 16-way arbitration element in each page to
access the cluster’s dynamically arbitrated tree, which provides
access to the cluster’s Network-on-Chip (NoC) router.

Cluster level. A group of 4x4 pages form a cluster. The cluster ar-
chitecture is conceptually similar to an island-style FPGA but with
much coarser granularity, i.e., the logic block is a page instead of
a look-up table (LUT). The cluster interconnect consists of chan-
nels communicating through switch-boxes, and its configuration is
statically determined by the compiler. The only exception is the
dynamic arbitration tree (based on [43]), which provides pipelined
access to the communication port between the cluster and the NoC.
Chip level. At the chip level, the clusters are connected together by
a dynamically routed, packet-switched NoC. This is ideally suited
to the sporadic, statically unpredictable communication (procedure
calls, returns, and memory accesses) that occurs at the global level.
The network has one router (based on [2]) per cluster.

The interconnect is designed to exploit the difference in locality
of communication between the stripes, pages, and clusters. The
first two levels are statically configured, provide high bandwidth
and low latency and consume less energy, which is a good match
for the predictable, dense and frequent communication within a
hyperblock or procedure. At the global level, communication is
more sporadic and unpredictable, making a dynamically routed
NoC a more resource-effective choice.

3. Compilation
Our compiler flow is shown in Figure 1b. A program is partitioned
for execution on the core and RF. After partitioning, each part is
compiled by a separate toolflow and linked together at the end.
CPU-RF partitioning. Our compiler splits applications into CPU
and RF components at procedure boundaries. A procedure on the
RF can call other procedures on the RF as well as procedures on
the core. Calling across the CPU-RF interface is achieved by auto-
matically generated software stubs on the CPU-side and by stub-
like hardware on the RF that directs operand values and procedure
identifiers to the CPU through the CPU-RF FIFOs.

As mentioned in Section 2.1, we expect OS routines, control-
intensive application code and legacy applications and libraries to
execute on the CPU. It is also possible to implement two copies
of a piece of code, one each on the CPU and RF, and invoke one
or the other based on caller location and predicted execution time.
This can be especially beneficial for a number of C library routines
like memcpy. In our current partitioning, we implement as much of
the application as we can on the RF to optimize for energy-delay
(since the RF always consumes much less energy).
Translating C functions to circuits. The translation of a C func-
tion to a spatial RF mapping occurs in three steps—(1) compiling
C to a predicated, dataflow intermediate representation (IR) called
Pegasus [5, 6]; (2) synthesizing the IR to a logic netlist; and (3)
placing and routing the netlist on the RF. Pegasus is based on Pred-
icated Static Single Assignment (PSSA) [12, 10] and is extended
to handle memory dependences in a unified manner. A function is
represented by a directed graph in which nodes are operations and
edges indicate value flow, including the special case oftokenedges
that are inserted to enforce the dynamic execution ordering of two
nodes [1], e.g., between a store and a load.

The basic unit of execution is the hyperblock [24]. Control flow
within each hyperblock is converted to data flow using predicates—
boolean data values that encode which control path would have
been taken in the original control flow graph. All safe operations
from all paths are performed unconditionally; at merge points, le-
nient multiplexors controlled by predicates are inserted to select
the correct values to use in subsequent computation (these muxes
correspond roughly to SSAφ–nodes). Only operations with side
effects such as stores and calls require a predicate input to condi-
tionally suppress their execution. Predicates also steer the final val-
ues produced by a hyperblock to the inputs of the correct succes-

��
��
��

��
��
��

����������
����������
����������

����������
����������
����������

(a)

ack

rdy

DataP Q

INIT RTZ

Data

ack

rdy

data validity
Ack in

Rdyin

Datain

Ackout

Dataout

Rdyout

(b)

HS
cntrl

trigger

FU

FU
circuit

ST
O

R
A

G
E

E
L

E
M

E
N

T

Delay

Figure 3. (a) Pipeline communication is achieved through the
asynchronous, localized bundled data handshake protocol; (b) the
architecture of a clockless data-triggered pipeline stage

sor hyperblock—i.e., they implement a distributed, dataflow ver-
sion of a conditional branch. Each final value is sent as soon as
it and its guiding predicate are known, so that computation in the
successive hyperblock(s) can begin while computation in the cur-
rent hyperblock is still finishing. In the case of a loop, this allows
self-organizing software pipelining.

The compiler instantiates each IR node as a clockless data-
triggered pipeline stage with a function unit (FU), an output reg-
ister and a handshake controller (HS Cntrl) as in Figure 3. The
FU starts its computation as soon as all its inputs are available and
latches the result as soon as its output register is empty (i.e., the
previous output has been consumed). Each IR data edge translates
to a channel between the corresponding units. Each channel con-
sists of a data bus plus control signals for asynchronous 4-phase
bundled-data handshaking [36]; an IR token edge becomes a bun-
dle with just the control signals. This approach localizes all control
constructs and eliminates the global clock and energy wasted on its
distribution and also alleviates timing closure problems [42].
Memory. The IR hasLOAD andSTOREnodes for accessing mem-
ory. The corresponding node implementations in an RF page con-
nect to a 16-way arbitration element for access to the cluster-wide
dynamically-arbitrated tree interconnect, which in turn connects to
the NoC and thence to the memory subsystem (see Section 2.3).
Each memory access node has a predicate input. ALOAD may ex-
ecute speculatively, where a request is sent to memory before the
predicate’s value is known; if the predicate turns out to be false, any
exception theLOAD may have caused is ignored.

The compiler adds token edges to explicitly synchronize opera-
tions which share an ordering dependency. For example, if aLOAD
occurs after aSTOREin program order, and if alias analysis cannot
disambiguate these accesses as being independent of each other,
then a token edge connects theSTOREto theLOAD. Tokens encode
true-, output- and anti-dependences, and are “may” dependences.
Procedures. Tartan and its toolflow directly support actual pro-
cedure calls (not just compile-time inlining). The caller sends to
the callee the arguments as well as (i) a pointer to the continuation
point, (ii) the current stack pointer, and (iii) a memory token, which
enforces ordering between memory accesses in the caller before the
call point and accesses in the callee. The callee can be located on
either the RF or the CPU; this flexibility is important since a typical
procedure may call a library function, which in our current imple-
mentation is performed on the CPU. Potentially recursive calls save
all local values to the stack before the call and restore them after.

For function pointers on the RF, a simple lookup mechanism
resolves the pointer either to a location on the RF or to a procedure
in the CPU-resident code; with our pointer encoding and resolution
we are able to automatically handle function pointers on the CPU
and RF that may point at procedures implemented on either side.
Mapping circuits to the RF. If Tartan is to be used for general-
purpose computing, the circuits generated by the compiler need to
be mapped to the RF in time comparable to software compilation

rather than hardware design. This is possible because the fabric
architecture has the following properties:
• The logic resources have a relatively coarse granularity (e.g., 8-

bit adders instead of LUTs), reducing the number of placeables.
• The hardware resources closely match the high-level structure of

the circuit: a feed-forward hyperblock naturally maps to one or
more pages, and one or more clusters can accommodate a proce-
dure. This allows for high-level information about the circuits to
be preserved and utilized.

• The RF includes handshake and arbitration elements to allow
easy implementation of asynchronous circuits, so that the timing
closure problem is eliminated.

4. Evaluation Methodology
Our simulator infrastructure,SpatialSim, integrates a CPU simula-
tor with an RF simulator. For our evaluation, we used benchmarks
from the Mediabench [23], SPECINT 1995 [34] (go, m88ksim,
compress, li , ijpeg, perl) and SPECINT 2000 [35] (vpr, mcf, twolf)
suites. Unless otherwise noted, we mapped the whole program onto
the RF, leaving only the C library and a small number of other func-
tions (e.g., those that calledlongjmp, since we have not yet imple-
mented a means of unwinding the RF stack and rolling back execu-
tion state) on the CPU. We simulated every benchmark to comple-
tion, without employing fast-forwarding or functional simulation at
any point. Where multiple input sets were available, we chose the
smallest input. These choices were made for the following reasons:
1. Our compilation and simulation frameworks are still under ac-

tive development, and some of the omitted benchmarks stretch
the capabilities of our simulation framework. For the bench-
marks that we do simulate, partitioning and compilation were
performed completely automatically by our toolflow.

2. The RF simulator performs a very detailed event-based simula-
tion at a granularity similar to RTL simulation, and is over 20x
slower than cycle-accurate CPU simulators on the same code.
For the larger benchmarks, simulation time was prohibitively
large (> 48 hours) even for the smallest input sets.

4.1 CPU simulation

The CPU simulator is an extension of the cycle-accurate MASE
simulator [22] that supports implementations of the RF instructions
as described in Section 2.2. TheCONTRFUinstruction has a latency
of 5 cycles; all other RF instructions have single-cycle latencies.
The latency of CPU-RF communication is based on timing models
derived from [11].

To model energy consumption on the CPU, we ported the
Wattch energy models [3] to SpatialSim. We use Wattch’scc3
clocking scheme, i.e., all active units consume full power while all
non-active units consume 10% of full power, which corresponds
to a state-of-the-art, aggressively clock-gated processor. When the
CPU is blocked on aCONTRFUinstruction, we assume that it con-
sumes negligible power. The 5 cycleCONTRFUlatency is spent
in powering-up the processor. This is conservative compared to
modern processors which support low-power inactive modes with
single-cycle wakeup [19].

For the Tartan processor, we model two different cores (see
Table 2). The latency and power estimates we use for the RF
simulation are based on an implementation of the RF circuits in
a 180nm process; CPU1 is chosen to be an aggressive superscalar
processor from the same technology generation.1 CPU2 has lower
performance and consumes less power, and is better suited for

1 Higher frequencies can be achieved with the 180nm process; however,
since our circuit implementations are also far from optimal (in particular
due to a lack of asynchronous gates in the standard cell library), we believe
our choice is fair.

CPU1 CPU2

Clock 667 MHz 667 MHz
Issue Width 4 2
Issue Order Out-of-order In-order
Fetch Q 16 8
ROB Size 16 8
LSQ Size 8 8
ALUs 4 Int, 4 FP 2 Int, 1 FP
Branch Penalty 6 cycles 6 cycles
L2 miss latency 18 cycles 18 cycles
Mem Bus 8 B 8 B
L1 D-cache 8K, 4way, 32B, 1 cyc 8K, 4way, 32B, 1 cyc
L1 I-cache 8K, direct, 32B, 1 cyc 4K, direct, 32B, 1 cyc
L2 cache 256K, 4way, 64B, 6 cyc 256K, 4way, 64B, 6 cyc

Table 2. CPU core parameters

Latency
Energy

 0.60

 0.80

 1.00

 1.20

ad
pc

m
_d

ad
pc

m
_e

g7
21

_d

g7
21

_e

gs
m

_d

gs
m

_e

jp
eg

_e

m
pe

g2
_d

m
pe

g2
_e

pg
p_

d

pg
p_

e

G
eo

M
ea

n

Latency and energy calibration

Figure 4. Accuracy of the timing and energy estimation models.
Each bar represents the ratio of the value measured in SpatialSim
to ASIC estimation for program kernels used in [8] (note that the
Y-axis starts at 0.6).

an application where the RF is expected to do most of the work.
When comparing Tartan against a superscalar core, we use CPU1
as the baseline, since it has better performance and energy-delay
(but worse energy) than CPU2.

It should be noted that our power numbers exclude the power
consumed in the L1 and L2 caches and TLBs (recall that in our
current evaluation the RF shares the L1 and L2 caches with the
CPU). We also do not model the power consumed in I/O buses,
processor pins etc. This study therefore demonstrates the energy-
efficiency benefits obtainable for the execution core. For domains
such as embedded systems which have very limited memory and
I/O subsystems, these results are a very good indication of the
energy-efficiency benefits that can result for the entire system.

4.2 RF simulation

SpatialSimuses an event-driven simulation to accurately simulate
the asynchronous circuits generated by the compiler. The latency
and energy estimations for the RF units were derived from im-
plementations of the circuits in a [180nm/2V] technology (based
on [42]). The latency and energy consumption of a computation
node depend on the bitwidth, number of inputs, number and value
of constant-inputs, and output fanout. We extracted latency and en-
ergy models for each type of computation node and for each of
these parameters using industrial CAD tools; during simulation,
these models are used to estimate the global power and latency of
a given application.

Communication latencies modeled inSpatialSimare deter-
mined as follows:
• Intra-page communication is accounted for by incorporating the

average capacitative load extracted from layout into stripe latency
computation.

• Inter-page communication within a cluster depends on the num-
ber of hops. We model a per-hop latency of 80ps, which is equiva-
lent to one tri-state buffer driving twice the average load extracted
from circuit layout.

• NoC communication also depends on the number of hops. Based
on estimates from [2], we model a per-hop latency of 1ns.

• We model contention in the arbitration trees in the page clusters
using models from [41].
We have implemented a greedy placement algorithm that uses

an application’s call and memory access profiles to determine the
connection weights between different hyperblocks and between
hyperblocks and memory ports. Each hyperblock is then assigned
to one or more pages on the RF, keeping hyperblocks with high
connection weights close to each other, and hyperblocks with a
large number of memory accesses close to memory.
Simulation accuracy. To measure the accuracy of our delay and
energy models, we synthesized a number of kernels from the Me-
diaBench suite (the same kernels as used in [8]) down to Verilog,
and performed layout using industrial CAD tools. We compared the
latency and energy obtained from post-layout simulations with the
energy and latency reported by our simulator. Figure 4 shows that
our latency estimates are within 10% from the Verilog numbers,
our energy estimates are within 15%, while the geometric means
are 1% and 2.5% off, respectively. We use the GM as a measure for
the error (and not, for example, an average of the absolute errors)
because our method underestimates the latencies and energies for
some kernels while it overestimates some others, and these errors
can be expected to cancel out for a large program.
Simulation limitations. The results reported in this paper can be
considered a limit study, because of the following simplifications
and approximations in our simulation:

• We assume that the RF is large enough to accommodate the entire
program without requiring any reconfiguration and virtualization
during the course of the execution (we address a more limited RF
in Section 5.6).

• We do not include the time and energy of reconfiguration in this
study.

• We do not perform any routing currently, but assume that enough
routing resources are available to allow us to always take the
shortest path (based on hopcount) through the static interconnect.

• The latency and energy estimates used for compute units are de-
rived from an ASIC implementation. A reconfigurable implemen-
tation could be slower because of muxes at the output of each PE,
and because of extra loads on wires. In [21], FPGAs are mea-
sured to be 2-4x slower than ASICs on a range of applications.
However, the inaccuracy in our simulations is likely to be much
smaller, because a) most of the slowdown and extra energy con-
sumption in an FPGA is attributable to routing rather than logic
(as shown in [32]), and the latency and energy of the interconnect
in our simulations are modeled closely after a reconfigurable im-
plementation; and b) we use a coarse-grained PE instead of the
single-bit LUTs used in [21], which have a much smaller slow-
down (e.g., [21] indicates that the slowdown on an FPGA is 2x
or less when the application can use coarse-grained on-chip re-
sources such as DSPs in addition to single-bit LUTs). To bound
the performance and energy-delay degradation, we also report on
experiments with slower compute nodes (see Section 5.4).

• We model contention in the memory access trees, but not in the
chip-level NoC. A newer version of SpatialSim that more accu-
rately models the NoC shows that congestion has less than 5%
effect on performance. This is expected, as most of the contention
in the RF is due to concurrent memory accesses which are cor-
rectly accounted for in the memory trees, leaving little or no con-
tention in the NoC.

CPU/Other

Wait for mem

Network

Memory tree

Inter−Op

Control ops

Computation

 0

 50

 100

 150

 200

 250

ad
p
cm

_
e

ad
p
cm

_
d

g
7
2
1
_
e

g
7
2
1
_
d

co
m

p
re

ss

ep
ic

_
d li

m
cf

g
sm

_
d

g
sm

_
e

p
eg

w
it

_
e

p
eg

w
it

_
d

ep
ic

_
e

m
p
eg

2
_
d

m
p
eg

2
_
e

m
8
8
k
si

m

v
p
r

p
er

l

p
g
p
_
d

p
g
p
_
e

g
o

ij
p
eg

jp
eg

_
d

jp
eg

_
e

tw
o
lf

m
es

a

A
M

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

(%
)

Figure 5. Breakdown of execution time on the RF, normalized to the program running alone on CPU1. The bars on the left are for OPT,
while the bars on the right are for NARROW. AM is the Arithmetic Mean.

• We simulate per-procedure memory access trees instead of per-
cluster trees, often resulting in deeper arbitration structures. Our
initial investigation indicates that this assumption increases the
delay in our current simulations by up to 35% on some bench-
marks.

• We model each page as a set of bit-operations that can be con-
figured into arbitrary operations using an appropriate number of
bitops (a 1-bit predicate operation takes 1 bit-op, a 32-bit add
takes 32 etc.).

• Our energy measurements do not account for static power. While
this is not a concern at the 180nm node, it will be at 90nm and
beyond, especially with the large RF size we propose. Many
circuit, logic–design and device techniques have been proposed
to reduce leakage power (see [20] for a survey); we are exploring
the applicability of these to Tartan.

5. Evaluation Results
As is obvious, Tartan uses significantly more hardware resources
than the CPU alone. In this evaluation, we show how well Tar-
tan’s architecture and compilation framework use these extra re-
sources to improve energy–delay, not just performance. We use the
CPU1from Table 2 as our baseline. The results we present mea-
sure latency and energy-delay for a number of benchmarks run-
ning onCPU1alone and on Tartan configured with a CPU match-
ing CPU1’s configuration (henceforth referred to asOPT), and one
configured with CPU2 (henceforth calledNARROW). We also quan-
tify the effects of changing various parameters associated with our
design.

5.1 Performance

We configured SpatialSim to perform the most realistic simulation
of Tartan, generating placements for the circuits, accounting for
communication costs at all levels of the hierarchy, and using a re-
alistic cache hierarchy. We ran these experiments for bothOPTand
NARROWconfigurations. Figure 5 presents the performance results
for this simulation normalized to theCPU1execution time (a bar
of height 200 meansOPTwas twice as slow asCPU1alone). At
any point in the execution, a large number of events may be occur-
ring in the RF at once, including computation, communication and
memory accesses. We want to see how much of the latency of the
non-compute operations can be hidden by computation and which
non-compute operations form bottlenecks in the system when there
is no useful work going on. For this purpose, we segment execution
time as follows: at any simulation tick, if any compute node is ac-
tive in the RF, that tick is attributed to “Computation”, even if other

type of nodes process events; when no compute node is active, if
any control node (such as a mux) is active, that tick is attributed
to “Control Ops”; when neither compute nor control nodes are ac-
tive, if any intra-cluster communication is happening, that tick is
attributed to “Inter-Op”; and so on successively for “Memory Tree”
(when the intra-cluster dynamically-arbitrated memory access tree
is active), “Network” (when the inter-cluster NoC is active), “Wait
for mem” (when the RF is blocked waiting for a memory access
to complete) and “CPU/Other” (when either the CPU is comput-
ing, or a CPU–RF communication is in progress). The benchmarks
are sorted from left to right in the order of increasing circuit size
(i.e.,adpcmd is the smallest whilemesais the largest). The circuit
size is closely related to benchmark code size, but is not directly
proportional due to variable amounts of loop unrolling in different
loops.

The graph in Figure 5 shows that the average slowdown forOPT
is 25%, while that forNARROWis 30%. ForOPT, we are able to
achieve significant performance benefits (up to 4x) on some bench-
marks (bothadpcmandgsmvariants), performance within 130%
of the CPU on 11 others, while 5 of the 26 benchmarks suffer slow-
downs of 80% or more. Inspection of the procedures with the worst
RF performance usually showed a loop-carried dependence involv-
ing a sequence of memory accesses with little other computation
going on. With slightly better compiler analysis (or with a sim-
ple source code rewrite), the detrimental dependence cycle could
be broken to get much better performance. The best-performing
procedures, on the other hand, exploit Tartan’s predicated, specula-
tive execution. For example,gsm’s main loop has many small basic
blocks: when merged into a single hyperblock, the loop has a large
number of predicated operations that can be executed in parallel
by the RF, gaining a significant performance advantage over the
limited-issue processor. However, RF execution also suffers from
bloated hyperblocks that combine too many paths—the critical path
is determined by the worst case, and speculative memory opera-
tions consume bandwidth. We expect significant performance im-
provement when a smarter profile-based hyperblock formation al-
gorithm is implemented.

In going fromOPTto NARROW, most benchmarks suffer a very
small performance degradation, since most of the computation hap-
pens on the RF. This indicates that it is perfectly reasonable to
combine the RF with a narrow CPU to optimize for silicon re-
sources and energy consumption. The two exceptions areli and
perl. These benchmarks spend a significant portion of their execu-
tion time on the CPU. This is because both these benchmarks have
calls tolongjmp, and we currently execute all functions in the call

Figure 6. Energy consumed on the CPU, and Energy-Delay, for the entire benchmark running on Tartan in the OPT and NARROW
configurations. For comparison, the time spent on the Tartan CPU normalized to the CPU1execution time is also plotted. Note that the
vertical axis is log-scale.

Network

Memory tree

Inter−Op

Control ops

Computation

 0

 20

 40

 60

 80

 100

ad
p

cm
_

e

ad
p

cm
_

d

g
7

2
1

_
e

g
7

2
1

_
d

co
m

p
re

ss

ep
ic

_
d li

m
cf

g
sm

_
d

g
sm

_
e

p
eg

w
it

_
e

p
eg

w
it

_
d

ep
ic

_
e

m
p

eg
2

_
d

m
p

eg
2

_
e

m
8

8
k

si
m

v
p

r

p
er

l

p
g

p
_

d

p
g

p
_

e

g
o

ij
p

eg

jp
eg

_
d

jp
eg

_
e

tw
o

lf

m
es

a

B
re

ak
d

o
w

n
 o

f
en

er
g

y
 c

o
n

su
m

ed
 (

%
)

Figure 7. Breakdown of energy consumption on the RF in OPT

chain from thesetjmpto thelongjmpon the CPU. In moving from
OPT to NARROW, the CPU-resident computation slows down by
about 2x, proportionately hurting overall performance.
Implications: The results indicate that for a majority of bench-
marks, Tartan’s performance lags behind that of a superscalar from
the same technology generation. This is not hard to understand: for
control dependent codes found in unaltered C applications, perfor-
mance will often be better on superscalar processors which com-
bine speculation and dataflow (as shown in [4]); on SC fabrics,
misspeculation across loop iterations or hyperblock boundaries is
hard to effectively quash, restricting us to speculating only within
a hyperblock. Better compiler analysis to reduce loop-carried de-
pendences can improve performance and it is possible that many
of these benefits can also be harnessed by simple source-code an-
notations. Many of the performance improvements in Tartan stem
from executing predicated hyperblocks; these benefits can also be
harnessed by a predicated microprocessor. Such a processor, how-
ever, will still suffer from having only a limited issue width. An-
other performance bottleneck is the latency of communicating with
memory, which shows up in the memory access trees and network;
this is explored further in Section 5.3. As expected, an unaggressive
core does not impact performance significantly as long as most of
the application is mapped to the RF.

5.2 Energy-delay

It has been previously demonstrated that a piece of code imple-
mented as an asynchronous, spatially distributed dataflow machine
has energy efficiency up to three orders of magnitude better than
the same code executing on a CPU [8]. In this section, we evaluate
how these benefits scale to a hybrid CPU–RF system like Tartan.

Figure 6 shows how much energy Tartan consumes on the core,
and its Energy-Delay, normalized against the Energy and Energy-
Delay ofCPU1alone (a value of one means Tartan’s core Energy
or Energy Delay equals that ofCPU1alone; smaller numbers are
better). Tartan is run in theOPTandNARROWconfigurations. For
comparison, the time spent on the CPU in Tartan’sOPTconfigura-
tion is also plotted, normalized to the totalCPU1execution time.
We observe that the Energy-Delay closely tracks the core energy,
which in turn closely tracks the time spent on the CPU—since the
RF is extremely energy-efficient, the overall energy efficiency is
dominated by the energy efficiency of the core. When the core exe-
cutes less (and hence consumes less energy), energy efficiency can
be more than two orders of magnitude better thanCPU1. For cases
where a lot of computation occurs on the core (li andperl), Energy-
Delay can be worse thanCPU1(even though total energy consumed
by Tartan is less thanCPU1).

CPU/Other

Wait for mem

Network

Memory tree

Inter−Op

Control ops

Computation

 0

 20

 40

 60

 80

 100

g
7
2

1
_
e

g
7

2
1

_
d

co
m

p
re

ss

ep
ic

_
d li

m
cf

g
sm

_
d

g
sm

_
e

p
eg

w
it

_
e

p
eg

w
it

_
d

ep
ic

_
e

m
p

eg
2

_
d

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

(%
)

CPU/Other

Wait for mem

Network

Memory tree

Inter−Op

Control ops

Computation

 0

 20

 40

 60

 80

 100

m
p
eg

2
_
e

m
8
8

k
si

m

v
p

r

p
er

l

p
g

p
_
d

p
g
p

_
e

ij
p
eg

jp
eg

_
d

jp
eg

_
e

tw
o

lf

m
es

a

A
M

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n

 t
im

e
(%

)

Figure 8. Effect of communication costs on performance, normalized to OPT. The first bar is for 0 communication costs, the second is for 0
cost in the arbitration tree, the third for 0 cost in inter-node and NoC communication, the fourth for 0 congestion in the trees, and the fifth for
a constant small delay of 0.5ns through the network. The adpcmbenchmarks, which have very little communication, are not included.

Figure 7 contains the breakdown of where energy is spent on
the RF. Except for the smallest benchmarks, energy consumption is
dominated by the communication hierarchy.
Implications: We see that the energy-delay benefits seen previ-
ously for kernels do translate over to whole programs, as long as the
RF does most of the execution (note that all benchmarks had sig-
nificantly betterpowerandenergynumbers compared to the CPU
alone; however, the execution slowdown means thatenergy-delay
is not always on par). Better partitioning of the application may let
us achieve both performance and energy-delay benefits.

5.3 Effect of communication costs

Figure 5 shows that for most benchmarks, 40% to 80% of the
RF’s active time is spent only on communication, either between
pages, for procedure calls, or for memory accesses. We identify
opportunities for optimizing communication costs in this section.
These results are summarized in Figure 8; all runs were with Tartan
combined with CPU1 and normalized to theOPTconfiguration.

Recall that there are 3 types of communication involved: be-
tween operations in the same or different pages, in the dynamically
arbitrated memory access trees, and over the global NoC. Typically,
the first contributes very little to execution time; most of the latency
is due to the memory trees and NoC. To measure the overall impact
of communication, we first set all communication costs at all 3 lev-
els to 0. As the first bar in Figure 8 shows, this reduces execution
time by 24% to 74%, with an arithmetic mean of 54%.

We then set only the memory tree cost to 0, while retaining all
other communication costs; conceptually, this corresponds to each
memory operation having a dedicated channel to the corresponding

NoC router. As the second bar shows, this accounted for most of the
gains from 0 communication costs in all but 4 benchmarks (epic e,
perl, jpeg e andmesa), with an average execution time reduction
of 38%. Inepic e, inter-operation communication significantly re-
duces the exposed parallelism; in the latter three benchmarks, there
are significant network transfer costs due to larger circuit size and
the large number of memory accesses that traverse the NoC.

Next, we simulated a realistic memory tree but set all other com-
munication costs to 0. This showed much less performance gain
compared to the 0 tree-case (2 to 20% in most benchmarks with
an average across all benchmarks of 12%) except in the aforemen-
tioned 4 benchmarks, where the gain was more significant.

To measure the impact of congested memory access trees due
to many concurrently-active memory operations being placed close
together, we set the congestion in the memory trees to 0, while
keeping all other communication costs normal. Each memory op-
eration still has to pay the cost of traversing the memory tree and
the NoC to reach the LSQ, but does not have to suffer contention
delays in the tree; such a situation would arise if potentially con-
current memory operations were placed in different memory trees.
Compared toOPT, we see a reduction in delay of 16-36% in 6 of
the 23 benchmarks; these benchmarks have a number of concurrent
loads and stores that end up in the same tree and cause significant
tree congestion. For 17 benchmarks, there was a difference of 20%
or more between the 2nd and 4th bars, with an average across all
benchmarks of 22%. This indicates that eliminating congestion in
the trees is not enough—just the added delay of traversing (uncon-
gested) trees reduces performance significantly.

Figure 9. Effect of slowing down compute and control nodes by
2x and 4x on Energy-Delay, normalized to OPT. Note that except
for perl and li , the 4x line is still significantly better than CPU1.

Finally, we simulated a case where there were realistic inter-
operation costs, a realistic memory tree, but only a constant 0.5ns
delay over the NoC. Physically, this corresponds to the case where
an oracle predicts which procedure will be called next, and config-
ures it close to memory and to its callers. The performance benefits
over baseline in this case ranged from 0 for the smallest bench-
marks (since they have very small network costs) to 35% for the
largest circuit (mesa).
Implications : The above experiments highlight a key cost of
spreading computation out in space: as things move farther away
from memory, the cost of getting to memory and back becomes
the dominant performance bottleneck. These costs show up most
strikingly in the arbitrated access trees, but also through increased
latency to traverse the NoC. This points to an important direction
for future research: spreading memory out along with the computa-
tion to eliminate the long latency due to contention resolution and
fabric traversals.

We also see that while dedicating a hardware unit to each logical
operation saves us reconfiguration effort, it does mean that func-
tions implemented on the RF will often be farther from memory
than they would be if we could reconfigure the working set of pages
close to the memory port.

5.4 Slower compute nodes

The timing and energy models for compute nodes used in our simu-
lations are extracted from ASIC data. In the RF context, they will be
worse due to the presence of muxes, which allow for programma-
bility.2 To measure the impact of slower computation, we ran two
experiments, which slow down all compute and control nodes by a
factor of 2 and 4 respectively. As discussed in Section 4, the slow-
down of 4x represents a worst-case bound on the expected slow-
down in a reconfigurable implementation, and the actual slowdown
is expected to be closer to 2x or even less. ForOPT, a 2x com-
pute slowdown degrades performance by 2% to 48%, while for the
4x slowdown, performance degrades by 30% to 185%. The perfor-
mance loss is much smaller than the slowdown factor because of
overlap between compute and communication events. The largest
slowdowns occur on the smaller benchmarks where there is very
little communication to hide the greater compute latency; for the
larger benchmarks, which are communication-bound, the perfor-
mance degradation is comparatively small.

The impact on energy-delay is shown in Figure 9. The re-
sults highlight some important aspects of the RF design. The
benchmarks impacted most are the ones that are computation-
intensive (likeadpcm, gsm), while there is a much smaller change

2 The models for the communication structures, however, have been accu-
rately estimated for the RF setting.

 0
 20
 40
 60
 80

 100
 120

co
m

pr
es

s

ep
ic

_d li

gs
m

_d

gs
m

_e

pe
gw

it_
e

pe
gw

it_
d

ep
ic

_e

m
pe

g2
_d pe
rl

pg
p_

e

jp
eg

_d

jp
eg

_e

A
M

Figure 10. Effect on performance of setting token communication
cost to 0, normalized to OPT. The segmentation of bars is the same
as Figure 8. AM is the Arithmetic Mean.

in communication-intensive workloads. However, as shown in Fig-
ure 6, the computation-intensive benchmarks harness the energy
benefits of the RF to the greatest degree, exhibiting two to three
orders of magnitude improved energy-delay overCPU1. This large
margin of benefit is very resilient in the face of slower computation
nodes; in fact, even with the 4x compute slowdown, the energy-
delay of Tartan is still significantly better thanCPU1except for
perl andli .
Implications: The energy and timing degradation in a typical
FPGA compared to an ASIC is primarily due to high communi-
cation costs [32]. Shang et al. [33] show that 52% of the total
power consumed in Virtex FPGAs is due to the interconnect, 22%
is due to the clock distribution, and only 26% is due to compu-
tation logic. This is the prime motivation behind the hierarchical
interconnect design in the RF. The lower levels of the hierarchy
provide statically configured dedicated channels for higher perfor-
mance, while higher levels of the hierarchy feature a shared inter-
connect for increased efficiency. The coarse-grained PEs and in-
terconnect (compared to single-bit LUTs) amortize control signals
over many data wires, reducing communication energy. Further,
due to Tartan’s asynchronous nature, the clock power is completely
eliminated. Thus, an intelligent RF interconnect design is key to
achieving scalable energy efficiency on large programs and future
technology nodes.

5.5 Memory access and ordering costs

In Tartan, we achieve ordering between memory operations by
passingtokensbetween them; operations determined to be inde-
pendent by the compiler do not have token edges between them and
may be active simultaneously. This contrasts with a scheme where
the compiler provides each operation with its dependency informa-
tion; this information is passed to an ordering unit which forwards
the request to memory if all dependencies are satisfied [37]. To sim-
ulate such a scheme, we set the token communication costs in our
simulator to 0; this is equivalent to having an oracle that could in-
dicate to each memory operation when all its dependencies were
satisfied so it could forward its request to the LSQ. This is more op-
timistic than [37], since we do not account for the storage, forward-
ing and runtime processing of dependency information. The results
are shown in Figure 10; performance improves by an average of 8%
when token costs are removed. The largest improvements occur in
benchmarks where a large number of memory operations end up on
the same memory access tree, increasing tree depth and congestion
and slowing down token communication time. These benchmarks
would benefit most from a more judicious tree construction that
placed independent memory operations on separate trees.
Implication: Using tokens to manage the ordering of dependent
operations incurs a small cost, but is not the primary bottleneck in
performance. Distance to memory has a much bigger impact, and a
more important source for performance improvement.

32x16
64x32

Pages: static
Pages: dynamic

 0

 20

 40

 60

 80

 100

ad
pc

m
_e

ad
pc

m
_d

g7
21

_e

g7
21

_d

co
m

pr
es

s

ep
ic

_d li

m
cf

gs
m

_d

gs
m

_e

pe
gw

it_
e

pe
gw

it_
d

ep
ic

_e

m
pe

g2
_d

m
pe

g2
_e

m
88

ks
im vp

r

pe
rl

pg
p_

d

pg
p_

e

ijp
eg

jp
eg

_d

jp
eg

_e

tw
ol

f

m
es

a 1

 10

 100

 1000

 10000

 0

 20

 40

 60

 80

 100

ad
pc

m
_e

ad
pc

m
_d

g7
21

_e

g7
21

_d

co
m

pr
es

s

ep
ic

_d li

m
cf

gs
m

_d

gs
m

_e

pe
gw

it_
e

pe
gw

it_
d

ep
ic

_e

m
pe

g2
_d

m
pe

g2
_e

m
88

ks
im vp

r

pe
rl

pg
p_

d

pg
p_

e

ijp
eg

jp
eg

_d

jp
eg

_e

tw
ol

f

m
es

a 1

 10

 100

 1000

 10000

R
F

pa
ge

s

Fa
br

ic
 u

til
iz

at
io

n
(%

)

Figure 11. Bargraph, left axis: RF utilization varying with page size. Linegraph, right axis (log scale): number of pages required to map the
entire benchmark to Tartan’s RF, and the number of pages that were actually touched during execution.

5.6 Fabric utilization and page-size

All previous experiments used a page size of 32×16 bit-operations.
Using a larger pagesize of 64×32 bitops did not affect performance
significantly—in most cases lower delay through the NoC was off-
set by higher inter-operation communication cost over the intra-
cluster interconnect. However, fabric utilization as measured by
the number of bitops that were configured statically dropped sig-
nificantly (see Figure 11). This is because our compiler generates
many small hyperblocks which must each be given a whole page;
we are improving our hyperblock selection algorithm so this can be
avoided.

On Figure 11 we also see the number of pages (of size 32×16)
each benchmark needs statically when mapped onto the RF with
no resource sharing or virtualization, as well as the number of
pages that were dynamically active in that particular run of the
benchmark (the pages that were not dynamically active correspond
to procedures that were not called, or hyperblocks within called
procedures that were not executed). The largest benchmarks,twolf
andmesa, statically require 6700 and 25000 pages respectively; all
other benchmarks require less than 4700 pages. Fortwolf andmesa,
the total number of pages active dynamically during the course of
the execution is about 2700; this number is under 1500 for the
remaining benchmarks. A page of size 32×16 bitops is estimated
to occupy between 0.5mm2 (based on scaled estimates from [39])
and 1.2mm2 (based on [31]) in 90nm technology. With the smaller
estimate, a 400mm2 die can contain about 800 pages, which will be
enough for the hardware working sets (measured at a granularity
of pages) of 15 of the 25 benchmarks in Figure 11. Clearly, it
is infeasible to map an entire large program onto the RF, but the
much smaller working sets hold promise for virtualization. With
technology shrinking, more pages can be placed on a single die;
better CPU–RF partitioning can also lead to unused or rarely used
functions not being mapped to the RF.
Implication: In the near future, most large programs cannot be
completely implemented on the RF without virtualization. While
virtualization implies reconfiguration costs, performance benefits
may be available from configuring heavily communicating rou-
tines close to one another (see last experiment in Section 5.3), es-
pecially if the reconfiguration latency can be hidden. Another ap-
proach would be to use a more moderate form of SC which shares
hardware resources between logical operations.

5.7 Defect tolerance

In future-generation fabrication technologies, defects are expected
to be more commonplace than they are today, and every com-
pute fabric could have multiple manufacturing defects. The asyn-
chronous nature of the Tartan RF makes it easy to tolerate defects
and parametric variations, since changes in the timing of individual

nodes does not affect the global timing closure and hence the over-
all correctness and stability of the system. To measure the resilience
of the RF to defects, we randomly introduced defects in 10% of the
pages, rendering them unusable. This has the effect of stretching
the circuit out by 10% and increasing communication costs. How-
ever, much of this increase is hidden by the parallelism available in
the circuit and the impact on performance is very small, less than
2% for all our benchmarks.
Implications: The asynchronous, hierarchical and distributed RF
tolerates defects without any significant impact on the speed of the
compilation process or execution.

6. Related Work
Challenges in technology scaling are pushing future designs to-
wards distributed, regular architectures. There is a wide range of
choice in the design of such regular architectures—at one end of
the spectrum are fine-grained reconfigurable architectures where
each processing element is a LUT-like functional block; such de-
signs have been used mostly in hybrid architectures where a stan-
dard CPU core has been augmented with a small amount of re-
configurable logic. At the other end, there are coarse-grained tiled
architectures, where each processing element is a light-weight pro-
cessor core. Our RF design fits roughly in the middle of this con-
tinuum: we have medium-grained reconfigurable resources that are
organized as a tiled fabric.
Custom-computing, reconfigurable and hybrid systems. The
most common examples of reconfigurable processors are FPGAs
from vendors such as Xilinx and Altera. Some notable research
projects are PRISM II [44], PRISC [28], NAPA [13], Chimaera
[46], Garp [9], PipeRench [15], and many others.

As has been discussed in Section 2, the Tartan page architec-
ture is based on PipeRench [15]. Like Tartan, some of the above
architectures are hybrid, i.e., they combine a CPU core with re-
configurable logic. For example, PRISC [28] augments a RISC
pipeline with a modest programmable function unit (PFU); its com-
piler takes assembly code compiled from standard C and looks
for special patterns to transform automatically to exploit the PFU.
Garp uses a synchronous reconfigurable array in a tightly-coupled
coprocessor to accelerate inner loops; like Tartan, it has an auto-
matic compilation path from standard C and uses spatial, aggres-
sively speculative computation utilizing a SSA-based compiler IR
extended to handle arbitrary memory accesses correctly [9]. The
NAPA architecture [13] has a coprocessor that can accelerate ei-
ther an inner loop or a region of straight-line code.

For their RF, however, none of the above approaches targets a
true Spatial Computation model, with completely distributed com-
putation and control: the reconfigurable logic is small, has a sin-

gle, global clock, and usually communicates over global buses. An-
other difference is that, in Tartan, the CPU and RF interact as peers,
with the RF also able to invoke services from the CPU. This is un-
like prior approaches where the RF acted as a slave to the CPU.
A peer relationship enables more flexibility in hardware-software
partitioning; for example, whole functions can be mapped onto the
Tartan RF, while previous work has focused on smaller code seg-
ments and inner loops. This also has an impact on the CPU-RF
interface design. While many previous efforts include the RF in the
CPU datapath, we deploy the RF as a co-processor with ISA exten-
sions for communication (as in some past projects, such as NAPA
and Garp). This provides for greater flexibility and more opportu-
nities to harness the benefits of the RF but also increases the la-
tency of communication with the RF, imposing a lower-bound on
the size of routines that can be profitably mapped to the RF. At the
circuit-level, the Tartan RF is asynchronous, which naturally results
in a dynamically-scheduled circuit. Finally, none of the hybrid ap-
proaches mentioned here (or the tiled architectures discussed next)
were designed with power as a first-class concern; therefore, most
architecture evaluations do not measure power consumption at all.
Tile-based Architectures. There has been a recent surge in re-
search projects exploring distributed multi-core architectures in-
volving a grid of processing elements connected by a mesh-like
network. Some notable examples are Smart Memories [25], Imag-
ine [29], RAW [38], TRIPS [30] and Wavescalar [37]. We will con-
trast the latter three with Tartan below.

A tile consists of an 8-stage inorder pipeline in RAW, a 5-stage
pipeline in Wavescalar and a simplified single-issue pipeline in
TRIPS; unlike Tartan, none of these architectures include recon-
figurable functional units. Many instructions can share the same
tile, and the mapping of instructions to tiles can occur dynamically
and can change during the course of the execution, unlike the in-
stance of Tartan studied in this paper where program operations are
mapped statically to hardware units. Like Tartan, all three architec-
tures include routed networks at the top level; however, the lower
levels of their communication hierarchy consist of bypass networks
and dynamically arbitrated buses in contrast to the statically con-
figured FPGA-like interconnect we propose for Tartan.

The RAW compiler splits a program into multiple parallel
threads, and statically schedules each thread on a tile: the com-
piler generates a schedule for instruction execution on each tile
and for communication over two of the four global routed net-
works. The compilation and execution models for Wavescalar and
TRIPS, on the other hand, are similar to Tartan: the compiler splits
the program into multiple hyperblocks, and each hyperblock is
independently scheduled across the fabric. Execution follows the
dataflow order: operations are executed when their operands are
ready. RAW achieves ordering of memory operations implicitly
through the compiler-generated schedule; Wavescalar and TRIPS
assign sequence numbers to memory operations in each hyperblock
and enforce ordering at the LSQ. None of these architectures use
the token-based mechanism used by Tartan.

Unlike Tartan, none of these architectures include a superscalar
core to execute legacy and control-intensive codes. Also, unlike
Tartan, they have not been designed to optimize for power or
energy-delay, and instead focus primarily on performance.

The hierarchical composition of PEs in our RF resembles the
HSRA fabric [40] to some degree, although that design used stat-
ically assigned interconnections at even the higher levels, which
are less flexible and more inefficient for sparsely utilized channels.
Our dynamic routing multiplexes the use of resources among many
virtual channels.
Asynchronous FPGA Architectures. A number of asynchronous
FPGA architectures have been proposed [39, 18, 16, 27, 45]. Un-
like our medium-grained FPGA architecture, all of these previous

architectures are fine-grained: the basic cell can compute functions
of few inputs (typically less than 4). Like the Tartan RF, some pre-
vious architectures compute on bundled-data codes [16, 27], while
the others either use dual-rail codes [45, 39], or can be configured
to compute on both dual-rail and bundled-data [18]. In [27, 45, 39]
each cell is pipelined, like in the Tartan RF; for the other architec-
tures [18, 16] pipelining can be achieved using several cells, which
is wasteful. None of these previous architectures are hierarchical
or include complex memory support, and only a few provide for
arbitration elements [27, 16].

7. Conclusions
We have described a general-purpose, hybrid system architecture,
Tartan, that integrates a processor core with a reconfigurable fab-
ric (RF). The RF’s asynchronous design style is naturally power-
efficient and resilient to process variations. We have evaluated this
architecture on a number of single-threaded workloads and found
that the spatial computing model of the RF provides excellent en-
ergy efficiency, is tolerant to manufacturing defects in future tech-
nology nodes and is able to harness fine-grained operation-level
ILP.

The cost of laying computation out in space, however, requires
a scalable interconnect design. We have shown how the Tartan RF
tackles this problem by employing a hierarchical interconnect ar-
chitecture, which allows the system to achieve high energy effi-
ciency despite being constrained by a single, shared memory sub-
system. These results will only improve on moving to a distributed
memory/cache architecture. To harness the energy-efficiency ben-
efits of the RF, however, the compiler must be able to aggressively
partition the application so that most of the program execution oc-
curs on the RF.

This paper explored the limits of an extreme form of spatial
computation that allocates computation resources that are never
shared, resulting in large area requirements. Although we expect
the increasing transistor budget to alleviate this problem, in the near
term we expect that virtualization of limited RF resources will be an
important research direction. This path towards RF virtualization,
with a starting point of complete spatial program layout on the RF,
is the opposite of most previous efforts, which have incrementally
moved more and more of the program’s execution onto the RF.
The goal in both approaches is to determine the optimal point in
the spatial computation continuum, but the explorations start from
different extremes and thus bring in different perspectives.

Acknowledgments
This work was supported by the NSF through ITR grant num-
ber CCR-0205523. The authors would like to thank David Koes,
Mukesh Agrawal, David Andersen and the anonymous reviewers
for many helpful comments and suggestions.

References
[1] M. Beck, R. Johnson, et al. From control flow to data flow.Journal of

Parallel and Distributed Computing, 12:118–129, 1991.

[2] T. Bjerregaard and J. Sparsø. A scheduling discipline for latency
and bandwidth guarantees in asynchronous Network-on-Chip. In
International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC). IEEE, 2005.

[3] D. Brooks, V. Tiwari, et al. Wattch: a framework for architectural-
level power analysis and optimizations. InInternational Symposium
on Computer Architecture (ISCA), pages 83–94. ACM Press, 2000.

[4] M. Budiu, P. V. Artigas, et al. Dataflow: A complement to superscalar.
In IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 177–186, March 20-22 2005.

[5] M. Budiu and S. C. Goldstein. Compiling application-specific
hardware. InInternational Conference on Field Programmable Logic
and Applications (FPL), pages 853–863, September 2002.

[6] M. Budiu and S. C. Goldstein. Pegasus: An efficient intermediate
representation. Technical Report CMU-CS-02-107, Carnegie Mellon
University, May 2002.

[7] M. Budiu, M. Mishra, et al. Peer-to-peer hardware-software
interfaces for reconfigurable fabrics. InIEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 57–66,
April 2002.

[8] M. Budiu, G. Venkataramani, et al. Spatial computation. In
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 14 – 26, October 2004.

[9] T. Callahan and J. Wawrzynek. Adapting software pipelining for
reconfigurable computing. InIntl. Conf. on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES). ACM, 2000.

[10] L. Carter, B. Simon, et al. Path analysis and renaming for
predicated instruction scheduling.International Journal of Parallel
Programming, special issue, 28(6), 2000.

[11] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing
systems. InIEEE Transactions on Very Large Scale Integration
(VLSI) Systems, volume 12-8, pages 857–873, 2004.

[12] R. Cytron, J. Ferrante, et al. Efficiently computing static single as-
signment form and the control dependence graph.ACM Transactions
on Programming Languages and Systems (TOPLAS), 13(4):451–490,
1991.

[13] M. B. Gokhale, J. M. Stone, et al. Co-synthesis to a hybrid
RISC/FPGA architecture.J. VLSI Signal Process. Syst., 24(2-3):165–
180, 2000.

[14] S. C. Goldstein. The impact of the nanoscale on computing systems.
In IEEE/ACM International Conference on Computer-aided design
(ICCAD), 2005.

[15] S. C. Goldstein, H. Schmit, et al. PipeRench: a coprocessor for
streaming multimedia acceleration. InInternational Symposium on
Computer Architecture (ISCA), pages 28–39, May 1999.

[16] S. Hauck, S. M. Burns, et al. An FPGA for implementing
asynchronous circuits.IEEE Design & Test of Computers, 11(3):60–
69, 1994.

[17] J. R. Heath, P. J. Kuekes, et al. A defect-tolerant computer
architecture: Opportunities for nanotechnology.Science, 280, 1998.

[18] N. Huot, H. Dubreuil, et al. FPGA architecture for multi-style
asynchronous logic. InDesign, Automation and Test in Europe
(DATE), pages 32–33. IEEE Computer Society, 2005.

[19] Intel Corp. Intel Pentium M Datasheet, January 2006.

[20] J. Kao, S. Narendra, et al. Subthreshold leakage modeling and
reduction techniques. InProceedings of the 2002 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages
141–148, 2002.

[21] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In
Proceedings of the International Symposium on Field Programmable
Gate Arrays (FPGA’06), pages 21–30, February 2006.

[22] E. Larson, S. Chatterjee, et al. MASE: A novel architecture
for detailed microarchitectural modeling. InIEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), November 4–6 2001.

[23] C. Lee, M. Potkonjak, et al. MediaBench: a tool for evaluating and
synthesizing multimedia and communications systems. InIEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 330–
335, 1997.

[24] S. A. Mahlke, D. C. Lin, et al. Effective compiler support
for predicated execution using the hyperblock. InInternational
Symposium on Computer Architecture (ISCA), pages 45–54, Dec
1992.

[25] K. Mai, T. Paaske, et al. Smart memories: A modular reconfigurable
architecture. InInternational Symposium on Computer Architecture
(ISCA), June 2000.

[26] B. J. Nelson. Remote procedure call. Technical Report CSL-81-9,
Xerox Palo Alto Research Center, 1981.

[27] R. Payne. Self-timed FPGA systems. In W. Moore and W. Luk,
editors, International Conference on Field Programmable Logic
and Applications (FPL), volume 975 ofLecture Notes in Computer
Science, pages 21–35. Springer, 1995.

[28] R. Razdan and M. D. Smith. A High-Performance Microarchitecture
with Hardware-Programmable Functional Units. InIEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 172–
80. IEEE/ACM, November 1994.

[29] S. Rixner, W. J. Dally, et al. A bandwidth-efficient architecture
for media processing. InIEEE/ACM International Symposium on
Microarchitecture (MICRO), December 1998.

[30] K. Sankaralingam, R. Nagarajan, et al. Exploiting ILP, TLP, and
DLP with the polymorphous TRIPS architecture. InInternational
Symposium on Computer Architecture (ISCA), pages 422–433. ACM
Press, 2003.

[31] H. Schmit, D. Whelihan, et al. Piperench: A virtualized programmable
datapath in 0.18 micron technology. InIEEE Custom Integrated
Circuits Conference, pages 63–66, 2002.

[32] L. Shang and N. Jha. High-level power modeling of CPLDs and
FPGAs. InInternational Conference on Computer Design (ICCD),
pages 46–51, September 2001.

[33] L. Shang, A. S. Kaviani, et al. Dynamic power consumption in Virtex-
II FPGA family. In ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA), pages 157–164. ACM Press,
2002.

[34] Standard Performance Evaluation Corp.SPEC INT 95 Benchmark
Suite, 1995.

[35] Standard Performance Evaluation Corp.SPEC INT 2000 Benchmark
Suite, 2000.

[36] I. Sutherland. Micropipelines: Turing award lecture.Communications
of the ACM, 32 (6):720–738, June 1989.

[37] S. Swanson, K. Michelson, et al. Wavescalar. InIEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 291–
302, December 2003.

[38] M. B. Taylor, W. Lee, et al. Evaluation of the RAW microprocessor:
An exposed-wire-delay architecture for ILP and streams. In
International Symposium on Computer Architecture (ISCA), pages
2–13. IEEE Computer Society, 2004.

[39] J. Teifel and R. Manohar. An asynchronous dataflow FPGA
architecture.IEEE Trans. Computers, 53(11):1376–1392, 2004.

[40] W. Tsu, K. Macy, et al. HSRA: high-speed, hierarchical synchronous
reconfigurable array. InACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA), pages 125–134. ACM
Press, 1999.

[41] G. Venkataramani, T. Bjerregaard, et al. SOMA: a tool for
synthesizing and optimizing memory accesses in ASICs. In
International Symposium on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 231–236. ACM Press, 2005.

[42] G. Venkataramani, M. Budiu, et al. C to asynchronous dataflow
circuits: An end-to-end toolflow. InInternational Workshop on Logic
Synthesis, June 2004.

[43] G. Venkataramani, T. Chelcea, et al. HLS support for unconstrained
memory accesses. InInternational Workshop on Logic Syntheis, June
2005.

[44] M. Wazlowski, L. Agarwal, et al. PRISM-II compiler and architecture.
In IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 9–16, Apr 1993.

[45] C. Wong, A. Martin, et al. An architecture for asynchronous FPGAs.
In Proceedings of Field Programmable Technology (FPT), pages
170–177, 2003.

[46] A. Z. Ye, A. Moshovos, et al. CHIMAERA: A high-performance
architecture with a tightly-coupled reconfigurable unit. InInterna-
tional Symposium on Computer Architecture (ISCA), ACM Computer
Architecture News. ACM Press, 2000.

	Introduction
	System Architecture
	CPU Core
	CPU-RF Interface
	RF architecture

	Compilation
	Evaluation Methodology
	CPU simulation
	RF simulation

	Evaluation Results
	Performance
	Energy-delay
	Effect of communication costs
	Slower compute nodes
	Memory access and ordering costs
	Fabric utilization and page-size
	Defect tolerance

	Related Work
	Conclusions

