Brain in a Bottle

Seth Copen Goldstein seth@cs.cmu.edu Carnegie Mellon University

WACI 2006 © 2006 Goldstein

Brain Power?

From Hans Moravec's Book "Robot"

WACI 2006 © 2006 Goldstein

Why not just more of the same

Blue Gene today $\sim 10^9$ MIPS

Why not just more of the same

Why not just more of the same

Blue Gene today ~ 109 MIPS (But in flops)

More importantly, connectivity

- Brain has ~10⁵ connections between each neuron
- Total connections ~10¹⁴

Power, volume - won't even go there

How to build it

- · 1mm³ (self-assembled) processing unit
- Drop them into a bottle
- They self-assemble into a single massively parallel processor
- · Issues:
 - How build units?
 - Power?
 - Interconnect?
 - How cool ensemble?
 - And, one more I won't address.

WACI 2006

© 2006 Goldstein

A potential approach

- How to form 3D from a 2D process?
 - begin with foundry CMOS on SOI

A potential approach

How to form 3D from a 2D process?

- begin with foundry CMOS on SOI

 pattern a flower that includes structure and circuits

SC Carnego Carnego School of Computer Science

WACI 2006 © 2006 Goldstein

A potential approach

- How to form 3D from a 2D process?
 - begin with foundry CMOS on SOI
 - pattern a flower that includes structure and circuits
 - lift off silicon layer
 - · flexible
 - harness stress to form a sphere

A potential approach

Reid, AFRL

- How to form 3D from a 2D process?
 - begin with foundry CMOS on SOI
 - pattern a flower that includes structure and circuits
 - lift off silicon layer
 - flexible
 - harness stress to form a sphere

WACI 2006 © 2006 Goldstein

What it contains

- Using 90nm SOI process
 - ARM 7 (.25mm², 50 μ W/MHz)
 - 256KB memory (14 μ W/MHz)
 - Circuits for power distribution
 - Energy for ~109 instructions
- These are today's numbers!

Delivering Power

- Each unit has a supercap
- Units are in contact with each other
- Use Capacitive Coupling
 - Direct unit-unit coupling
 - A "store & forward" network!
- · Key: Packets of power
 - Network routing problem

WACI 2006

© 2006 Goldstein

Connectivity

- So far, an examip machine, but only local connections.
- Attach to the surface wires of random lengths averaging 10cm in length
- · Wire are coated with
 - Insulator
 - High-resistive coating

WACI 2006

© 2006 Goldstein

Connections

- A node can communicate with another node that is 1 or 2 contacts away.
- Example:
 - A can talk to B & C
 - D can talk to C & B
 - D interferes with A & C
- For 10cm lengths and uniform distribution, we get 400² neighbors per node.

WACI 2006

© 2006 Goldstein

Interference

- Think of the wires as wave guides or antennas for VERY low power wireless.
- Communication will have to be sparse on each wire or this probably won't work

Volume and Power

- Using reasonable wires ($<3\Omega$) and 1mm diameter spheres in 1m³ we have
 - ~50% volume in spheres
 - ~20% volume in wires
 - Rest for coolant
- Liquid cooled
 - 500pa pump delivering FC-77 will keep this cool.
 - Easily get more pressure and increase performance of each node

WACI 2006 © 2006 Goldstein

Goal: Brain-like hardware

• 1mm³ footprint for processing units

- 10-100Mhz processing unit

- Communication
- Power distribution
- Attached wires
 - Non-deterministic attachment to surface
 - ~6 wires per node
 - Average 10cm in length
- Put in a bucket

System Architecture

- · Hardware:
 - Random Network
 - Highly interconnected
 - Capacitive coupling
 - I/O at the edges
 - 1011 MIPS
 - 1014 total connections
 - $-1m^3$
- · Software:
 - Whoops, I wasn't going to mention the software

WACI 2006

© 2006 Goldstein

Cost

- processed silicon cost is <.002\$ per node
- 10^9 nodes cost ~20,000,000\$
 - 200M\$ for 1 sustained petaflop by NSF
 - So, BiaB is 1000X more cost effective!
- Build it once and then for a mere 10K\$
 - 106 MIP machine on your dest!
 - (About as big as

Why?

- MREFC to study/simulate/understand the brain
- Provide researchers with an exaflop machine with unprecedented connectivity
- Oh, and of course,

SCS Carnegie 21 School of Community Science

WACI 2006 © 2006 Goldstein

Why?

- MREFC to study/simulate/understand the brain
- Provide researchers with an exaflop machine with unprecedented connectivity
- Oh, and of course,
 Figure out how to program the darn thing

Diatribe

- · We are victims of our own success
- Imagine the research proposal: "Eliminate all Spam"
 - very hard
 - very interesting (to us)
 - VERY mundane to everyone else

SCS Carnegor Mellon,

WACI 2006

© 2006 Goldstein

Diatribe

- · We are victims of our own success
- Imagine the research proposal: "Eliminate all Spam"
 - very hard
 - very interesting (to us)
 - VERY mundane to everyone else
- · We need ideas
 - That capture imagination
 - Stimulate interesting research
 - That provoke students (the best and brightest) to enter computer science

Brain in a bottle

- · Can we build a brain?
- Can we program such a machine?
- · Can we understand intelligence?
- · Can we create hard AI?
- Can we put a petaflop on every desk?
- Should we try?

WACI 2006

© 2006 Goldstein