
PARIS RESEARCH LABORATORY

d i g i t a l

December 1992

18

Seth Copen Goldstein

An Abstract Machine
to Implement Functions in LIFE

PRL TECHNICAL NOTE

18

An Abstract Machine
to Implement Functions in LIFE

Seth Copen Goldstein

December 1992

Publication Notes

This work was done during the author’s three-month internship at Digital Equipment Corpora-
tion’s Paris Research Laboratory.

c
�

Digital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

This note outlines the Life Abstract Machine (LAM), an abstract machine used as an inter-
mediate target for the efficient compilation of LIFE. LAM focuses primarily on the efficient
implementation of matching, residuation, and currying of functions. Although the topic is not
discussed in this note, LAM also implements lazy unification.

LAM should be viewed as an intermediate target for compiling LIFE to a native instruction set
for a general purpose processor. Thus, this note presents LAM as an abstract machine along
with its instructions. However, we also discuss how LAM would be realized in terms of data
structures and basic routines. This should facilitate the implementation of both a LIFE-to-LAM

compiler and a LAM-to-native-code compiler.

iii

Keywords

Logic programming, inheritance, functional programming, constraint logic programming,
object-oriented programming, abstract machine, execution model, constraint, implementation,
feature structures, LIFE.

Acknowledgements

Working at PRL has been a great experience and I want to thank everyone at the lab for a
summer full of learning and fun. In particular I want to thank everyone in the LIFE group for
keeping me on my toes, teaching me new things, and tolerating my bad French.

I have special thanks for Peter Van Roy, my advisor at PRL. Besides introducing me to LIFE
and stimulating me with more ideas than I could digest, he kept me on course. Without his
support and careful (and continual) reviews, this note and the work it contains would not have
been completed.

In addition to working with Peter, it was a true pleasure to work with Hassan Aı̈t-Kaci and
Andreas Podelski. Between the two of them I learned a great deal about the theoretical nature
of LIFE. Working with them on order-sorted feature theory unification was a truly enlivening
process.

Finally, I want to thank Deborah for, well, everything.

iv

Contents

1 Introduction 1
1.1 Overview ��� 1
1.2

�
-terms ��� 1

2 Matching 3
2.1 Definition ��� 3
2.2 Examples ��� 3
2.3 Introduction to Currying ��� 6

3 Representing Function Definitions as Constraint Trees 6

4 Data Structures 8

5 The Mechanism Behind the Machine 10
5.1 The Phases of a Function Call ��� 10
5.2 Residuation ��� 11
5.3 Resumption ��� 12
5.4 Currying ��� 12

6 LAM: The Life Abstract Machine 14
6.1 The LAM Register Set ��� 15
6.2 The LAM Instruction Set ��� 15
6.3 Head Instructions ��� 16
6.4 Body Instructions ��� 23
6.5 Obvious instructions ��� 27

7 Example LAM Code 28

8 The Append Function 28

9 The Plus Function 33

10 Detailed Data Structures and Routines 40
10.1 The Three Basic Data Structures ��� 40

10.1.1 The Psiterm ��� 40
10.1.2 The Frame ��� 41
10.1.3 The Residuation ��� 42
10.1.4 The Sort ��� 44

10.2 The Head Instructions ��� 44
10.2.1 Sort Constraint ��� 44
10.2.2 Feature Constraint ��� 45
10.2.3 Equality Constraint ��� 45
10.2.4 Initialized Constraint ��� 50

v

10.2.5 Check Residuation Count Instruction ������������������������������� 50
10.3 Auxiliary Functions and Class Implementations ������������������������� 50

11 Conclusion 53

A Instruction Summary 54

References 55

An Abstract Machine to Implement Functions in LIFE 1

1 Introduction

1.1 Overview

This note outlines the Life Abstract Machine (LAM), an abstract machine used as an inter-
mediate target for the efficient compilation of LIFE. LAM focuses primarily on the efficient
implementation of matching, residuation, and currying of functions. Although the topic is not
discussed in this note, LAM also implements lazy unification.

LAM should be viewed as an intermediate target for compiling LIFE to a native instruction set
for a general purpose processor. Thus, this note presents LAM as an abstract machine along
with its instructions. However, we also discuss how LAM would be realized in terms of data
structures and basic routines. This should facilitate the implementation of both a LIFE-to-LAM

compiler and a LAM-to-native-code compiler.

While this document is intended to be self-contained, it is assumed that the reader is familiar
with at least the informal parts of [2]. After presenting the basic properties of

�
-terms we give a

brief of description of matching, residuation, and currying in Section 2. Section 3 explains how
function definitions are decomposed into constraint trees. In Section 4 we present an overview
of the data structures used for describing the algorithms that implement the functionality of
LAM. The mechanics of currying and residuation, in particular for the equality constraint, are
described in Section 5. In Section 6 the actual register set and instructions of LAM are described
in detail. This is followed with some example LAM code in Section 7. Finally, the nitty gritty
details of the implementation are described in Section 10.

1.2
�

-terms

A
�

-term is a generalization of record-like data structures in traditional programming languages.
It is an extension of first-order terms to include sorts and features. For a coherent and complete
discussion of

�
-terms the reader can see [2]. Here I will briefly outline the notation.

A
�

-term (or OSF-term in normal form) is of the form
���

X : s
���

1 � �
1 � � � � � � n � �

n �
where�

there is at most one occurrence of a variable Y in
�

such that Y is the root variable of a
non-trivial OSF-term (i.e., different than Y :);�
s is a non-bottom sort in
 ;� �

1 � � � � � � n are pairwise distinct features in � , n � 0;�
�

1 � � � � � � n are normal OSF-terms.

The sorts of a
�

-term live in a lattice. The least sort is bottom (), the highest (or most general)
is top (). If a sort, a, is below another sort, b, then we say that a implies b, a entails b, a
is more specific than b, or equally, that a is subsumed by b1. Thus, all sorts are subsumed by	 and implies every sort. Intersection of sorts is carried out by the greatest lower bound

1The details of sort implication and in particular how they relate to function invocation in LIFE can be found in
[1]

Technical Note No. 18 December 1992

2 Seth Copen Goldstein

name

spouse

X

name

X

spouse

person
"fred"

"mary"

person

F

M

Figure 1: Graphical representation of a
�

-term. The nodes represent sorts, and the arcs
features. The capital letters in the nodes correspond to the variables used in the textual
representation of the

�
-term.

operator, written, � .
�

-terms can be represented in many ways. The first two considered here are the textual and
graphical representations. For example, the

�
-term

X :person
�
name � F :“fred” �
spouse � S :person

�
name � M :“mary” �
spouse � X � �

Can also be represented by the directed graph in Figure 1. The graphical representation does
not actually need the variable names, used in the textual representation to capture equality
constraints. However, to aid in referencing the nodes and arcs we will keep them. An
alternative representation of

�
-terms is the OSF-clause. An OSF-clause is a conjunction of a

OSF-constraints. An OSF-constraint is one of (1) X : s, (2) X
��

X � , or (3) X �
� ��

X � , where X
and X � are variables in � , s is a sort in
 , and

�
is a feature in � . An OSF-clause is either an

OSF-constraint or of the form � & ��� where � and ��� are OSF-clauses. We can read X : s as “X
lies in sort s”, X

��
X � as “X is equal to X � ”, and X �

� ��
X � as “X � is the feature

�
of X.”

We can always associate with an OSF- term
� �

X : s
���

1 � �
1 � � � � � � n � �

n � a corresponding
OSF-clause � � � � as follows:

� � � � � X : s & X �
�

1
��

X �1 & � � � & X �
�

n
��

X �n
& � � � 1 � & � � � & � � � n �

where X �1 � � � � � X �n are the roots of
�

1 � � � � � � n, respectively. We say that � � � � is obtained from
dissolving the OSF-term

�
. For example, the

�
-term in Figure 1 could be represented by four

sort constraints, X : person, F :“fred”, S : person, and M :“mary”, and three feature constraints,
X � name

��
F, X � spouse

��
S, S � name

��
M, and S � spouse

��
X. While an OSF-clause is just

a conjunction of the primitive constraints, it can also be represented by a tree which shows
how the individual constraints are related to each other. Figure 2 shows the above

�
-term’s

constraint tree. In LIFE the function call is represented by a
�

-term, where the sort of the
�

-term is the name of the function being invoked, and the arguments to the function are
�

-
terms connected to the root by features that label them as arguments. For instance, the function
call append([1,2,3], [4,5]) is really shorthand for append(1 � [1,2,3], 2

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 3

X:person X.name = F

F:"fred" S:person

X.spouse = S

S.name = M

M:"mary"

S.spouse = X

Figure 2: The Constraint Tree representation of the dissolved
�

-term.

� [4,5]). As will be seen later, representing the function calls and function definitions as
constraint trees leads to a natural and efficient compilation strategy.

2 Matching

2.1 Definition

Function invocation in LIFE is accomplished with matching. As a result the rules for invoking
functions in LIFE follow the rules of implication, which means there are three cases that need to
be considered when implementing function invocation: (1) when the actual arguments imply
(i.e., entail) the formal arguments, (2) when the actuals imply the negation of the formals
(i.e., they disentail the formals), and (3) when the actuals neither entail nor disentail the
formals. In the last case we say that the function invocation has residuated on its arguments.
The requirements for an implementation of function invocation in LIFE are that a function
invocation either fire or fail as soon as the actuals either entail or disentail the formals and
that no changes be made to the arguments unless and until the function fires2. Finally, the
implementation must maintain the church-Rosser property of functions. The main challenge to
the implementor is to perform the smallest possible number of checks. This section describes
an efficient implementation which will perform each check only once regardless of the number
of times a function residuates or its arguments are lowered. There are two components to
this implementation: an abstract machine and a compilation strategy. Most important, it will
also handle the most common cases, that of direct entailment or disentailment, with surprising
efficiency.

2.2 Examples

In order to point out some of the difficulties in implementing functions, let’s assume the
definitions below and the sort hierarchy in Figure 3.

2A formal treatment of functions in LIFE can be found in [1].

Technical Note No. 18 December 1992

4 Seth Copen Goldstein

person

employee student

temp intern

real

int

string

Figure 3: A sample sort hierarchy.

incr(X:int) � X+1.
incr(X:string) � "increment".
insurance(P:person(spouse � S:temp)) � 1.
insurance(P:person(spouse � S:person)) � 2.
isspouse(P:person(spouse � S), S:person(spouse � P)) � true.

If incr is called with an integer or string argument we get a result. For example (the answer
produced follows the �):

A=incr(5)? � A=6
A=incr("hello")? � A="increment"

In addition to these obvious results, if an argument to incr is incompatible with the formal
definitions, then it will result in failure.

A=incr(person)? � failure

The interesting case is where the argument in the function call is under-specified, i.e., its sort
is neither incompatible nor a subsort of the formal argument. For example,

A=incr(X:@)? � A=@, X=@
X=real? � A=@, X=real
X=7? � A=8, X=7

In this example, X starts off being the top sort (represented by the character ‘@’), so the function
incr residuates on its argument. When X is lowered to the sort real, the function is awakened
and (because the sort of X is still to general) again residuated. When X is finally lowered to the
integer 7, the function is reactivated and fires.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 5

The function insurance, like incr, has two clauses in its definition. But it differs from
incr in that the formal argument in the second clause is not incomparable with that in the first
clause. Instead, it is more general than the one in the first clause.

A=insurance(X:person)? � A=@, X=person
X=person(boss � "joe")? � A=@,

X=person(boss � "joe")
X=person(spouse � Y:person)? � A=@,

X=person(boss � "joe",
spouse � Y),

Y=person

In this example, the function residuates not because the root sort of the argument is under-
specified, but rather because the argument is missing a feature term. Notice that when the
argument X is lowered by adding the feature boss it does not affect the residuation. When it
is lowered again, by adding the feature spouse, the function remains residuated even though
the second clause is satisfied. This brings out the point that before the next clause is tried the
current clause must be completely disentailed.

To continue this example,

Y=intern? � A=2,
X=person(boss � "joe",

spouse � Y)
Y=intern

We see that once the first clause is disentailed, because intern � temp �� , the second clause
is checked and in this case fires. This example also shows how equality constraints must be
considered in disentailment.

A=isspouse(X:person, Y:person)? � A=@,
X=person,
Y=person

Z=person(boss � "joe"), X=person(spouse � Z)?
� A=@,

X=person(spouse � Z),
Y=person,
Z=person(boss � "joe")

Y=person(boss � "fred")? � failure

Up until the last query Z, the spouse of X, was unifiable with Y. However, in the last step Z and
Y became incompatible and thus the original query had to result in failure.

Although the arguments to a function call cannot be modified in the matching process, infor-
mation needs to be propagated in the

�
-term between constraints. For example, assume the

sort hierarchy in Figure 4 and the following function definition: theSame(X, X, X) �
1. The call theSame(A:a, B:b, C:c)? must fail immediately. This is because the
�

-terms A, B, and C can never unify.

Technical Note No. 18 December 1992

6 Seth Copen Goldstein

a b c

ab bc ac

Figure 4: A sample sort hierarchy.

2.3 Introduction to Currying

The final difficulty in implementing functions in LIFE is that function calls can curry. If a
function call does not have all its arguments specified in the function definition, then executing
the function returns a

�
-term that is a curried function call. It does not return a

�
-term that

stands for the result of the function call. This curried function call is a first-class object. If
the rest of the arguments are added to the curried function call, then the function will execute.
Thus, any unification performed on the

�
-term representing the curried function will not affect

the result of the function call, but rather will add arguments to the call. For example,

A=incr? � A=incr
A=@(1 � X:@)? � A=@, X=@
A=@(extra � 2)? � A=@(extra � 2), X=@
X=5? � A=6(extra � 2), X=5

In this series of queries, A is first set equal to the curried function incr, then the first and
only argument is unified with A and then A becomes the result of the function call, which has
residuated on X. An extra feature is then added to the result of the function call. Finally, X is
lowered and the function completes. Notice that the order of the second and third line cannot
be changed, because in the second query A represents the call and in the third it represents the
result!

3 Representing Function Definitions as Constraint Trees

In order to obtain the behavior described above, this note proposes a compilation scheme based
on decomposing function definitions into function trees, where each clause of the function is
represented by a constraint tree3.

3The idea of using executable constraints was found in [4]

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 7

(n arguments)
Arity Constraint

C1 C2 Cm

st1 2nd nth

Clause Tree

Argument
Treen

Figure 5: Tree representing an m-clause n-ary function definition.

Each function is defined by a (possibly unit) series of clauses. Each clause is tried in turn until
either all are disentailed or one is entailed. If a particular clause residuates, then it is only when
it is disentailed that the remaining clauses are tested.

Each function head, or clause, is compiled into a series of constraints. In this note, the individual
clauses are joined together into a complete function definition in the most basic way—serially—
through the use of the failure mechanism. It is expected that optimization techniques can be
performed on the individual clauses to create a more efficient conglomeration. One way to
view a function definition is as a tree. The root of the tree will hold an arity constraint; which
succeeds iff the actual function call has the same number of arguments as in the definition.
The function represented in the tree in Figure 5 is an n-ary function. The children of the arity
constraint node represent each clause in the function definition. The clauses are ordered from
left to right. Each clause then has n children, representing the constraint tree needed to do the
matching for each of the n arguments of the function. These constraint trees are created by
dissolving the

�
-terms that represent each argument in the clause. It is similar to the constraint

tree in Figure 2. When a failure is detected, then control is transferred to the next clause
node in the tree. The advantages in viewing a function definition this way are many. First, the
wavefront algorithm [4, 6, 5] as implemented in this note treats the constraints on the arguments
as if they were arranged in a tree. Second, one can classify the arcs and nodes in such a way as
to guide optimizations. For instance, in Figure 5, the solid arcs can be rearranged in any order,
while the dashed arcs are fixed. It is also worth noticing that since the arity constraint is the
same for all the clauses of a definition, it might be inlined into the calling code, so that

�
-terms

don’t have to be built for function calls.

Technical Note No. 18 December 1992

8 Seth Copen Goldstein

4 Data Structures

This section gives an overview of the data structures used in describing the LAM instruction set.
The basis of the machine is the representation of

�
-terms. The class Psiterm defined here is

used to express the parts of a
�

-term that concern matching.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 9

class Psiterm
{

Sort sort; // the sort for this Psiterm
Features features; // the features
Residuation rlist; // residuations for this Psiterm
Psiterm* ref; // the dereference chain link

};

sort is the sort that the
�

-term currently has. The field features points to all the features
in the

�
-term. Its internal representation does not concern us here. Any collection that supports

fetching, adding, and testing the existence of a feature will suffice. The most interesting field in
terms of matching is the rlist field; it points to a Residuation which is described below.
The ref field is used to implement dereference chains. If it is not NULL, then the

�
-term has

been unified to the
�

-term pointed to by ref.

Every function invocation is associated with a Frame. The relevant parts are
class Frame
{
int residCounter; // counts number of residuated variables
Code body; // address of body of function
Code fail; // the address to goto if a constraint fails
Psiterm* result; // result of the function gets put here

};

Missing from the above definition is any information about local variables and so forth that every
function frame will hold. This definition is just sufficient for describing the matching process.
The residCounter is initialized on entry to zero and every residuated goal increments this
counter. The instruction resid? checks this field. If it is zero, then the function body, pointed
to by the field body, is executed. The fail is a pointer to the next clause in the function
definition to be executed if any of the constraints in the current clause tree fail. If the current
clause tree is the last, then this will point to code that will invoke the general backtracking
routine. The

�
-term that is returned by the function is pointed to by the result field. When a

constraint residuates it creates (if necessary) a Residuation which is attached to the
�

-term
that caused the residuation.

class Residuation
{
Frame* parent; // frame of function to be activated
Sort sort; // the best known sort for this term

// (i.e. the glb of the formal and the
// actual)

Residuation* next; // next residuation for this var
ResidInfo* info; // info about each resid for this parent

};

Each
�

-term can have only one Residuation per frame in which it has residuated. Each
constraint that it residuates on is pointed to by the info field of the Residuation. Sort
constraints, feature constraints, and initialized constraints all create ResidInfo instances.
Equality constraints create an instance ofEqResidInfo. In addition to its use for residuation,
ResidInfo is also used when functions curry.

class ResidInfo
{

Technical Note No. 18 December 1992

10 Seth Copen Goldstein

Psiterm

feature set

rlist

sort

ref

Residuation

parent

sort

next

info

address

next

ResidInfo

Frame

residCounter

body

fail

result

EqResidInfo

address

next

other

Figure 6: Representation of the basic data structures.

Code address; // address of constraint to re-execute
ResidInfo next; // next ResidInfo for this frame if it

// exists, else NULL
};

class EqResidInfo: public ResidInfo�

Residuation other; // Residuation for the other psiterm
// used in = constraint�

;

In what follows we will represent the data structures by schematic diagrams. The diagrams
will not name the fields of the data structures, but will just stack the fields upon each other as
in Figure 6.

5 The Mechanism Behind the Machine

5.1 The Phases of a Function Call

The execution of a function has several phases. The first is upon initial entry to the function. In
this phase the arity constraint (see Section 6.3) is executed. If the arity constraint succeeds, the
�

-term representing the function call is deconstructed and the execution of the function passes
into the matching phase; otherwise the function call is curried and immediately returns. The
deconstruction of a

�
-term is just placing the arguments into registers by tracing the features

from the original function
�

-term.

When the function has passed into the matching phase a frame will be allocated to the function.
Every function will have frames with at least the structure described above for class Frame.
In addition the frames, will have fields for any variables that are manipulated in the function.

In the matching phase, the constraints that result from the function definition are executed
in order to find the clause of the function definition. If any constraint fails, then the next
clause is tried, until no clauses remain, at which point the function invocation fails. If any

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 11

Psiterm

feature set

sort

Residuation

best sort

address

ResidInfo

Frame
residCouner

body

fail

result

address

ResidInfo

Psiterm

@

Argument:

Result:

Matching Code
For the
Function
constraint
constraint
Body code
for the
Function

Figure 7: Schematic representation of a
�

-term with two residuations attached for the same
function invocation.

clause completes with success and none of the constraints have residuated, then the clause that
matched enters the execution phase and executes the body of the function.

If a constraint residuates during the matching phase, a Residuation is created which is
attached to the

�
-term involved. The remaining constraints—the ones below the residuating

constraint in the tree—will be skipped. If all of the executed constraints either succeed or
residuate the function becomes quiescent and returns to the caller.

If any of the
�

-terms that have residuations are later modified, then the residuations will resume
execution to recheck the constraint that caused the residuation during the matching phase. This
is called the resumption phase.

5.2 Residuation

When a constraint in the head of a function definition residuates, a series of objects is created
and attached to the

�
-term that caused the constraint to residuate. The objects created have two

primary functions: first, to force disentailment if necessary, and second, to allow the constraint
to be resumed if the

�
-term is modified.

In order to keep the amount of information stored in each residuation to a minimum, the
residuation structure is broken down into two objects: a Residuation object, which records
the information about the frame on which the

�
-term is residuated, and a ResidInfo object,

which records the particular constraint that residuated. In this way, if a single
�

-term is involved
in multiple residuated constrains for a particular frame, only multiple ResidInfo objects need
to be created. See Figure 7 for an example of a frame with a

�
-term that has residuated twice.

Before the residuation is created, the sort of the
�

-term is also compared to the sort field in
the Residuation structure. If they are incompatible then the function definition is disentailed.

Technical Note No. 18 December 1992

12 Seth Copen Goldstein

In this manner, information about equality between the actual arguments is maintained even
though the arguments themselves cannot be modified during the matching phase4.

The three simple constraints (subsort, feature existence, initialized) each create a ResidInfo
which is attached to the corresponding Residuation object for the

�
-term and frame involved.

The equality constraint, on the other hand, must create a structure so that if either object in the
constraint is modified, then the constraint will be re-executed. Further, if either of the

�
-terms

involved in the equality constraint contains subparts that cannot be unified, then the constraint
must generate a failure.

This added complexity is handled by having the constraint traverse both
�

-terms, adding
EqResidInfo objects to all common children. For example, in Figure 8 the

�
-terms attached

to the features in common to A and V must each be checked to see if possible conflict (yielding
failure) or possible unification (yielding more EqResidInfo structures) results (also see the
example on Page 47). Notice how each pair of corresponding

�
-terms involved records the

sort of their intersection. Further, if a new feature is added to a
�

-term involved in an equality
residuation, additional work will occur only if there is a corresponding

�
-term involved (i.e.,

it already has an EqResidInfo attached).

Thus, for each frame in which a
�

-term has any residuations, there will be one Residuation
structure attached to the

�
-term. For each constraint (in the same frame) on which the

�
-

term residuated there will be either a ResidInfo or a EqResidInfo structure linked to the
Residuation structure. For example, if n

�
-terms were involved in n � 1 equality constraints,

all of which residuated, there would be n Residuation structures–each attached to one of
the n

�
-terms. In addition, there would be

�
n � 1 � pairs of EqResidInfo structures–one for

each constraint–linking up the
�

-terms that were involved in the n � 1 equality constraints.

5.3 Resumption

When a
�

-term is modified the unification routine will check to see if there are any residuations
depending on the modified

�
-term. If there are, then each residuation is executed in turn. If

any of the functions becomes satisfied, then it in turn continues to execute.

In other words, if during unification of a
�

-term, a function that was residuated on the
�

-term
is enabled, it will be executed immediately. Thus, the enabled function runs (and either fails
or completes) before continuing with the code that caused the unification to happen in the first
place.

5.4 Currying

If an attempt is made to execute a function without all of its arguments, then the function will
curry and return. At a later time the extra arguments may be unified with the function call
and then the function will execute. As currying is not a common occurrence, we strove to

4It was recently noted that storing the sort, in and of itself, is not sufficient to provide complete disentailment.
For instance, assume the function definition: f(s(a), s(b)) -> 1.. If a

�
b is � , then the call f(X, X)

should fail. However, since our model only compares the sorts of residuated � -terms, it will not cause failure. This
can be fixed by following the model of the equality constraint.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 13

A

B C

V

W

s

t t

s

u

first
second first

s s

t/\u t/\u

third

D

t

The EqResidInfo structures that would be created by executing the equality constraint on
�

-terms A and V.

A

B C

V

W

s

t t

s

u

first
second first

s s

t/\u t/\u

t t

third

D

third

D

t t

Figure 8: The additional structures that would be added if the third feature were added to
�

-term A.

Technical Note No. 18 December 1992

14 Seth Copen Goldstein

Psiterm

Psiterm

@
Residuation

handleCurry

"a function"

feaure set

@

Figure 9: This figure shows the result of executing the arity constraint when the function needs
to be curried.

allow currying without increasing the cost of doing general operations like unification. This is
achieved by treating currying like residuation.

If a function curries, a new
�

-term, called a curry term, will be created with sort top and
no features. The curry term will have an attached ResidInfo which has a pointer to the
handleCurry routine (see Figure 9). Further, the original

�
-term will be “unified” with the

newly created curry term in the sense that dereferencing the original
�

-term will return the
new curry term. Furthermore, when the newly created

�
-term is unified with the special curry

term, the old
�

-term will will have its arguments copied into the new term. This allows the
curry term to represent a closure and be used as many times as the curried function is applied.
Thus, if extra arguments are added to the original function call the unification procedure will
unify the extra arguments with the curry term. Since the curry term has no features and is of
sort top the unification will always succeed, invoking the residuation attached to the curry term
in the process. The residuation function invoked will always be the handleCurry routine.

The handleCurry routine will first break the dereference link between the original function
and its curry term. It will then copy the original term to the curry term and then it will then try
to unify the curry term with the

�
-term representing the original function call. If the unification

succeeds, it will retry the function. Otherwise the unification will fail in the normal way. Thus,
the mechanism for residuation handles currying without any extra overhead.

6 LAM: The Life Abstract Machine

The LAM is an abstract machine used as the intermediate target for the compilation of LIFE
programs. It includes mechanisms that directly facilitate the compilation of LIFE features. This
section describes the registers and instruction set of LAM. While a complete abstract machine
would have to implement all LIFE functionality (i.e., residuation, unification, choice-point
handline, etc.), LAM–and this document–focus primarily on the mechanisms needed to handle
function calls and residuation.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 15

PC Program Counter

SP Stack Pointer

Rn General purpose register Rn There are an unlimited number of general purpose
registers. They can each hold a pointer to a

�
-

term, an integer, or any other basic data type.
They are denoted as the letter R followed by a
number, e.g. R8.

CFA Current Fail Address The CFA register holds the code address to jump
to if a unification operation fails.

CF Current Frame The CF register contains a pointer to the frame of
the function currently executing.

CPT Current
�

-term The CPT register by convention points to the root
of the

�
-term being operated on.

RR Result Register The RR register points to the
�

-term that the last
function returned. It is only used when arguments
are passed in registers.

Table 1: The LAM register set.

6.1 The LAM Register Set

In addition to general-purpose registers, LAM includes registers used to control the process of
unification and matching. All of these additional registers are used as pointers to data structures
in memory. They are not special except that their use is predetermined, so that we can more
easily describe the instruction set. By having them implicit in the instructions we are also able
to pack more information into each instruction.

LAM makes no assumptions about the number of registers in the machine. It is assumed that
the mapping from LAM to the machine language of a general purpose computer would map the
LAM registers as efficiently as possible. LAM also assumes that no tags are available in memory
or in the registers. Figure 1 lists all the registers in LAM important to this document.

6.2 The LAM Instruction Set

This section describes the instructions in the LAM instruction set. It focuses on the instructions
needed to do matching. The instruction set is specified at a high level so as to allow latitude in the

Technical Note No. 18 December 1992

16 Seth Copen Goldstein

LAM–to–native-instruction-set mapping. For instance, it does not specify how heap-allocated
structures are managed. It does not take a position on the actual representation of integers in
their boxed or unboxed form. Its primarily addresses the functionality of matching, residuation,
failure, and unification. It ignores the handling of choice-points and the implementation of
built-in operations.

In the instruction descriptions below operand names that begin with R denote any register. X
is used to denote a memory location. Italicized names ending in adr refer to addresses in the
code space; otherwise an italic name is a generic label. Feature names are represented by

�
,

and sort names are represented by s. Each instruction is followed by an informal description
and pseudo-code that describes its function. The pseudo-code will often refer to data structures
and routines defined in Sections 4 and 10.

Whenever an instruction operates on a
�

-term, it is assumed that the
�

-term has already been
dereferenced at the time it is fetched. In the descriptions of the instructions the phrase “the
�

-term Y” (or, if the context is clear, just Y) is understood to mean “the
�

-term that is at the
end of the reference chain from the

�
-term pointed to by Y .”

As LAM instructions are already fairly high-level no real constraints are placed on the addressing
modes that the operands may use, unless otherwise specified. The three basic modes used here
and in the examples are register, register + offset, and memory. The register + offset mode
is represented by writing R � offset. Notice that this is distinct from R �

�
, which retrieves the

�
-term reached by following the

�
feature from the

�
-term pointed to by R.

The instructions are broken down into two categories: head instruction and body instruction.
The head instructions are those instructions that can only appear in function heads. The
distinction between head and body instructions are between those that modify

�
-terms and

those that do not. Head instructions do not modify the value of
�

-terms, they only check there
contents and sometime cause residuations to be associated with them. Body instruction, on the
other hand, cause the

�
-terms they operate on to change value. The one exception to this is

deref which can be used in either section. It is listed in the body instruction section.

We will use a four part format to describe all the instructions. First the name and syntax of the
instruction will appear as follows.

instructionformat � instruction name
After the instruction format will be a description of each operand, then a textual description of
the function, and, finally, a pseudo-code description of the instruction’s functionality.

6.3 Head Instructions

Each head instruction is a constraint that checks its operand, the actual argument to the
function, against the function definition. The constraints are different from the body
instructions in that they don’t modify the operands and in that they can create residuations.
Thus, while body constraint instructions will either succeed or fail, head constraints will
either succeed, residuate, or fail.

All the head instructions have an implicit form, and some of them have an explicit form. The

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 17

implicit form, to work correctly, requires the CF register and certain of the fields of the current
frame to have been initialized for residuation and failure. On the other hand, the explicit
version will transfer control to an explicitly named address if either residuation or failure
occurs, so that nothing needs to have been preset in the current frame.

The implicit versions of the instructions will invoke the macro headfail if a failure occurs.
This macro will check CF� fail. If CF� fail is nonzero, then control will be transferred to
CF� fail; otherwise control will be transferred to the address in CFA. This is the mechanism
used to handle multiple rules in a function definition. The pseudo-code for the macro
headfail is

headfail:
if CF� fail �� 0 then

PC
�

CF� fail
else

PC
�

CFA

endif

Rx � s
Rx � s recheckadr
Rx � s failadr � residadr

� Subsort Constraint

Rx Rx must points to a
�

-term.

s s is a sort defined in the sort hierarchy.

recheckadr recheckadr is the address of the re-evaluation routine.

failadr failadr is the next address that will be executed if the constraint fails.

residadr residadr is the next address that will be executed if the constraint
residuates.

The Subsort Constraint instruction determines if the sort of Rx is a subsort of s. There are
three possible outcomes for this instruction: success, failure, or residuation. If Rx� sort is
subsumed by s, then this constraint succeeds. If the Rx� sort � s is , then the instruction
fails. If neither of these occur, or, in other words, Rx� sort neither entails or disentails s, then
the instruction residuates. See Figure 10 for the various possibilities.

The Subsort Constraint instruction has an implicit and explicit version. The implicit version is
Rx � s recheckadr. If recheckadr is not specified, then it is set to the current PC. The explicit
version is Rx � s failadr � residadr. Both the implicit and explicit versions check to see if the
sort of Rx is compatible with s without altering Rx in any way. If it is compatible, then the
next instruction executed is the subsequent one in the function definition.

The two versions differ in how they handle residuation and failure. If the instruction
residuates, the implicit version will create a sort residuation which will be attached to Rx and
will resume at recheckadr. The explicit version will transfer control to residadr. It will not
create any residuation structures, nor will it increment the residCount in the current frame.

Technical Note No. 18 December 1992

18 Seth Copen Goldstein

s
Fails

Succeeds

Residuates

Residuates

Figure 10: Different regions of sort intersection.

If the sort of Rx and s are incompatible, then the implicit version will execute the headfail
macro. The explicit version will transfer control to failadr.

Description of Rx � s recheckadr:

s � = glb(Rx� sort, s)
switch (s �)
case :

headfail
otherwise :

if (s ��� s) then
PC
�

PC � 1
else

Create a residuation and attach it to Rx
Rx� tryAddSimple(CF, s � , recheckadr)

endif
endswitch
PC
�

PC � 1

Description of Rx � s failadr � residadr:

s � = glb(Rx� sort, s)
switch (s �)
case :

PC
�

failadr constraint fails

otherwise :

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 19

if (s � � s) then
PC
�

PC � 1 constraint succeeds

else
PC
�

residadr constraint residuates

endif
endswitch

Rx �
�
?

Rx �
�
? residadr

Rx �
�
? residadr � recheckadr

� Feature Existence

Rx Rx must points to a
�

-term.

l l is a feature name.

residadr residadr is the next address that will be executed if the constraint
residuates. If residadr is not present in the instruction, then its value
defaults to the subsequent instruction in the program text.

recheckadr recheckadr is the address of the re-evaluation routine. If recheckadr is not
present its value defaults to the current PC.

The Feature Existence instruction tests for the existence of a feature
�

in the
�

-term in Rx. If
the feature exists, then the instruction succeeds and the next instruction is executed. If the
feature does not exist, then the instruction residuates and continues execution at residadr. The
residuation created will restart execution at recheckadr if Rx is ever modified.

A possibly more optimized LAM would have a more complex feature existence constraint.
Instead of creating a simple residuation which will be run when any feature (or sort) of the
�

-term is changed, it could be create a residuation which will only be executed when the
particular feature mentioned in the constraint is added the the

�
-term. I have ruled out this

more efficient instruction in LAM to keep the residuation structures smaller and more concise.
It is not clear whether having the specialized feature residuations would improve efficiency,
since whenever a feature is added it would still be necessary to check whether the added
feature participates in a residuation.

If LAM is oriented to more efficiency in the case of feature constraints it might, instead, be
better to investigate the possibility of actually adding the feature when the constraint is
executed. The added feature could point to a

�
-term which has sort top and has a residuation

attached that would have to perform a special check related to currying of the original
�

-term.
If unification is performed on the original

�
-term no problems are introduced. However, if

matching is performed on the
�

-term, some special mechanism would have to be used to
ensure that the “ghost” feature added by the constraint was not matched—since, if it were,
curried functions would not behave correctly.

I chose the simple route, and instead have feature constraints residuate on the top level
�

-term.

if Rx� hasFeature(l) then

Technical Note No. 18 December 1992

20 Seth Copen Goldstein

PC
�

PC � 1
else

Rx� tryAddSimple(CF, recheckadr)
PC
�

residadr
endif

Rx
��

Ry?
Rx

��
Ry? recheckadr

� Equality Constraint

Rx Rx points to a
�

-term.

Ry Ry points to a
�

-term.

recheckadr recheckadr is the address of the re-evaluation routine. If not present in the
instruction it defaults to the current PC.

The Equality Constraint instruction checks to see if Rx and Ry are the same dereferenced
pointer to a

�
-term. In other words, it succeeds if Rx and Ry have been unified. If they are the

same
�

-term, then the constraint succeeds and the next instruction is executed. If they could
become the same

�
-term, in other words, if they could be unified, then the constraint

residuates and the next instruction is executed. If they are inconsistent, then the headfail
macro is executed. All of the real work performed by this instruction is contained in the
canUnify routine (see Section 10.2.3), which will either create a residuation and return or
execute the headfail macro.

The CF register and CF� fail must be set before this instruction can be executed.

if Rx �� Rythen
canUnify

�
Rx � Ry � recheckadr �

endif
PC
�

PC � 1

X?
X? residadr � recheckadr

� Initialized Constraint

residadr residadr is the next address that will <be executed if the constraint
residuates. If residadr is not present in the instruction, then its value
defaults to the current PC+ 2.

recheckadr recheckadr is the address of the re-evaluation routine. If recheckadr is not
present its value defaults to the current PC.

The Initialized Constraint instruction determines whether a memory location points to a
�

-term or is uninitialized. This instruction will either succeed or residuate. It is used to make
sure that a variable has been defined before it is used. For instance, if a variable is initialized
in part of a constraint tree that could have been skipped (because a feature constraint
residuated, i.e., the

�
-term in question was missing a feature), then an equality constraint

depending on the skipped variable will have to be skipped until the variable is initialized.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 21

X:person

S:person

X.spouse = SX.name = I

I:id I.first = F I.last = L S.name = J

J.last = M

M = L

L ?

CPT.{1}?

Figure 11: A constraint tree for the one-argument, one-clause function definition. This tree
has been augmented with the Initialized Constraint L?.

In general, this constraint will be immediately followed by an equality constraint. Since the
equality constraint can only be executed if this constraint succeeds, the default address to
jump to if the constraint residuates is the one following the next instruction, i.e., the PC+ 2.

For example, the function definition (of one clause with one argument)

spouseName
�
X :person

�
name � I : id

�
first � F �
last � L � �

spouse � S :person
�
name � id

�
last � L � � � � � body �

creates a constraint tree, as in Figure 11, with an equality constraint between the
�

-terms at
the end of the last features. Notice that if either the name feature of X or the last feature of I is
not present, then the Equality Constraint instruction M

��
L? in Figure 11 has no meaning.

Thus, we introduce the Initialized Constraint instruction L? into the tree in Figure 11 If it
residuates, the M

��
L Equality Constraint will be skipped.

if X
� �

0 then
X� tryAddSimple(CF, recheckadr)
PC
�

residadr
else

PC
�

PC � 1
endif

Rx ��� � 1 � � 2 ������� � � n � Arity Constraint

Rx Rx must point to a
�

-term.

Technical Note No. 18 December 1992

22 Seth Copen Goldstein

�
1 � � 2 ������� � � n

�
1 � � 2 ������� � � n is a set of argument names (or features).

The Arity Constraint instruction succeeds iff the Rx has the features
�

1 � � 2 ������� � � n and no
others. It is used here as a way of specifying the number and names of the arguments to a
function. If a function call does not have all the arguments specified in the definition, then the
function call becomes curried.

If the Arity Constraint succeeds, then the function call represented by the
�

-term Rx will be
executed. If Rx is not a closure (i.e., it has never curried before), then a new

�
-term will be

created and assigned to register RR. This
�

-term will become the result of the function. If Rx
has previously curried, then a result

�
-term will already have been created, and it is now

assigned to RR.

If Rx contains features that are not present in the set � � 1 � � 2 ������� � � n � , then the Arity Constraint
fails. This should probably also signal some kind of exception, since this kind of failure is not
expected. Another implementation of LAM might, instead, pass features not in the set of
argument names to the result

�
-term. It is not apparent how such a lenient approach could be

implemented efficiently.

If, on the other hand, the features in Rx are a subset of � � 1 � � 2 ������� � � n � , then the instruction
will curry Rx and return to the caller. A

�
-term is curried by creating a reference link between

Rx and a new
�

-term with sort top. A special residuation, called a handleCurry residuation,
will then be attached to the new

�
-term.

In general the Arity Constraint is the first constraint executed at the head the matching code
for a function. It is used to handle the case when the compiler cannot figure out what function
will be invoked at compile time and instead must build a complete

�
-term before the function

can be invoked. Following the arity constraint will be code that will deconstruct the
�

-term,
placing arguments in registers, etc. (see Section 5.1). If, on the other hand, the compiler can
determine the function being called, then it can place the arguments into registers (as specified
by some mapping of features to registers) and start execution of the function after the Arity
Constraint and the deconstruction code.

if Rx � features � � � 1 � � 2 ������� � � n � �� �
then

headfail Rx has too many arguments

else
if
�
Rx � features � � � 1 � � 2 ������� � � n � � � � �

then
constraint succeeds , setup result

�
-term

if Rx � ref �� 0 then
This function had previously curried
RR

�
Rx� ref

Rx� ref
�

0
else

RR
�

new Psi
endif
Now execute function body
PC
�

PC � 1

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 23

else
Must curry this function call
C
�

new Psi
C � addCurryResid

�
Rx � PC �

ref Rx � C see the ref instruction

ret
endif

endif

resid?
resid? residadr

� Residuation Check

residadr residadr is the next address that will be executed if the frame has any
residuations.

The Residuation Check instruction checks to see if CF � residCount is zero or not. If it is zero,
then the next instruction is executed. If it is not zero then the implicit version, resid?,will
execute a ret instruction and the explicit version, resid? residadr, will transfer control to
residadr.

While both the implicit and explicit versions require that the CF register and CF� residCount
be initialized, the explicit version gives the user a chance to perform any clean-up that might
be required if the function has residuated.

Pseudo-code for the implicit version is

if CF� residCount � 0 then
ret

else
PC
�

PC � 1
endif

Pseudo-code for the explicit version is

if CF� residCount � 0 then
PC
�

residadr
else

PC
�

PC � 1
endif

6.4 Body Instructions

The instructions described in this section can appear in either the head or the body of a
function or a predicate definition. These instructions include both constraints and
general-purpose instructions.

Technical Note No. 18 December 1992

24 Seth Copen Goldstein

Rx:s � Unify with Sort

Rx Rx must point to a
�

-term.

s s is a sort defined in the sort hierarchy.

The instruction Rx:s will succeed if it can set the sort of the
�

-term Rx to glb
�
Rx� sort � s � ;

otherwise it will fail. If the sort of Rx is lowered it will cause any residuations attached to Rx
to fire.

s � � glb
�
Rx � sort � s �

switch
�
s � �

case :
PC
�

CFA

otherwise :
Rx � sort

�
s �

if Rx � rlist then
Rx � lower

� �
endif

endswitch
PC
�

PC � 1

Rx � Ry �
�
� Fetch Feature

Ry Ry points to a
�

-term.� �
is a feature name.

The Fetch Feature instruction stores the
�

-term at Ry �
�

in register Rx. It does a destructive
store into register Rx. If Ry does not have the feature

�
, then it will add the feature

�
to Ry and

attach it to a new
�

-term of sort 	 . The act of adding a new feature will cause any
residuations attached to Ry to fire.

if not Ry � hasFeature
��� � then

Ry � addFeature
��� � new Psi �

if Ry � rlist then
Ry � lower

� �
endif

endif
Rx
�

Ry �
�

PC
�

PC � 1

addfeature Rx � � � Ry � Feature Creation

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 25

Rx Rx is a
�

-term without feature
�
.� �

is a feature name.

Ry Ry is the
�

-term that will be pointed to by
�
.

The Feature Creation instruction adds a new feature to
�

-term Rx. This instruction is only
valid when it is known that Rx does not have feature

�
and when Rx has no residuations. In

other words, it is used to construct new
�

-terms. After this instruction has been executed,
Rx �
�
? will always succeed, and the sequence Rz � Rx �

�
& Rz

��
Ry? will always succeed.

Rx � addFeature
��� � Ry �

PC
�

PC � 1

Rx
��

Ry
unify Rx � Ry

� General Unify

Rx Rx points to a
�

-term.

Ry Ry points to a
�

-term.

The General Unify instruction unifies the
�

-terms Rx and Ry. If the unification succeeds, then
one of Rx and Ry will be modified so that its dereference link points to the other. In general,
the younger variable should be modified to point to the older to minimize trailing. If the
unification fails then control will be transferred to the address in the CFA register.

if unify
�
Rx � Ry � then

PC
�

PC � 1
else

PC
�

CFA

endif

ref Rx � Ry � Create Reference Link

Rx Rx points to a
�

-term.

Ry Ry points to a
�

-term.

The Create Reference Link instruction sets the reference field of the Rx
�

-term to point to Ry.
After this instruction has executed Rx

��
Ry? would succeed.

Rx � ref
�

Ry
PC
�

PC � 1

Technical Note No. 18 December 1992

26 Seth Copen Goldstein

deref Rx � Ry � Retrieve a Dereferenced
�

-term

Rx Rx points to the
�

-term to be dereferenced.

Ry Ry the dereferenced
�

-term is returned here.

This instruction will trace down the reference links starting with the
�

-term in Rx. It will put
the
�

-term at the end of the chain into Ry. As a shorthand, “deref Rx, Ry” will often be
written “Ry= Rx”. In other words, the code presented here will not draw a clear distinction
between the case where an assignment is sufficient and the case where a deref is necessary.
The compiler can make all assignments deref s, or, if a good optimizer is available, can
eliminate some deref operations in favor of simpler moves.

Ry
�

Rx
while Ry � ref �� 0

Ry
�

Ry � ref
endwhile
PC
�

PC � 1

eval Rx
evalfunc Rx
evalpsi Rx

� Evaluate by Normalization

Rx Rx points to a
�

-term.

The evaluation instructions cause a
�

-term to be made consistent. If the
�

-term is a function
call or a closure, then the evaluation instruction will attempt to evaluate the

�
-term by

executing the function based on the
�

-term’s sort. If the sort of the
�

-term is not a function,
then the evaluation instruction will enforce the sort definition on the

�
-term. If there is no sort

definition, then the instruction is a nop.

This instruction is a full fledged interpreter and as such is very costly. It is hoped that after
compilation there are few instances of this instruction and that instead, the unification,
matching, and normalization that it implies has been encoded with by the other instructions
presented here.

The general eval instruction makes no assumption about whether Rx is a function or a sort.
evalfunc assumes that Rx points to a

�
-term with a function sort. evalpsi assumes that Rx

points to a normal
�

-term.

adr
�

lookupSort
�
Rx � sort �

call adr

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 27

new Psi
new Psi

�
s �

new Frame
�
name �

new SortResid
�
recheckadr � Rx � Ry�

� Heap Allocation

s s is a sort.

name name is the name of a function.

recheckadr recheckadr is the address of the re-evaluation routine.

Ry Ry is the
�

-term that residuated.

The Heap Allocation instructions allocate storage from the heap. new Psi
�
s � will allocate a

new
�

-term with sort s and no features. If s is not present it defaults to top. new Frame(name)
allocates a new frame for the function name. It will also set every slot in the frame to 0. It is
assumed that the compilation process will create a routine for allocating a new function frame
for each function. It is this routine that will be invoked when the new Frame() routine is
executed. A more general way of looking at this would be to say that for every sort a routine
is created that will handle its allocation and initialization. For general sorts this will allocate
some space and set the sort to top. (One could imagine that if a sort definition were present
for the sort then this routine would also execute the code in the definition.) For sorts that
represent functions, this code would allocate the frame and initialize it.

new SortResid(recheckadr, Rx, Ry) allocates a new sort residuation which will resume at
recheckadr. The residuation will be for the frame pointed to in Rx, and it will be attached to
the
�

-term Ry.

6.5 Obvious instructions

The following instructions are used in the examples and should be obvious.

free Rx � Free Heap Allocated Storage

push Rx � Push onto the Stack�
SP� � Rx

SP
�

SP � 1

pop Rx � Pop from the Stack
SP
�

SP � 1
Rx
� �

SP �

ret � Return from Subroutine
SP
�

SP � 1
PC
� �

SP�

Technical Note No. 18 December 1992

28 Seth Copen Goldstein

call destadr � Call Subroutine
�
SP � � PC

SP
�

SP � 1
PC
�

destadr

jmp destadr � Unconditional Branch

PC
�

destadr

7 Example LAM Code

This section illustrates how LIFE functions are compiled for the LAM. It uses append as an
example function. First it presents a simple,

�
-term based function definition. Next it

optimizes the code to use registers for the recursive call. Finally it explores how the explicit
versions of certain instructions can substantially reduce overhead. We will first explore an
example using the append function in Section 8. Then in Section 9 we will show how the
mechanism of resumption works.

8 The Append Function

append([], L) � L.
append([H|T], L) � [H | append(T, L)].

In general an n-rule function in LIFE is compiled into 2n � 2 sections. The first section is the
�

-term entrance to the function. It consists of an arity instruction followed by the instructions
to deconstruct the

�
-term into registers. The next section is the frame building section. It

allocates a frame and stores necessary information into the frame. Finally, for each rule a
head section is followed by a body section.

In the following non-optimized version of append the first section starts at the label append,
which contains the arity constraint and the deconstruction instructions. The frame building
section begins at the label reg append. The first clause’s head is only two instruction long.
They are right before the label isNil. The body of the first clause is the 5 instructions
following isNil. The second clause’s head starts at maybeList and its body starts at isList. In
this version of append no special attempt is made to use registers; instead it builds a

�
-term

for the recursive call to itself.

The frame definition for append is as follows.
class Append : public Frame
{

Psiterm* arg1; // pointer to argument 1
Psiterm* L; // pointer to argument 2

};

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 29

append: CPT ��� 1 � 2 � Check that caller has two arguments.
This is the

�
-term entrance section.

R1 � CPT � 1
R2 � CPT � 2
ref CPT, RR Any reference to the function will now

point to the result of the function.
reg append: push CF This is the register interface entry. Al-

locate a new frame.
CF
�

new Frame
�
append �

CF� body
�

isNil Setup for executing the first rule.
CF� fail

�
maybeList If the first rule fails, try the second one.

CF� result
�

RR
CF� arg1

�
R1

CF� L
�

R2

R1 � � � zero Is the first rule ok?
resid?

isNil: CF� fail
�

0 Any failure now is a general failure.
unify CF� result, CF� L Since we don’t know if there is already

a result, we must assume there is and do
a general unification.

free CF Clean up and return.
pop CF

ret

zero: CPT � � � Recheck sort constraint from rule 1.
ret

one: CPT � List Recheck subsort constraint from rule 2.
ret

two: CPT � car? Recheck existence constraint.
ret

three: CPT � cdr? Recheck existence constraint.
ret

maybeList: CF� body
�

isList First rule failed, so setup for executing
second rule.

CF� fail
�

0 If this rule fails, the whole function call
fails.

R1
�

CF� arg1 Begin checking head of second rule.
R1 � List one
R1 � car? $ � 1, two
R1 � cdr? $ � 1, three

Technical Note No. 18 December 1992

30 Seth Copen Goldstein

resid?

isList: CPT
�

new Psi
�
append � Executing second rule, so call append

recursively.
addfeature CPT � 1 � � CF� arg1 � � cdr
addfeature CPT � 2 � CF� L
evalfunc CPT Perform actual function call.

R2
�

new Psi
�
List � Build cons cell.

addfeature R2 � car � � CF� arg1 � � car
addfeature R2 � cdr � RR
evalpsi R2

unify CF� result, R2 Make it the result.

free CF Clean up and return.
pop CF

ret

We can optimize append in two ways. First, compiler analysis should let us check the
function definition to see if the function call we are performing satisfies the arity constraint. If
it does, we can eliminate building the

�
-term. In the case of append, the recursive call in the

second clause can use registers instead of constructing a
�

-term. Further, compiler analysis
can also check sort definitions to see if a

�
-term being built will not violate its theory. (In the

trivial case this happens when the sort has no attached theory.) For append, this results in the
following optimizations applied to the second clause body:

isList: R1
� �

CF� arg1 � � cdr R1 will get first arg to append.
R2
�

CF � L
RR

�
new Psi Caller must establish the result

�
-term.

call reg append Execute recursive call and then the rest
is the same.

R2
�

new Psi
�
List �

addfeature R2 � car � � CF� arg1 � � car
addfeature R2 � cdr � RR

unify CF� result, R2

free CF

pop CF

ret

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 31

The above versions of append use only the implicit versions of the instructions. While the
implicit versions are more compact they also require more setup, which means that for the
simple case here more instructions are executed to establish a context than there are
instructions in the head or body of the function. Another defect with this code is that the
common case, the second rule, is the slowest case. To alleviate this problem, the explicit
subsort and residuation check instructions can be used.

Since the explicit instructions make no assumptions about what is in the current frame,
nothing in the frame needs to be set up before executing the head of the function. Thus, if the
function does not residuate, no extra work will be performed in setting up the body, fail, or
result fields of the frame. Notice also that more registers are used as a result of this
compilation approach. The extra overhead involved when a function residuates is smaller than
it appears here because on a RISC processor everything would have to be loaded into registers
anyway. Furthermore, some of the work that is made explicit here was actually happening
behind the scenes in the definitions of the implicit instructions.

append: CPT ��� 1 � 2 � �
-term entrance to function.

R1 � CPT � 1
R2 � CPT � 2
ref CPT, RR

reg append: push CF Save current value of CF.
CF
�

new Frame
�
append � Create a new frame. All values are set

to 0 by allocator.

R1 � � � maybeList, residNil Explicit subsort constraint will only
continue to next instruction if it suc-
ceeds. So no resid? is needed.

isNil1: unify RR, R2 We can assume everything needed is in
a register and CF � fail is already set to
0.

free CF

pop CF

ret

isNil: RR
�

CF� result Entry point for body if came back from
a residuation. Must setup registers.

R2
�

CF� L
jmp isNil1

checkNil: CPT � � � Recheck sort constraint from rule 1.
ret

residList: CF� body
�

isList1 If rule 2 residuates on the first pass we
end here to fixup the frame.

Technical Note No. 18 December 1992

32 Seth Copen Goldstein

CF� fail
�

0
jmp stash

residNil: CF� fail
�

maybeList1 If rule 1 residuates on the first pass we
end up here to fixup the frame and to
create the residuation. Since rule 1 uses
an explicit form of the subsort instruc-
tion we must create the residuation our-
selves.

CF� body
�

isNil
CF� residCount++
R1� tryAddSimple

�
CF � � � � checkNil �

stash: CF� result
�

RR
CF� 1

�
R1

CF� L
�

R2
ret

one: CPT � List Recheck subsort constraint for rule 2.
ret

two: CPT � car?
ret

three: CPT � cdr?
ret

maybeList1: R1
�

CF � 1 Entry point if rule 1 resumes after resid-
uating and then fails.

R2
�

CF � L
CF� fail

�
0

CF� body
�

isList1
maybeList: R1 � List one Entry point if rule 1 fails on the first pass.

Everything needed is in a register and
the current frame may be uninitialized.

R1 � car? $ � 1, two
R1 � cdr? $ � 1, three
resid? residList Since the frame may be uninitialized,

we must do some work before returning
to caller if we are to residuate.

CF� 1
�

R1 We did not residuate, but we may never
have stored anything in the frame, so
save what we need to.

CF� result
�

RR
isList: R1

�
R1 � cdr

RR
�

new Psi
call reg append

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 33

R2
�

new Psi
�
List �

addfeature R2 � car � � CF� 1 � � car
addfeature R2 � cdr � RR

unify CF� result, R2

free CF

pop CF

ret

isList1: R1
�

CF� 1 Entry point if we succeed after residu-
ating.

R2
�

CF� L
jmp isList

This version of append is significantly harder to read than the previous versions for two
reasons. First, the code is organized so that the most common case requires the fewest jumps.
Thus, all the interesting (but hopefully rare) cases involve many jumps. Second, one must
keep in mind the different states that the frame can be in to determine which code is executed.
In general the compiler will need to provide code for two different states: initial entry and
resumed entry.

For instance, in this code the second clause can be entered in one of three ways: failure of the
first clause in the first pass, failure of the first clause after it residuated, or residuation of the
second clause. In the first case, the flow of control passes though reg append and then to
maybeList via the explicit subsort constraint. In this case none of the frame has been
established. In the second case, the flow of control passes through reg append, residNil
(because the explicit subsort residuated), checkNil (when the frame was resumed),
maybeList1 (because the constraint in checkNil failed and the fail of the field was set to
maybeList1 in residNil). In the second case the frame has already been initialized. In the
third case the frame also has been initialized. The flow of control is: reg append, maybeList,
residList, one of the resumed labels (one, two, or three), and then, finally, isList1.

9 The Plus Function

In order to clarify the mechanisms used for residuation and resumption we will examine the
flow of control for the following contrived segment of LIFE code.

A=@, B=@, C=A+B, D=C+5, A=4, B=5

We will assume that + is not a built-in function, but rather is defined by the one clause LIFE
code:

+(A:int, B:int) -> intplus(A, B).

Technical Note No. 18 December 1992

34 Seth Copen Goldstein

Where intplus(A, B) treats the sorts of A and B as integers and returns a a
�

-term with
the sort that is an integer–that is their sum.

The frame definition and compiled LAM code for this function are as follows.
class Plus : public Frame
{

Psiterm* arg1;
Psiterm* arg2;

};

plus: CPT ��� 1 � 2 � Check that caller has two arguments.
This is the

�
-term entrance section.

R1 � CPT � 1
R2 � CPT � 2
ref CPT, RR Any reference to the function will now

point to the result of the function.
reg plus: R1 � int fail, residFirst Explicit subsort constraint will execute

general fail routine if this constraint
fails, since this definition has only one
clause.

R2 � int fail, residSecond
body: R3

�
intPlus

�
R1 � R2 � Execute the add primitive and put the

result, a
�

-term, into R3
unify RR, R3 Unify the resulting number with the re-

sult
�

-term. Compiler analysis should
do better here, since we know intPlus re-
turns a

�
-term that has no features and

RR is a null
�

-term.
ret

residFirst: push CF Save current value of CF.
CF
�

new Frame
�
append �

R1� tryAddSimple
�
CF � int � checkPlus �

R2 � int Since the frame is now all set and we
know we are residuating already, use
an implicit subsort constraint for second
argument.

stash: CF� body
�

doPlus
CF� residCount++
CF� one

�
R1

CF� one
�

R2
pop CF

ret
residSecond:push CF

CF
�

new Frame
�
append �

R2� tryAddSimple
�
CF � int � checkPlus �

jmp stash

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 35

checkPlus: CPT � int Recheck sort constraint
ret

doPlus: R1
�

CF� one
R2
�

CF� two
RR

�
CF� result

R3
�

intPlus
�
R1 � R2 � Execute the add primitive and put the

result, a
�

-term, into R3
unify RR, R3 Unify the resulting number with the re-

sult
�

-term.
pop CF

ret

The above function has two additional places for optimizations than the append function.
First, both arguments have the same sort constraint, so only one resumption address is needed,
checkPlus. Second, in the case that no residuations occur, which is the common case, no
frame needs to be created either. Thus, we see that the CF register is not pushed nor is a frame
created unless a residuation occurs (see labels residFirst or residSecond).

Armed with the above definition for plus, lets see what happens for our example LIFE code.

A=@, B=@, C=A+B, D=C+5, A=4, B=5

The compiled version of this code is as follows (We assume that none of these variables has
been seen before.).

start: A
�

new Psi
�
@ � Create a new psi term for A

B
�

new Psi
�
@ � Create a new psi term for A

R1
�

A Get ready for a function call
R2
�

B
RR

�
new Psi

�
@ � Create the result term

call reg plus
C
�

RR
afterOne: R1

�
‘5’ Put sort for the integer 5 in R1 for second

call
R2
�

RR
RR

�
new Psi

�
@ � Create the result term

call reg plus
afterTwo: D

�
RR

lowerA: A:‘4’ Unify A with the integer 4
lowerB: B:‘5’ Unify B with the integer 4

After the execution of the first call, from the label start until the instruction before label
afterOne, three

�
-terms, one frame, and two residuations will have been created. This is

pictured in Figure 12. When the second call finishes (right before the label afterTwo, another

Technical Note No. 18 December 1992

36 Seth Copen Goldstein

Residuation

ResidInfo

Psiterm

@

checkPlus

2

doPlus

NULL

Residuation

ResidInfo

Psiterm

@

checkPlus

Psiterm

@

A

B

C

First Frame

RR

R2

Toplevel
Frame

CF
R1

int

int

Figure 12: The structures created by executing the first seven instructions of the example code.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 37

R2

Residuation

ResidInfo

Psiterm

@

checkPlus

2

doPlus

NULL

Psiterm

@

Psiterm

@

A

B

C

First Frame

Toplevel
Frame

CF

Residuation

ResidInfo

checkPlus

int

int

RR

1

doPlus

NULL

Second Frame

‘5’

Psiterm

R1

Psiterm

@D

Residuation

ResidInfo

checkPlus

int

Figure 13: The structures created after the second call to the plus.

Technical Note No. 18 December 1992

38 Seth Copen Goldstein

R2

Psiterm

‘4’

1

doPlus

NULL

Psiterm

@

Psiterm

@

A

B

C

First Frame

Toplevel
Frame

CF

Residuation

ResidInfo

checkPlus

int

RR

1

doPlus

NULL

Second Frame

‘5’

Psiterm

R1

Psiterm

@D

Residuation

ResidInfo

checkPlus

int

Figure 14: After A has been lowered and its residuation removed.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 39

Psiterm

‘4’

0

doPlus

NULL

Psiterm

Psiterm

A

B

First Frame

1

doPlus

NULL

Second Frame

‘5’

Psiterm
Psiterm

@D

Residuation

ResidInfo

checkPlus

int

‘5’

‘9’

CPT
RR

CF

STACK

Toplevel
Frame

C

Figure 15: The structures and stack after the first frame has fired, but before the second one
has fired.

Technical Note No. 18 December 1992

40 Seth Copen Goldstein

�
-term, frame, and residuation will be created (see Figure 13). Note that in executing the

second call, the first subsort constraint succeeds, but the second one (testing the sort of C)
residuates. At this point, both result terms have sort top, and neither of the functions have
fired. Next, the

�
-term A will be lowered to the integer 4. This causes the residuation

attached to A to fire. The result is that the current Frame is pushed on the stack, the CPT

register is set to A, and the code at checkPlus is executed. After this returns, the residuation
attached to A will be removed and the the residCount attached to the first frame will be
lowered to one (See Figure 14).

Finally, B is lowered. This will cause checkPlus to be executed with CF pointing to the first
frame. All the residuations will have been removed and thus, the execute() function (See
Page 52) will invoke the first frame.

When the first frame executes, it will unify the sorts between RR, which is top, and R3 which
contains a ‘9’. The result is a lowering of RR, which is also the

�
-term D, causing another

residuation to fire. Again the CF register is pushed, checkPlus executed (See Figure 15 for the
state of the machine just before checkPlus is called), and the intPlus routine finally called,
putting a 14 in D as expected. The second frame returns, popping the CF for the first frame.
The first frame returns, popping the top level CF, and then the code continues.

This example is contrived and given the above code a peephole optimizer should be able to
rearrange this so no residuations occur.

10 Detailed Data Structures and Routines

This section describes the structure of the basic constraints needed to execute matching. It
defines the data structures, auxiliary routines, and abstract machine structure necessary to
understand the execution of the constraints. The definitions are presented in an object-oriented
fashion. It is hoped that the definitions presented here can be turned into executable C++ code.

10.1 The Three Basic Data Structures

10.1.1 The Psiterm

// This class defines the basic data structure used in the system, that of the psiterm.
// Each psiterm has a sort, a set of features, and a potentially null list of residuations
// attached to it.

class Psiterm�

Sort sort;
Features features;
Residuation rlist;

public:

// return sort of this psiterm
Sort sort();

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 41

// Return residuation for frame f ; if it doesn’t exist create it.
Residuation* findResid(Frame *f);

// If s is compatible with best known sort for this psiterm, then add a simple
// residuation that will continue at label for frame f.
boolean tryAddSimple(Frame *f, Sort s, Code label);

// Return a the list of features that is the intersection between fset and this
// psiterms features list.
Features intersect(Features fset);

// Add feature l with attached psi-term p.
void addFeature(Feature l, Psiterm* p);

// return true if this psiterm has the feature l.
boolean hasFeature(Feature l);

// get the psiterm that is pointed to by feature f.
Psiterm& get(Feature f);

// this Psiterm has been lowered, so if it has any residuations, they must be
// executed.
void lower();

// Add a residuation that will invoke the handleCurry routine if anything is ever
// unified to this psiterm. The original function call psiterm is specified by orig.
// The function to be invoked is func.
void addCurryResid(Psiterm& orig, Code func);

// return true if X and Y are unifiable. Also set up the structures that will ensure
// they remain compatible or a failure takes place.
friend boolean canUnify(Psiterm& X, Psiterm& Y);�

;

10.1.2 The Frame

The name for this class was chosen to evoke the image of a stack frame used to execute a
function. However, since residuations can cause functions to execute in a non-stacklike
manner, they cannot be allocated on a sequential stack. Everything that the function
references across suspension, or residuation points, is kept in the frame. The class frame
describes the common structure that every frame must have. Each function will create a new
subclass of frame, which will add all the variables needed in order to execute the function.

// The class Frame describes the minimum structure that every function will create when
// it is executed. Each particular function will define its own additional fields (i.e.,
// variables needed to execute the function) and inherit all of the class Frame’s
// variables and methods.

class Frame�

Technical Note No. 18 December 1992

42 Seth Copen Goldstein

int residCounter; // counts number of residuated variables.
Code body; // address of body of function
Code fail; // the address to goto if a fail is executed.
Psiterm* result; // result of function gets put here

public:
// increment and decrement the residuation counter
void incrResiduation();
void decrResiduation();

// returns residCounter to indicate whether or not this frame has any residuations
// attached to it.
void hasResids();

// when this function is called, then all residuations have been checked and the
// function is ready to go.
void execute();�

;

// An example frame definition. It inherits from Frame and defines two of its own
// variables.

class SomeFunction : class Frame�

Psiterm* V0;
Psiterm* V1;�

10.1.3 The Residuation

// A residuation is a structure containing all the information about functions that
// depend on psiterms on which they are residuated. A residuation identifies the function
// depending on the psiterm, the best known sort for the psiterm (i.e., the glb of all the
// formals in the function definition that this psiterm is participating in), and a list
// of addresses that should be executed if the psiterm is ever changed.

class Residuation�

Frame* parent; // frame of function to be activated
Sort sort; // the best known sort for this term (i.e. the glb of

// all formals and all actuals linked by equality
// contraints)

Residuation* next; // next residuation for this var
ResidInfo* info; // info about each resid for this parent

public:
// Compare the sort in this residuation and s. If they are incompatible, then
// execute FAIL. Otherwise, set sort to glb(sort, s).
boolean compatibleWith(Sort s);

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 43

// create a ResidInfo and attach it to the list of already created residInfo’s for
// this psiterm.
void addSimpleResid(Code label);

// return best known sort, i.e. return sort field.
Sort sort();

// set the sort field to s. If s is different than the current value of the sort,
// then the best known sort for this psiterm has been changed and we should pretend
// the psiterm has been lowered.
void setSort(sort s);

// returns true if y has an equality residuation in frame f with the receiver;
// otherwise it returns false.
boolean hasEqResidWith(Psiterm& y, Frame *f);

// adds an equality residuation between the this psiterm and x.
void addEqResidWith(Psiterm& x, Code label);

// Indicates that the psiterm connected that this residuation is attached to has
// been lowered, so we should activate this residuation.
void lower();

// Add a ResidInfo to this residuation that should resume at label.
void addSimpleResid(Code label);�

;

// these two classes hold the address of the code chunk to be executed if the psiterm
// pointing to these is ever lowered.

class ResidInfo�

Code address; // address of constraint to re-execute
ResidInfo* next; // next ResidInfo for this frame if it exists, else

// NULL

public:
// This function calls the routine at address. CPT and CF have already been set up.
virtual void resume();�

;

class EqResid: ResidInfo�

Psiterm other; // psiterm used in = constraint

public:
// This function executes the equality constraint between the psiterm in CPT and the
// Psiterm in other. If it succeeds, then the routine at address is executed.
virtual void resume();�

;

Technical Note No. 18 December 1992

44 Seth Copen Goldstein

10.1.4 The Sort

// The class sort represents the sorts in the system. The choice of representation
// should be made with efficiency of taking the glb in mind.

class Sort�

public:
// Return TRUE is this is bottom sort, otherwise FALSE.
Boolean isBottom(void);

// return the greatest lower bound of the sorts defined by a and b.
friend Sort glb(Sort& a, Sort& b);�

;

10.2 The Head Instructions

In this section the C++ code for the basic head instructions listed in Section 6.3 is presented.
Each constraint is listed using the data structures and routines presented above. In some sense
this code represents the macros that would be inlined into a LAM function definition. The code
uses three macros to guide the flow of control in the abstract machine: CONTINUE, FAIL, and
SKIP_TO. The CONTINUE macro has essentially the same meaning as PC

�
PC � 1 in the

pseudo-code presented in Section 6.3. In these macros it means execute the code after the end
of the current macro. The FAIL macro is like the headfail macro. Finally, SKIP_TO(skip)
means to restart execution at the instruction labeled skip. These macros imply a certain
compilation regime, that the entire function head will be encapsulated in a single C function.
Thus, both the SKIP_TO and CONTINUE macros, become local gotos, and the FAIL macro
becomes a return statement. If the function returns the address of the next c function to
execute, then on failure a fail routines address can be returned, on success, the next LIFE
function routine’s address can be returned.

10.2.1 Sort Constraint

See Page 17 for the pseudo-code definition of this constraint.

void
subsort(Psiterm& r, // psiterm that we are testing

Sort s, // the sort it must agree with
Code label) // address of code to resume if this residuates�

Sort g;

g = glb(r.sort(), s);
if (g.isBottom()) FAIL; // if it is bottom, then FAIL
if (g <= s) CONTINUE; // if it is under s, succeed.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 45

// we must residuate. so create a residuation for the current frame which will have
// a sort compatible with g and will continue at ’label’ when the psiterm is lowered.
// If tryAddSimple can’t create the residuation (because g is incompatible with the
// sort already in this psiterm’s residuation for the current frame) then it will
// execute the FAIL macro.

r.tryAddSimple(CF, g, label);

CONTINUE;�

10.2.2 Feature Constraint

See Page 19 for the pseudo-code definition of this constraint.

void
featureExistence(Psiterm &r, // The psiterm that we are testing.

Feature l, // The feature we want to check for.
Code label, // The address to resume to.
Code skip) // The place to continue if this constraint residuates.�

// Does r have the feature l? If so succeed.

if (r.hasFeature(l)) CONTINUE;

// OK, guess we have to residuate

r.tryAddSimple(CF, g, label);

// Continue execution at ’skip’

SKIP TO(skip);�

10.2.3 Equality Constraint

See Page 20 for the pseudo-code definition of this constraint.

void
equality(Psiterm& r0, // The psiterm we check to be equal with r1.

Psiterm& r1, // The psiterm we check to be equal with r0.
Code label) // The address to continue at on resumption.�

// If r0 and r1 both point to same psiterm, we’re golden.

if (r0 == r1) CONTINUE;

// All the real work happens in

canUnify(r0, r1);

Technical Note No. 18 December 1992

46 Seth Copen Goldstein

// If we get here then the psiterms can be unified, so

CONTINUE;�

// The heart of the equality constraint is the canUnify routine. It checks to see that
// two psiterms can be unified. This is an expensive procedure that not only checks the
// sorts of its two arguments, but all features of each term that could be unified.

void
canUnify(Psiterm& x, Psiterm& y)�

Residuation* rx; // The x’s residuation for this frame.
Residuation* ry; // The y’s residuation for this frame.

rx = x.findResid(CF); // Get (and if necessary create) x’s residuation for the
// current frame.

if (rx->hasEqResidWith(y, CF))�

// If x and y are already involved in an equality constraint, then we have
// already checked to see that they (and all the psiterms reached through their
// features) are compatible, so we just return. This is in essence the mark that
// is used to stop infinite loops from happening in this canUnify routine.

return;�

// x and y haven’t been checked yet, so create a resid for y

ry = y.findResid(CF);

// Get the glb of the BEST KNOWN sorts of x and y.

g = glb(rx->sort(), ry->sort());

if (g.isBottom()) FAIL;

// Force both x’s and y’s best known sort to be their glb. The setsort procedure
// will also invoke any residuations that might already be attached to x and y.

rx->setsort(g);
ry->setsort(g);

// Add an equality residuation to each of rx and ry.

rx->addEqResidWith(y, label);
ry->addEqResidWith(x, label);

// Now each of the features that are in common between x and y must be checked to

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 47

// see if they can unify.

foreach (f, x.intersect(y.features()))�

canUnify(x.get(f), y.get(f));�

// if we made it this far then x and y can unify�

The complexity of the equality constraint and in particular the canUnify procedure
described above is due to catching disentailment caused by argument unification. To see how
the above code works we will work out an example based on the sort hierarchy in Figure 4,
the function definition

theSame(X, X, X) � 1.

and the call
theSame(@(x � a), b(x � b, y � b), c(x � c))?

First note that the LAM code produced for the function definition will include the following
segment:

R1
��

R2?
R2

��
R3?

We assume that the registers have been loaded with the first, second and third arguments
respectively. Upon execution of the first constraint the

�
-terms and their associated

residuations will be as shown in Figure 16. First, note that the bestsort field of the
residuations for the

�
-term in R1 is set to b. Second, note that there are no residuations

attached to the
�

-term attached to R1� y.

When the second constraint is executed, the canUnify routine will be invoked on the
�

-terms
pointed to by registers two and three. rx will point to the residuation for R2 in Figure 16. The
test hasEqResidWith will fail, since no equality constraint yet exists between the second
two

�
-terms. Next, a new residuation will be created, attached to the R3

�
-term, and assigned

to ry. The best known sort computed for these
�

-terms will be bc. However, when the
setsort routine is executed for rx, it will find another residuation already attached, thus it
will check all the attached residuations to make sure that the new sort, bc, does not cause any
disentailment. The structures that result at this point in the execution are shown in Figure 17.

After the new EqResidInfo structures have been added canUnify is called recursively on
each pair of

�
-term that can be reached by the features in common to both of the original

�
-terms. In this case the only common feature is x. Since there is no equality constraint (for

this frame) between R2� x and R3� x the best sort will be computed, in this case, it results in
failure, since ab � c is bottom.

Technical Note No. 18 December 1992

48 Seth Copen Goldstein

Resume Address

Psiterm

@

Residuation

b

EqResidInfo

R1:

ptr to frame

Resume Address

Psiterm

feature set

a

Residuation

ab

EqResidInfo

ptr to frame

x

Resume Address

Residuation

ab

EqResidInfo

ptr to frame

Resume Address

Psiterm

b

Residuation

b

EqResidInfo

R2:

ptr to frame

Psiterm

feature set

b

x y

Psiterm

feature set

b

Psiterm

cR3:

Psiterm

feature set

b

x

Figure 16:
�

-terms and their associated residuations after the execution of the first equality
constraint. Double lines represent features. Single lines pointers. Dotted lines pointers from
one EqResidInfo to another.

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 49

Resume Address

Psiterm

@

Residuation

bc

EqResidInfo

R1:

ptr to frame

Resume Address

Psiterm

feature set

a

Residuation

ab

EqResidInfo

ptr to frame

x

Resume Address

Residuation

ab

EqResidInfo

ptr to frame

Resume Address

Psiterm

b

Residuation

bc

EqResidInfo

R2:

ptr to frame

Psiterm

feature set

b

x y

Psiterm

feature set

b

Psiterm

cR3:

Psiterm

feature set

b

x

Residuation

bc

ptr to frame

Resume Address
EqResidInfo

Resume Address
EqResidInfo

Figure 17: The intermediate structures built during the execution of the second constraint.

Technical Note No. 18 December 1992

50 Seth Copen Goldstein

10.2.4 Initialized Constraint

See Page 20 for the pseudo-code definition of this constraint.

void
initialized(Psiterm& r, // psiterm we want are checking

Code label, // address to goto on resumption
Code skip) // address to continue at on residuation�

// This is a funny constraint which is inserted by the compiler so that equality
// constraints can be cleaner. It is called with a pointer to a psiterm in the frame.
// If the frame slot has not been filled in, because a subtree was never executed due
// to some other constraint residuating, then the slot will be NULL. If the slot is
// NULL, then we create a psiterm in the slot with TOP as its sort and residuate.

if (r) CONTINUE;

// Create a new dummy psiterm. It will get unified with the psiterm inserted into
// the frame slot which will kick off this computation.

r = new Psiterm(TOP);
r.tryAddSimple(CF, TOP, label);
SKIP TO(skip);�

10.2.5 Check Residuation Count Instruction

See Page 23 for the pseudo-code definition of this constraint.

void
residQ(void)�

// Check to see if this frame has any residuation. If it does, then we return from
// this frame’s context and continue at the point after the call to this function was
// made.

if (CF->hasResids()) RETURN;

// Let’s execute the function.

CF->execute();�

10.3 Auxiliary Functions and Class Implementations

void
Psiterm::tryAddSimple(Frame *f,

Sort s,
Code label)�

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 51

Residuation* resid;

resid = findResid(CF); // Get the residuation for the current frame (CF). It
// will be created if necessary.

// Make sure that the residuation that is already attached to this psiterm doesn’t
// have a sort conflicting with s. Also update the sort in the residuation to reflect
// the fact that this psiterm will finally end up with a sort which is � = to s.

if (!resid->compatibleWith(s)) FAIL;

// everything is ok so far, so add ’label’ to the list of addresses to be resumed
// when the psiterm is lowered.

resid->addSimpleResid(label);�

// lower is called only if there are any residuations attached to this Psiterm and the
// Psiterm has been "lowered".

void
Psiterm::lower()�

Residuation* r;

// save current environment on stack

push(CPT);
push(CF);

// match down rlist, invoking every ResidInfo that we encounter.

CPT = this; // set the CPT register to point to this Psiterm.
foreach (r, rlist)�

r->lower();�

// restore current environment

pop(CF);
pop(CPT);�

// The lower() routine for class Residuation will activate all the rinfo’s for the frame
// of this residuation. It assumes that the CPT register has been setup.

void
Residuation::lower()�

Technical Note No. 18 December 1992

52 Seth Copen Goldstein

ResidInfo* todo;

CF = parent; // establish the current frame

foreach (t, todo)�

t->resume(); // execute this ResidInfo�

// now lets see if we can execute the function?

if (!CF->hasResids()) CF->execute();�

void
ResidInfo::resume()�

SKIP TO(address);�

void
EqResid::resume()�

if (CPT == other)�

CF->decrResiduation();
SKIP TO(address);�

else�

// just like a call to canUnify, but the book-keeping is different, in that it
// doesn’t re-create the toplevel residuations, since they already exist.
canReUnify(CPT, other);�

�

void Frame::execute()�

// This function is only called when there are no residuated terms.
assert(residCounter == 0);

// we have committed to a particular definition of the function. A failure now
// resorts to the general failure/trailing mechanism.
fail = NULL;

// establish the result psiterm
RR = result;

// start execution!
SKIP TO(body);

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 53

�

11 Conclusion

Although compiling LIFE, a very rich and powerful language, into native machine code
appears daunting, LAM is a lever which makes the task feasible. This note outlines LAM and
the mechanisms which give LAM the power to operate on LIFE structures easily and efficiently.

It has been our experience that getting the architecture correct with respect to residuation and
entailment has not been difficult. However, getting disentailment to work correctly has proved
elusive. In particular, equality constraints pose a hard problem. LAM handles the case of an
equality constraint in the function head with minimal overhead. However, we need to extend
the model slightly to handle special cases of equality introduced by the function call.

In spite of this shortcoming, LAM has led to valuable insights about LIFE. It has pointed the
way towards the correct handling of lazy unification of order-sorted-feature terms[3]. In
addition, by showing a possible approach to successfully compiling away the overhead of
matching and residuation in LIFE, it should be a good starting point to the creation of the
actual LIFE compiler.

Technical Note No. 18 December 1992

54 Seth Copen Goldstein

A Instruction Summary

Rx � s
Rx � s recheckadr
Rx � s failadr � residadr

� Subsort Constraint

Rx �
�
?

Rx �
�
? residadr

Rx �
�
? residadr � recheckadr

� Feature Existence

Rx
��

Ry?
Rx

��
Ry? recheckadr

� Equality Constraint

X?
X? residadr � recheckadr

� Initialized Constraint

Rx ��� � 1 � � 2 ������� � � n � Arity Constraint
resid?
resid? residadr

� Residuation Check

Rx:s � Unify with Sort
Rx � Ry �

�
� Fetch Feature

addfeature Rx � � � Ry � Feature Creation
Rx

��
Ry

unify Rx � Ry
� General Unify

ref Rx � Ry � Create Reference Link
deref Rx � Ry � Retrieve a Dereferenced

�
-term

eval Rx
evalfunc Rx
evalpsi Rx

� Evaluate by Normalization

new Psi
new Psi

�
s �

new Frame
�
name �

new SortResid
�
recheckadr � Rx � Ry�

� Heap Allocation

December 1992 Digital PRL

An Abstract Machine to Implement Functions in LIFE 55

References

1. Hassan Aı̈t-Kaci and Andreas Podelski. Functions as passive constraints in LIFE.
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory (June
1991). Revised November 1992.

2. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison,
France (1991).

3. Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature
theory unification. (1992).

4. Gerard Ellis and Peter Van Roy. Constraints + control = compilation, or how to compile
matching and residuation in LIFE. draft (1991).

5. A. Mariën and B. Demoen. A new scheme for unification in wam. In 1991 International
Symposium on Logic Programming, pages 257–271. MIT Press (Oct. 1991).

6. M. Meier. Compilation of compound terms in prolog. In North American Conference on
Logic Programming, pages 63–79. MIT Press (Oct. 1990).

Technical Note No. 18 December 1992

PRL Technical Notes

The following documents may be ordered by regular mail from:

Librarian – Technical Notes
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line is help to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server.

Technical Note 1: Wild-LIFE, a User Manual. Hassan Aı̈t-Kaci and Richard Meyer. (being
revised).

Technical Note 2: Wild-LIFE, an Implementation Manual. Richard Meyer. (being revised).

Technical Note 3: Characterising Perle0. Alan Skea. October 1990.

Technical Note 4: Perle1DC: a C++ Library for the Simulation and Generation of
DECPeRLe-1 Designs. HervÙe Touati. February 1994.

Technical Note 5: TiGeR Version 1.0 User Guide. Olivier Coudert, Jean-Christophe
Madre, and HervÙe Touati. January 1994.

Technical Note 6: Tgr Version 1.0 Reference Manual. Olivier Coudert, Jean-Christophe
Madre, and Hervé Touati. August 1993.

Technical Note 7: Compiling Order-Sorted Feature Term Unification. Hassan Aı̈t-Kaci and
Roberto Di Cosmo. December 1993.

Technical Note 8: Compiling LIFE. Richard Meyer. December 1993.

Technical Note 9: Riviera Class Library Reference Manual. Didier Martineau and Thierry
Pudet. May 13 1994.

Technical Note 10: Riviera Data Library Reference Manual. Jérôme Barraquand, Didier
Martineau and Thierry Pudet. May 10 1994.

Technical Note 11: Riviera Pricer Library Reference Manual. Jérôme Barraquand, Didier
Martineau and Thierry Pudet. Apr 21 1994.

Technical Note 12: Riviera Wrapper Library Reference Manual. Didier Martineau, Thierry
Pudet. Apr 14 1994.

Technical Note 13: Riviera Documentation Extractor Reference Manual. Didier Martineau.
Sep 15 1993.

Technical Note 14: Riviera Mathematical Library Reference Manual. Didier Martineau. Mar
28 1994.

Technical Note 15: Riviera Visualization Tool Reference Manual. Didier Martineau. Fev 18
1994.

Technical Note 16: Riviera Utility Library Reference Manual. Thierry Pudet. May 13 1994.

Technical Note 17: Riviera Leak Library Reference Manual. Thierry Pudet. May 13 1994.

Technical Note 18: An Abstract Machine to Implement Functions in LIFE. Seth Copen
Goldstein. December 1992.

18
A

n
A

b
stract

M
ach

in
e

to
Im

p
lem

en
t

F
u

n
ctio

n
s

in
L

IF
E

S
eth

C
open

G
oldstein

d i g i t a l

PARIS RESEARCH LABORATORY
85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

