
An Analysis of Graph Coloring Register Allocation

David Koes Seth Copen Goldstein

March 2006
CMU-CS-06-111

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Graph coloring is the de facto standard technique for register allocation within a compiler. In this paper
we examine the importance of the quality of the coloring algorithm and various extensions of the basic
graph coloring technique by replacing the coloring phase of the GNU compiler’s register allocator with an
optimal coloring algorithm. We then extend this optimal algorithm to incorporate various extensions such
as coalescing and preferential register assignment. We find that using an optimal coloring algorithm has
surprisingly little benefit and empirically demonstrate the benefit of the various extensions.

This research was sponsored in part by the National Science Foundation under grant CCR-0205523 and in part by the Defense
Advanced Research Project Agency (DARPA) under contracts N000140110659 01PR07586-00 and MDA972-01-3-0005. Any
opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily
reflect those of the sponsors.



Keywords: compilers, register allocation



1 Introduction

Register allocation is one of the most important optimizations a compiler performs and is becoming increas-
ingly important as the gap between processor speed and memory access time widens. The textbook [2, 17, 1]
approach for performing register allocation begins by building an interference graph of the program. If vari-
ables interfere, they cannot be assigned to the same register. Thus, if there arek registers, register allocators
attempt to solve the NP-complete problem of finding ak-coloring of a graph. If not all the variables can be
colored with a register assignment, some variables are spilled to memory and the process is repeated.

An initial intuition one might have is that the quality of the register allocation found by a graph coloring
register allocator would be primarily dictated by the performance of the coloring algorithm. However,
experienced practitioners know that, especially for architectures with register usage constraints, the coloring
algorithm has only a minor impact on the quality of the register allocation.

Our goal is to verify and explicate the knowledge practitioners have gained from experience with our
experimental methodology. We replace the existing heuristic coloring algorithm ingcc 3.4.4 with an opti-
mal coloring algorithm. We find that not only does the heuristic coloring algorithm usually find an optimal
coloring, but the optimal coloring algorithm performs poorly as it lacks extensions to the pure graph coloring
model specific to register allocation. We document the effect extensions such as spill cost heuristics, move
coalescing, and register assignment preferences have on code quality by incrementally adding them to our
optimal solver. We find, for example, that adding move coalescing has a relatively small effect compared to
heuristically improving spill decisions or preferentially allocating certain registers.

We describe the standard algorithm for graph coloring register allocation in Section 2 and our optimal
coloring algorithm in Section 3. Our evaluation procedure is described in Section 4 with results given in
Section 5. We conclude with some discussion in Section 6.

2 Graph Coloring

2.1 Algorithm

The traditional optimistic graph coloring algorithm[6, 8, 7] consists of five main phases as shown in Figure 1:

Build An interference graph is constructed using the results of data flow analysis. Each node in the graph
represents a variable. An edge connects two nodes if the variables represented by the nodes inter-
fere and cannot be allocated to the same register. Restrictions on which registers a variable may be
allocated to can be implemented by adding precolored nodes to the graph.

Simplify A heuristic is used to help color the graph. Any node with degree less thank, wherek is the
number of available registers, is removed from the graph and placed on a stack. This is repeated until
none of the remaining nodes can be simplified. If all nodes have been pushed on the stack we skip to
the Select phase.

Potential Spill If only nodes with degree greater thank are left, we mark a node as a potential spill node,
remove it from the graph, and optimistically push it onto the stack in the hope that we might be able
to assign it a color. We repeat this process until there exist nodes in the graph with degree less thank,
at which point we return to the Simplify phase.

Select In this phase all of the nodes have been removed from the graph. We now assign colors to nodes in
the order we pop them off the stack. If the node was not marked as a potential spill node then there

1



Build Simplify Potential Spill Select Actual Spill

Coloring Heuristic

Figure 1: The flow of a traditional graph coloring algorithm.

must be a color we can assign this node that does not conflict with any colors already assigned to this
node’s neighbors. If it is a potential spill node, then it still may be possible to assign it a color; if it is
not possible to color the potential spill node, we mark it as an actual spill and leave it uncolored.

Actual Spill If any nodes are marked as actual spills, we generate spill code which loads and stores the
variable represented by the node into new, short lived, temporary variables everywhere the variable is
used and defined. Because new variables are created, it is necessary to rebuild the interference graph.

Note that the Simplify, Potential Spill, and Select phases together form a heuristic for graph coloring. If
this heuristic is successful, there will be no actual spills. Otherwise, the graph is modified so that it is easier
to color by spilling variables and the entire process is repeated.

2.2 Improvements

A number of improvements to the basic graph coloring algorithm have been proposed. Four common im-
provements are:

Web Building [14, 8] Instead of a node in the interference graph representing all the live ranges of a vari-
able, a node can just represent the connected live ranges of a variable (called webs). For example, if a
variablei is used as a loop iteration variable in several independent loops, then each loop represents
an unconnected live range. Each web can then be allocated to a different register, even though they
represent the same variablei.

Coalescing [11, 8, 7]If the live ranges of two variables are joined by a move instruction and the variables
are allocated to the same register it is possible to coalesce (eliminate) the move instruction. Coalescing
is implemented by adding move edges to the interference graph. If two nodes are connected by a move
edge, they should be assigned the same color. Move edges can be removed to prevent unnecessary
spilling.

Spill Heuristic [5] A heuristic is used when determining what node to mark in the Potential Spill stage. An
ideal node to mark is one with a low spill cost (requiring only a small number of dynamic loads and
stores to spill) whose absence will make the interference graph easier to color and therefore reduce
the number of future potential spill nodes.

Improved Spilling [4, 7, 9] If a variable is spilled, loads and stores to memory may not be needed at every
read and write of the variable. It may be cheaper to rematerialize the value of the variable (if it is a
constant, for example). Alternatively, the live range of the variable can be partially spilled. In this
case, the variable is only spilled to memory in regions of high interference.

2



3 Optimal Coloring

In order to investigate the effect of the quality of the coloring algorithm we replace the coloring heuristic
of a traditional allocator with an optimal coloring algorithm. Our optimal coloring algorithm transforms the
graph coloring problem into an integer linear program (ILP) that we solve using a commercial optimizer.

3.1 Algorithm

Given a graph withN nodes andK colors, we create an ILP withN ∗ K binary variables,nk, which are
constrained to be one if and only if noden is assigned colork and zero otherwise. Every noden has a
sufficiency condition:

K∑
k=1

nk = 1

which states that a node must be assigned exactly one color. In addition, every edge(n, m) imposes a
coloring constraint for every colork:

nk + mk ≤ 1

which states that nodes connected by an edge cannot both be assigned the same color.
Although this ILP formulation exactly describes the graph coloring problem, it is not flexible enough

to be used inside of a register allocator since interference graphs are not alwaysK-colorable. Instead, we
assign a cost to leaving a specific node uncolored. The optimal coloring minimizes this cost.

Adding a cost to uncolored nodes is simple to incorporate in our ILP model by introducing an additional
binary variable for each node,nspill, which is one if and only if noden should be left uncolored. This
variable is incorporated into the sufficiency constraints, but not the coloring constraints. In order to minimize
the cost of spilling, we introduce the objective function:

min
N∑

n=1

cnnspill

where the coefficientcn is the cost of leaving the node uncolored. We simply setcn to 1.0 to minimize the
total number of nodes spilled.

3.2 Improvements

There are a number of register allocation specific extensions to the basic graph coloring model we can add
to our optimal solver so that the resulting coloring will produce a superior register allocation.

Spill Cost We modify the objective function so thatcn, the coefficient ofnspill, is the same as the spill cost
used bygcc ’s allocator. It is the sum of the costs of the loads and stores needed to spill the variable
weighted by the expected frequency of each memory operation (that is, spills inside loops cost more).
This may result in more generated spills, but they will be less costly.

Coalescing We can also model coalescing using our ILP. For every move edgee with endpointsn andm
in the interference graph, we introduce a binary variableek which is one if and only if the nodes
connected by the edge are both assignedk. Then for every colork we add the constraint:

ek ≤ nk ek ≤ mk

3



so thatek can only be one if bothnk andmk are one.

In addition, we add these variables to the objective function with some small negative coefficient,ce.
As long as the sum of these coefficients is less than the cost of the cheapest spill, coalescing will never
result in more spills.

Ordered Assignment When selecting colors for a node in the Select stage the heuristic coloring algorithm
assigns registers to variables in a certain order. For example, it might assign caller-save registers
before callee-save registers in order to avoid having to generate save and restore code for these reg-
isters. The optimal coloring algorithm can mimic this behavior by assigning a small cost to a less
desirable assignment. As long as this cost is sufficiently small relative to the minimum spill cost this
modification will only change the assignment of variables to registers; it will not change the spill
decisions.

Preferential Assignment In addition to assigning registers in a particular order, some variables may prefer
to be allocated to specific registers, regardless of the regular order of assignment. For example, the
results of the x86 multiply and divide instructions must be allocated to theeax andedx registers. A
variable that represents the result of such an instruction would then prefer to be allocated to one of
these registers. The optimal allocator models preferences by assigning a small cost to registers which
are valid, but not preferred.

4 Evaluation

We evaluate the effect of using the optimal coloring algorithm with its various extensions by substituting
it for the ra-colorize function of the graph coloring based allocator ofgcc version 3.4.4. The graph
coloring allocator ofgcc is enabled with-fnew-ra and implements all the improvements discussed in
Section 2. The optimal coloring algorithms use CPLEX 9.0 [13] to solve the ILPs.

We use the metric of code size when evaluating the quality of a register allocation. By using the code
size metric we can accurately evaluate the code quality of the entire program, not just the most frequently
executed portions. We use the SPECint200 and SPECfp2000 benchmark suites [21] with the reference
input sets for evaluation. We omit benchmarks thatgcc was unable to compile or generate correct code
for (176.gcc, 186.crafty, 255.vortex, and the Fortran 90 benchmarks 178.galgel, 187.facerec, 189.lucas, and
191.fma3d). Unless otherwise stated, we compile with-Os .

We evaluate the allocators using the x86 architecture; this architecture, with its limited register file and
register usage constraints, will likely see the biggest impact from the performance of the register allocator.
Our test machine a 2.8 Ghz Pentium 4 with 1 GB of RAM running RedHat Linux 9.0

5 Results

The efficacy of the optimal coloring allocators at eliminating spills is shown in Figure 2. Of the functions
of the SPEC benchmark suite, 52.57% can be fully allocated to registers. The heuristic coloring algorithm
fails and performs unnecessary spilling in only 6 functions (.13% of the total), indicating that the heuristic
is sufficient for determining the colorability of most typical interference graphs. As expected, the optimal
coloring allocator that minimizes the number of spilled variables, but does not seek to minimize the cost of
the spills, outperforms the other allocators in this comparison.

4



0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

no spills <=5 spills <= 10 spills <= 15 spills

P
e
r
c
e
n

t
 o

f
 F

u
n

c
t
io

n
s

Optimal Coloring - Minimize Spilled Variables

Optimal Coloring - Minimize Total Spill Cost

Heuristic Coloring

Figure 2: The percent of functions in the SPEC benchmark suite that spill at most a given number of
variables. The benchmarks were compiled with-O3 -funroll-loops .

Although an optimal coloring minimizes the number of spills, this does not directly correspond to a
better register allocation as indicated by Figure 3. The naive approach of just optimizing the number of
variables spilled produces poor code relative togcc ’s heuristic based coloring allocator with an overall size
improvement of -4.34%. Incorporating spill cost information improves the overall size to -2.54%. Somewhat
surprisingly, the addition of move coalescing has a relatively small effect. Although it improves code size by
as much as .95% on some benchmarks, overall coalescing only results in an additional .18% improvement.

Extending the optimal coloring algorithm to incorporate a register assignment ordering results in a sur-
prising improvement of 1.37%. In addition, 5 of the 19 benchmarks compile to smaller or equal code
than withgcc ’s allocator. Although some of this gain comes from allocating caller-save registers before
callee-save registers, the majority of the gain actually comes from a peculiarity of the x86 architecture. In
the x86 architecture, several instructions, including the move instruction, use a smaller opcode if one of
the operands is ineax . Since in the preferred order of allocation the first register to be allocated iseax ,
imposing an assignment ordering on the coloring algorithm results in many more variables allocated to this
small-code inducing register. There is a similar effect with floating pointer variables and thest(0) register.
Not to surprisingly, further biasing register assignments towards efficient register usage results in a further
improvement of .42% with 10 of the 19 benchmarks compiling to smaller or equally sized code.

We do not include execution time results since, with the exception of the most naive optimal coloring
algorithm, the changes in performance are mixed and minor. Using the most naive optimal coloring algo-
rithm, four benchmakrs (254.gap, 171.swim, 173.applu, and 200.sixtrack) have a greater than 5% increase

5



-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

2
0
0
.s

ix
tr

a
c
k

3
0
1
.a

p
s
i

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl
b
m

k

2
5
4
.g

a
p

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

T
o
ta

l

SPECfp SPECint

Benchmark

C
o

d
e
 S

iz
e
 I

m
p

r
o

v
e
m

e
n

t

Minimize Spilled Vars Minimize Spill Cost Coalescing

Ordered Assignment Preferential Assignment

Figure 3: Code size improvement (as determined by measuring the size of the.text section) relative to
code produced using thegcc graph allocator.

in execution time over the default heuristic allocator with 200.sixtrack showing an increase in execution
time of 27%.

Although the optimal coloring algorithm generates better code for many of the benchmarks, it is clear
from the remaining benchmarks that there are probably additional extensions to the model that thegcc
allocator has implemented but the optimal coloring algorithm is not taking into account.

6 Discussion

The coloring heuristic used by the allocator correctly determines the colorability of typical interference
graphs 99.9% of the time. There is little benefit in incorporating a more sophisticated coloring algorithm
into the allocator. In fact, if the coloring algorithm is not modified to incorporate other aspects of register
allocation, the result is a decidedly poor allocation.

Surprisingly, even when other aspects of register allocation are incorporated into the model, the optimal
coloring algorithm does not always outperform the heuristic algorithm. Investigating the cases where the
optimal coloring algorithm is outperformed reveals that the primary cause of the regressions is due to the
strict hierarchy of register allocation extensions. For example, a variable will never be allocated to its
preferred register class if doing so would result in more expensive spills. In some cases, the cost of not
assigning a variable to its preferred register class is more expensive then the cost of the avoided spills. A

6



more realistic cost model for register preferences would likely eliminate many of the regressions.
A graph coloring allocator explicitly models the interference element of the register allocation prob-

lem and is successful at solving this subproblem. However, graph coloring does not explicitly model the
additional elements of the allocation problem. Instead, these elements are tacked onto the graph coloring
problem by modifying the spill and register assignment heuristics. In contrast, considergcc ’s default al-
locator, which is a local/global, heuristic-driven, non-iterative allocator. The heuristics of this allocator are
heavily tuned to optimize for the register usage constraints of the target architecture. Thus, even though
this allocator does not have some of the more advanced features of a traditional graph allocator, the default
allocator generally outperforms the graph allocator, producing code that is 2.13% smaller overall.

Furthermore, results from optimal register allocators that more precisely model the costs of register al-
location [10, 16, 12], but do not exhibit practical compile times, indicate there is a substantial gap between
existing allocators and the theoretical optimal. Since this disparity is not due to the inability of the color-
ing algorithm, it is most likely a failure of graph coloring allocators to explicitly model and optimize for
additional elements of register allocation, such as spill code generation and placement.

Extensions to the graph coloring model that increase its expressiveness have been proposed [20] as well
as other models of register allocation that are innately more expressive, such using integer linear program-
ming [18, 3, 10, 16], partitioned boolean quadratic programming [19], and multi-commodity network flow
[15]. Finding the right combination of model and solution technique to effectively close the gap between
existing allocators and the theoretical optimal remains an open problem.

7 Conclusion

Our investigation into the performance of register allocators has shown that obtaining a good allocation
requires more than coloring an interference graph. Using an optimal coloring algorithm we have shown the
precise contribution of various extensions to the basic graph coloring model. This data indicates that more
expressive models than simple graph coloring, combined with natural and efficient solution techniques, are
needed to fully solve the register allocation problem.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Princiles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] Andrew W. Appel.Modern Compiler Implementation in Java: Basic Techniques. Cambridge Univer-
sity Press, 1997.

[3] Andrew W. Appel and Lal George. Optimal spilling for cisc machines with few registers. InProceed-
ings of the ACM SIGPLAN 2001 conference on Programming language design and implementation,
pages 243–253. ACM Press, 2001.

[4] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill code minimization
via interference region spilling. InSIGPLAN Conference on Programming Language Design and
Implementation, pages 287–295, 1997.

[5] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I. Nahshon. Spill
code minimization techniques for optimizing compliers. InProceedings of the ACM SIGPLAN 1989
Conference on Programming language design and implementation, pages 258–263. ACM Press, 1989.

7



[6] Preston Briggs.Register allocation via graph coloring. PhD thesis, Rice University, Houston, TX,
USA, 1992.

[7] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring register alloca-
tion. ACM Trans. Program. Lang. Syst., 16(3):428–455, 1994.

[8] G. J. Chaitin. Register allocation & spilling via graph coloring. InProceedings of the 1982 SIGPLAN
symposium on Compiler construction, pages 98–101. ACM Press, 1982.

[9] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register allocator. In
Proceedings of the 1998 International Compiler Construction Converence, 1998.

[10] Changqing Fu, Kent Wilken, and David Goodwin. A faster optimal register allocator.The Journal of
Instruction-Level Parallelism, 7:1–31, January 2005.

[11] Lal George and Andrew W. Appel. Iterated register coalescing.ACM Trans. Program. Lang. Syst.,
18(3):300–324, 1996.

[12] Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz. Graph coloring vs. optimal register allocation
for optimizing compilers. InJMLC, pages 202–213, 2003.

[13] ILOG CPLEX. http://www.ilog.com/products/cplex .

[14] Mark S. Johnson and Terrence C. Miller. Effectiveness of a machine-level, global optimizer. In
SIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium on Compiler contruction, pages 99–
108, New York, NY, USA, 1986. ACM Press.

[15] David Koes and Seth Copen Goldstein. A progressive register allocator for irregular architectures.
In CGO ’05: Proceedings of the International Symposium on Code Generation and Optimization
(CGO’05), pages 269–280, Washington, DC, USA, 2005. IEEE Computer Society.

[16] Timothy Kong and Kent D. Wilken. Precise register allocation for irregular architectures. InProceed-
ings of the 31st annual ACM/IEEE international symposium on Microarchitecture, pages 297–307.
IEEE Computer Society Press, 1998.

[17] Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[18] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. InProceedings of the joint
conference on Languages, compilers and tools for embedded systems, pages 120–129. ACM Press,
2002.

[19] Bernhard Scholz and Erik Eckstein. Register allocation for irregular architectures. InProceedings of
the joint conference on Languages, compilers and tools for embedded systems, pages 139–148. ACM
Press, 2002.

[20] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for graph-coloring
register allocation.SIGPLAN Not., 39(6):277–288, 2004.

[21] Standard Performance Evaluation Corp.SPEC CPU2000 Benchmark Suite, 2000.

8


