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ABSTRACT

Thispaper presentsthree novel languageimplementation primitives—lazy threads, stacklets, and
synchronizers—andshowshow they combineto provide aparallel call at nearly the efficiency of
asequential call. Thecentral ideaistotransform parallel callsinto parallel-ready sequential calls.
Excess parallelism degradesinto sequential calls with the attendant efficient stack management
and direct transfer of control and data, unless a call truly needsto execute in parallel, in which
caseit getsits own thread of control. We show how these techniques can be applied to distribute
work efficiently on multiprocessors.

1 INTRODUCTION

Many modern paralel languages provide methods for dynamically creating multi-
ple independent threads of control, such as forks, paralle cals, futures [15], object
methods, and non-strict eval uation of argument expressions[17, 12]. Generaly, these
threads describe the logical paralelism in the program. The programming language
implementation maps this dynamic collection of threads onto the fixed set of physi-
cal processors executing the program, either by providing its own language-specific
scheduling mechanisms or by using ageneral threads package. These languages stand
in contrast to languages with a single logical thread of control, such as Fortran90, or
a fixed set of threads, such as Split-C. There are many reasons to have the logica
paralelism of the program exceed the physica parallelism of the machine, including
ease of expressing parallelism and better utilizationin the presence of synchronization
delays [16, 25], load imbalance, and long communication latency. Moreover, the se-
mantics of the language or the synchronization primitives may alow dependencies to
be expressed in such a way that progress can be made only by interleaving multiple
threads, effectively running them in parallel even on a single processor.
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A pardld cal is fundamentally more expensive than a sequential call because of the
storage management, data transfer, scheduling, and synchronization involved. This
cost has been reduced with a combination of compiler techniques and clever run-time
representations [7, 19, 23, 16, 25, 20, 18], and by supporting fine-grained parallel
execution directly in hardware [13, 2]. These approaches, among others, have been
used in implementing the parallel programming languages Mul-T [15], 1d90 [7, 19],
CC++ [5], Charm [14], Cilk [3], Cid [18], and Olden [4]. In many cases, the cost of
the parale call isreduced by severely restricting what can be done in a thread.

In earlier approaches, the full cost of parallelism is borne for al potentiadly parallée
cals, dthough the paralelism is neither needed nor exploited in most instances. For
example, once al the processors are busy, there may be no need to spawn additional
work, and in the vast majority of cases the logic of the program permits the child to
run to completion while the parent is suspended. The goal of thiswork isto make the
cost of apotentialy parallel call as close as possibleto that of a sequential call unless
multiplethreads of control or remote execution are actually needed. We a so produce
avery fast parallel call when it isneeded.

The key ideais that we fork a new thread as if it were a sequentia call and elevate
it to atrue fork of alocd thread only if the child actually suspends. This concept,
which we call lazy threads, builds upon work on lazy task creation [15]. In the best
case our system eliminates all the run-time bookkeeping costs associated with forking
athread or creating a future. In the worst case it requires only three instructionsto
create afuture. Similarly, we can defer generating work for other processors until a
request for work is received from another processor. If all the processors have plenty
to do, potential paralld work issimply assumed by the current thread of control. Our
experience isthat potentially parallel callsfrequently degenerate intothe simple, local,
sequentia case and that handling the simple case very well has a significant impact on
performance.

Our current experimental resultsfocuson two prototypeimplementationson the CM-5:
adirect implementationin C and acompiler for thefine-grained parallel language1d90.
The C implementation was used to write some kernel s and shows that these primitives
introduce little or no overhead over sequentia programs. The 1d90 implementation
showsthat for complete programswe achieve a substantia improvement over previous
work. Our work is applicable to many other systems as well. For example, our
techniques could be applied to other programming languages [5, 26], thread packages
[8], and multithreaded execution models. Our work relies extensively on compiler
optimizations; lazy threads cannot simply be implemented with a function cal in a
user-level threads library without substantial loss of efficiency. Because the synthesis
between compiler and run-time system iskey to obtaining efficiency, these ideas must
be evaluated in the context of an actual compiler.
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Figure1 How individua activation frames of a cactus stack are mapped onto stacklets.
Only parallel calls or stacklet overflows require alocation of a new stacklet. (The arrows
point back to the parent; in the aboveexample, A callsB and H in parallel.)

1.1 Overview

In thiswork athread is alocus of control on a processor which can perform calls to
arbitrary nesting depth, suspend at any point, and fork additional threads. Threads are
scheduled independently and are non-preemptive.! We associate with each thread its
own unbounded stack.

Before considering the parallel call, observe that the efficiency of a sequential call
derivesfrom severa cooperating factors. Storageallocationon call and returninvolves
merely adjusting the stack pointer, because the parent is suspended upon call and the
child and its children have completed upon return. Data and control are transferred
together on the call and on the return, so arguments and return values can be passed in
registers and no explicit synchronization isinvolved.

To redlize a parallel-ready sequential call—i.e., onethat creates a sequentia task that
can be elevated gracefully into an independent thread of control—we proceed in four

steps.

First, in Section 2, we address storage allocation. Since threads can fork other threads
and each requires a stack, atree of stacks, a cactus stack, isrequired. We realize this
cactus stack using stacklets (see Figure 1). A stacklet is afixed-size region of storage
which can contain multiple call frames, is cheap to allocate, and is managed internally
like a sequentia stack. Allocation of a new stacklet occurs when a new thread is
created or when a stacklet overflows. Stacklet stubs are used to handle many special
cases, including underflow and remote return, without the sequentia call needing to
perform tests on return. This provides a haive paralel language implementation with
conventional local and remote forks.

Next, in Section 3, we address control and datatransfer when athread isforked on the
local processor. A lazy thread fork is performed exactly like a sequential call; control

I Thisis similar to what is providedin many kernel threads packages. Our threads, however, are stronger
than those in TAM [7] and in some user-level threads packages, e.g. Chorus[21], which require that the
maximum stack size be specified upon thread creation so that memory can be preallocated.
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and data are transferred to the child and the call is made on the parent stack. However,
if the child suspends, the parent is resumed with its stack extended, so it gives up its
own stacklet to the new thread and uses a new stacklet for its subsequent children. We
generate code so that the child can suspend and resume the parent by doing ajump to
asimpleoffset of thereturn address. Thus, control istransferred directly to the parent
on either return or suspension.

Third, in Section 4, we show how to perform synchronization cheaply between the
parent and child, should they become independent threads. The only flexibility we
have in the sequentia call is the indirect jump on the return address. The key idea,
implemented by synchronizers, isthat the parent and the child share the return address,
which by our code generation technique represents multiplereturn addresses. There-
turn entry pointscan be adjusted to reflect the synchronization state. The optimizations
outlined so far are required to support many logical threads on a single processor.

Finally, in Section 5, we extend the use of multiplereturn addresses to allow the parent
to generate additional parallel work on demand, in response to awork-stealing request
from another processor. We call this concept athread seed because it allows potential
threads to be held dormant very cheaply until they are either assumed by the loca
processor or stolen and planted in another processor. Growing athread seed into afull
thread requires executing a piece of code in the context of the function that created it.
On the other hand, the overhead for creating and assuming a thread seed is minimal.

In Section 6 we give empirical data to show that these concepts can be combined to
efficiently implement excess logica paraleism. Underlying our optimizationsisthe
observation that in modern microprocessors, asubstantial cost ispaid for memory ref-
erences and branches, whereas register operations are essentially free. Since stacklets
are managed like a sequentid stack, arguments and results can be passed in registers,
eveninthepotentially paralel case. By manipulatingthe existing indirect returnjump,
conditional testsfor synchronization and special cases can be avoided.

1.2 Redated Work

Attemptsto accommodate logical parallelism have include thread packages [8, 21, 6],
compiler techniquesand clever run-timerepresentations[7, 19, 16, 25, 23, 20, 10], and
direct hardware support for fine-grained parallel execution [13, 2]. These approaches
have been used to implement many parallel languages, e.g. Mul-T [15], 1d90[7, 19],
CC++ [5], Charm [14], Cilk [3], Olden [4], and Cid [18]. The common goa isto
reduce the overhead associated with managing the logical parallelism. While much
of thiswork overlaps ours, none has combined the techniques described in this paper
into an integrated whole. More importantly, none has started from the premise that all
cals, pardle or sequential, can beinitiated in the exact same manner.

Our work grew out of previous effortsto implement the non-strict functional language
1d90 for commodity parallel machines. Our earlier work developed a Threaded Ab-
stract Machine (TAM) which serves as an intermediate compilation target [7]. The
two key differences between thiswork and TAM are that under TAM calls are always
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paralel, and due to TAM’s scheduling hierarchy, calling another function does not
immediately transfer control.

Our lazy thread fork allows al calls to begin in the same way, and creates only the
required amount of concurrency. In the framework of previouswork it allows excess
paralelism to degrade efficiently into a sequentia call. Many other researchers have
proposed schemes which deal lazily with excess parallelism. Our approach builds on
lazy task creation (LTC) which maintains adata structureto record previously encoun-
tered parale calls[16]. When a processor runs out of work, dynamic load balancing
can be effected by stealing previoudy created lazy tasks from other processors. These
ideas were studied for Mul-T running on shared-memory machines. The primary
difference is that LTC always performs extra work for parallel cals, whether they
execute locally or remotely. Even the lazy tasks that are never raised to full fledged
tasks are “spawned off” in the sense that they require extra bookkeeping. In addition,
in order to avoid memory references and increase efficiency our work uses different
primitivesfrom LTC. LTC also depends on a garbage collector, which hides many of
the costs of stack management. Finally, while earlier systems based on LTC relied on
shared-memory hardware capabilities, our implementation works on both distributed-
and shared-memory systems.

Another proposed technique for improving LTC is leapfrogging [25]. Unlike the
techniques we use, it restricts the behavior of the program in an attempt to reduce the
cost of futures.

We use stacklets for efficient stack-based frame allocation in parallel programs. Pre-
vious work in [10] developed similar ideas for handling continuations efficiently.
Olden [4] uses a“ spaghetti stack.” 1n both systems, the all ocation of anew stack frame
always requires memory references and a garbage collector.

The way thread seeds encode future work builds on the use of multiple offsets from a
single return address to handle specia cases. This technique was used in SOAR [22].
It was also applied to Self, which uses parent controlled return continuationsto handle
debugging [11]. We extend these two ideas to form synchronizers.

Building on LTC, Olden [20, 4] applies similar techniques for the automatic paral-
Ielization of programs using dynamic data structures. Of the systems mentioned so
far, Olden’sintegration is closest to ours.

Finally, user-level thread packages are still not as lightweight as many of the systems
mentioned above. Since the primitives of thread packages are exposed at the library
level, the compiler optimizationswe present are not possible for such systems.

2 STORAGE MANAGEMENT: STACKLETS

Sackletsare amemory management primitivewhich efficiently supportscactus stacks.
Each stacklet can be managed like a sequential stack. A stacklet is a region of
contiguous memory on a single processor that can store several activation frames (see
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Figure4 Theresult of afork or of asequential call which overflowsthe stacklet.

Figure 2). Each stacklet is divided into two regions, the stub and the frame area.
The stub contains data that maintains the global cactus stack by linking the individual
stacklets to each other. The frame area contains the activation frames. In addition
to a traditional stack pointer (Sp) and frame pointer (f p), our modd defines a top
pointer (t op) which—for reasons presented in the next section—pointsto the top of
the currently used portion of the stacklet, or, in other words, to the next free location
in the stacklet. These three pointersare kept in registers.

We recognize three kinds of calls—sequentia call, fork, and remote fork—each of
which maps onto a different kind of allocation request. A sequentia allocationis one
that requests space on the same stack as the caller. The child performs the allocation;
therefore, it determines whether its frame can fit on the same stacklet. If so, sp, f p,
and t op are updated appropriately (see Figure 3). If not, a new stacklet is allocated
and the child frame is alocated on the new stacklet (see Figure 4). This also happens
for afork, which causes anew stacklet to be created on thelocal processor. We could
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Figure5 A remotefork leavesthe current stacklet unchangedand allocates a new stacklet
on another processor.

either run the child in the new stacklet immediately or schedule the child for later
execution. In the former case, f p, Sp, and t op would point to the child stacklet
(see Figure 4). In the latter case, they would remain unchanged after the allocation.
For a remote fork there are no stacklet operations on the local processor. Instead, a
message is sent to a remote processor with the child routine' s address and arguments
(seeFigure ).

In our current naive implementation, the overhead in checking for stacklet overflow
in a sequentia call is two register-based instructions (an AND of the new sp and a
compare to the old) and a branch (which will usually be successfully predicted). If the
stacklet overflows, a new stacklet is alocated from the heap. This cost is amortized
over the many invocationsthat will run in the stacklet.

2.1 Stacklet Stubs

Stub handlers alow us to use the sequentia return mechanism even though we are
operating on acactus stack. The stacklet stub stores al the data needed for the bottom
frame to return to its parent. When a new stacklet is allocated, the parent’s return
address and frame pointer are saved in the stub and areturn address to the stub handler
is given to the child. When the bottom frame in a stacklet executes a return, it does
not return toitscaller; instead it returnsto the stub handler. The stub handler performs
stacklet deallocation and, using the data in the stacklet stub, carries out the necessary
actionsto return control to the parent (restoringt op, and having sp and f p point to
the parent).

In the case of a remote fork, the stub handler uses indirect active messages [24] to
return dataand control to the parent’s message handler, whichin turn has responsibility
for integrating the data into the parent frame and indicating to the parent that its child
has returned.

2.2 Compilation

To reduce the cost of frame alocation even further we construct a call graph which
enables us to determine for all but the recursive calls whether an overflow check is
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needed. Each function has two entry points, one that checks stacklet overflow and
another that does not. If the compiler can determine that no check is needed, it uses
the latter entry point. This analysisinserts preventive stacklet allocation to guarantee
that future children will not need to perform any overflow checks.

2.3 Discussion

In summary, stacklets provide efficient storage management for parallel execution. In
the next section we will see that potentialy parallel cals can use the same efficient
mechanism as regular sequentia calls, because each stacklet preserves the invariants
of astack. Specifically, the same call and return mechanisms are used; arguments and
results can be passed in registers. These benefits are obtained at asmall increasetothe
cost of sequentid calls, namely checking whether a new stackl et needs to be alocated
in the case of an overflow or parald call. The extra cost amountsto atest and branch
along with the use of an additiona register. This overhead is required only when
the compiler cannot statically determine that no check is needed. Stubs eliminate the
need to check for underflows. This contrasts with previous approaches which always
require some memory touch operations or a garbage collector.

3 CONTROL TRANSFER: THE LAZY THREAD CALL

Our goal isto make afork as fast as a sequentia call when the forked child executes
sequentialy. Using stacklets as the underlying frame-storage allocation mechanism
givesusachoiceastowhereto runthenew thread invoked by thefork. Theobviousap-
proach isto explicitly fork the new thread using the parallel alocation explained in the
previous section. However, if the child is expected to complete without suspending—
i.e, if it behaves like a sequential call—we would rather treat it like a sequential call
and invoke the child on the current stacklet.

This section introduces a lazy thread fork (t f or k) which behaves like a sequential
cal unless it suspends, in which case—in order to support the logical paralelism
implied by the fork it represents—it directly resumes the parent and behaves like an
eagerly forked thread. t f or k behaveslikeasequentia call inthat it transfers control
(and its arguments) directly to the new thread. Further, if the new thread completes
without suspending, it returns control (and results) directly to its parent.

If the child suspends, it must resume its parent in order to notify its parent that the
t f or k redly requireditsownthread of control. Thus, the child must be ableto return
to its parent at either of two different addresses: one for normal return and one for
suspension. Instead of passing the child two return addresses, the parent callsthe child
with a single address from which it can derive both addresses. At the implementation
level, this use of multiple return addresses can be thought of as an extended version
of continuation passing [1], where the child is passed two different continuations, one
for norma return and one for suspension. The compiler ensures that the suspension
entry point precedes the normal return entry point by a fixed number of instructions.



Enabling Primitives for Compiling Parallel Languages 9

free free S
ace space
I S &
—_—
child 1 parallel call child 1 sp, top
sp child 2
parent parent
fp fp—»i
Stub Stub 5o AR o
—o
[ Ol rerconil

Figure 6 A paralel call creates anew stacklet.

A normal return will continue execution after thet f or K. In the case of suspension,
the compiler uses simple address arithmetic to cal cul ate the suspension entry point.

In the case where the child suspends, the parent will not be the topmost frame in the
stacklet—i.e., Sp will not equal t op (the situation shown in Figure 6). To maintain
the sequential stack invariant, we do not alocate future children of the parent on
the current stacklet. Instead, while there is a suspended child above the parent in
the current stacklet, we alocate future children, sequential or parallel, on their own
stacklets (see Figure 6). Asaresult, the trandation for a call must first compare sp
andt op. If they are equal, the call occurs on the current stacklet (asin Figure 3). If
they are different, it starts a new stacklet (as in Figure 6). As a result, regardless of
the children’s return order, no stacklet will ever contain free space between allocated
frames. This simplifies memory management.

In summary, t f or k alows a potentially parallel thread to be executed sequentialy
and still have the ability to suspend and get its own thread of control. A child that
needsitsown thread of control takesover itsparent thread, causing itsparent to alocate
subsequent work on other stacklets. Using stacklets and compiler support we have
created amultithreaded environment in a single address space which gives each thread
alogically unbounded stack.

3.1 Parent Controlled Return Continuations

To reduce the cost of paralel calls, we always want a child which terminates to return
directly to its parent. If the child terminates without suspension it can use its origina
return address. But if it suspends, islater resumed, and finally terminates, it generally
cannot return to the same point: Once the child has suspended, the child and parent are
truly separatethreads and the parent may haveaready carried out thework immediately
followingthet f or k that created the child.

If we want the child to return directly to the parent we need some way to modify the
child’s return continuation so that the child will return to a location of the parent’s
choosing. Since we are using stacklets, both the parent and the child know where
the child’sreturn address is located in the stack. If the parent is given permission to
change the return continuation, it can change it to reflect the new state of the parent’s
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Figure7 Exampleof atwo-way join, illustrating synchronizers.

computation. The new return continuationwill returnthechild tothe pointin the parent
function that reflects that the child, and any work initiated after the child suspended,
have been carried out. We call this mechanism parent controlled return continuations
(PcrCS).

4 EFFICIENT SYNCHRONIZATION: SYNCHRONIZERS

The ideas found in pcrcs can be extended to efficiently implement synchronization.
We minimize the synchroni zation cost due to joinsby extending the use of pcrcswith
judicious code duplication and by exploiting the flexibility of the indirect jump in the
return instruction. The basic idea is to change the return continuation of a child to
reflect thesynchronization state of the parent. Inthisway, neither extrasynchronization
variables nor tests are needed. The amount of code duplicated is small since we need
to copy only the code fragments that deal with returned results. This allows us to
combinethe return with synchronization at no additional run-timecost. For full details
see[9].

Figure 7 illustrates synchronizers. Asindicated in the left part of the figure, assume
that we have two threads, 77 and T3, which return to the code fragments A and B,
respectively, in the parent. There they synchronize, before starting the code C.? The
key observation is that modifying the contents of the return address lets us encode
synchronization information. pcrcs alow the parent to perform this modification.

The resulting situation, which relies on code duplication, is shown in the right part
of Figure 7. Depending on the synchronization state, each of the two threads returns
directly to the code for synchronization failure (AF or BF) or success (AC or BC). If
both threads are explicitly forked, the return addresses for both initially point to their
respective failure entry points (AF and BF). Whichever returnsfirst executes itsreturn
code fragment (A or B) followed by a piece of code for synchronization failure. If
the first thread was invoked with t f or Kk, itsinitial failure entry point will invoke
the second thread. The failure entry point will also modify the other thread’s return
address to point to the code for synchronization success. Synchronizers and pcrcs
provide the mechanisms to efficiently combine the return and synchronization.

2Each of the three pieces of code is fairly short. A and B usually handle only taking the results and
depositing them into the parent’s frame, while C includes only one basic block.



Enabling Primitives for Compiling Parallel Languages 11

pushSeed(S,);

PCALL X, S, call X();

return addess is by conventiassunpt i on
[ steali ng:

change > return continuation

The SeedS, goto invokeYrenotely;
suspensi on:
change >§ return continuation
All seeds are a fixed number of got o i nvokeY;
instructions. assunption:

popSeed();

Figure8 How pcal | and thread seeds are implemented.

5 REMOTE WORK: THE LAZY PARALLEL CALL

So far we have shown how to reduce the overhead of potentia paralelism when it
actualy unfolds sequentialy on the local processor. Here we extend these ideas to
generate work for remote processors. We introduce thread seeds, which alow usto
represent the potential work in the system so that it may be distributed efficiently
among multiple processors. Our goal isto alow work to be distributed remotely, but
pay the cost only when there is an actua need to do so.

Thread seeds are a direct extension of the multiple return addresses we introduced to
handlethe suspensionof childreninvoked by at f or k. AsshowninFigure8, athread
seed is a code fragment with three entry points: one for child return, one for child
suspension, and onefor an external work-stealingrequest. Attheimplementationlevel,
athread seed can be thought of as an extended version of continuation passing [1],
where the child is passed three different continuations, onefor each of the three cases.
When the compiler determines that thereiswork that could berunin paralld, it creates
athread seed which represents the work. For example, with two successive forks, the
t f or k for thefirst thread will be associated with athread seed representing the fork
of the second thread.

We combine seed generation and t f or kK into a single primitive, pcal | X, sy,
where X is the function to call and Sy is a thread seed that will, when executed in
the context of the parent, cause the function Y to be invoked. Upon execution of
the pcal | , a seed is created and control is transferred to X, making the current
(parent) frame inactive. The newly created seed remains dormant until one of three
things happens:. the child returns (the seed is inlined), the child suspends (the seed is
activated), or a remote processor requests work (the seed is stolen). All three cases
require the intervention of the parent. If the child returns, the parent picks up the
seed and inlinesthe new thread of control into its own, i.e.Y executes on the parent’s
stacklet, just asif it had been called sequentialy. If the child suspends, the parent
activates the seed by spawning Y off on its own new stacklet; the seed becomes a
new thread concurrent with thefirst, but on the same processor. If a remote processor
requests work, the parent executes a remote call of Y, which becomes a new thread
running concurrently with the current thread, but on another processor.
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The model described above isadirect extension of the multiple return addresses used
to implement the lazy thread fork. In addition to two continuations for handling the
“return” and “suspension,” we need a third for “finding work.” If a remote work
request isreceived, the run-time system must somehow find the thread seed (the third
continuation) to initiatethe creation of remote work. Here we consider two approaches
to finding such work: an implicit seed model and an explicit seed model.

Intheimplicit moddl, theremotework request interruptsthechild, which then continues
execution at the work-stealing entry point of its parent. If there is no work, the entry
point contains a code fragment to jump to the parents ancestor on the stack. The
search continues until either work is generated or no work is found because no excess
paralelism is present. For the implicit model, the pushSeed and popSeed
macros in Figure 8 turn into nops and the planting of a seed is an abstract operation.
The advantage of thismodel isthat whenapcal | ismade no bookkeepingisrequired.
Instead, the stack frames themselves form the data structure needed to find work. The
disadvantage isthat finding work is more complex.

In the explicit model, when a seed is planted a specia continuation is pushed onto
the top of a seed queue. The continuation is a pointer to the return address in the
frame. The calling convention is such that the return from the child will default to the
assumption point. If achild suspends, it saves thetop pointer in the stacklet stub, pops
the top seed off the queue, sets the Sp as indicated by the seed, and jumps into the
suspension entry point of the seed.

The explicit queueing of seeds alowsusto find work with just a few instructions. For
instance, if a child suspends, it can find its ancestor, which has more work to perform,
merely by popping off the top seed. Or, more importantly, if a remote processor
requests work, we can determine if there is work by simply comparing the top and
bottom pointers to the seed queue. We can aso spawn off that work by jumping
through the work-stealing entry point of the seed at the bottom of the queue. The
parent, invoked through the seed, will execute the work-stealing routine, placing any
appropriate seed on the bottom of the queue. The drawback of thisscheme isthat even
when aseed isinlinedinto the current thread (the sequentia case) thereis an extra cost
of two memory references over the previousdly described implicit scheme.

6 EXPERIMENTAL RESULTS

In this section we present preliminary performance results for our techniques on both
uni- and multiprocessors. Our uniprocessor datawere collected on a SparcStation 10.
Our multiprocessor data were collected on a CM-5.

We have produced a parallel version of C for the CM-5 which incorporates the tech-
niques presented in this paper. To evaluate these techniques we begin by comparing
the performance of four different implementations of the doubly recursive Fibonacci
function. Fib, being fine-grained, is a good “stress test” of function invocation. As
shownin Table1l, the C version issignificantly slower than either the synchronizer or
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Runtime
Compilation Method (secs)

gcc -O4 fib.c 2.29

Assembly version of Fib 122

Fib with stacklets, lazy threads, and synchronizers 1.50

Fib as above with explicit seeds 1.86

Tablel Comparing runtimesof fib 31 ona SparcStation 10.

Program | Short Description Input Size || TAM | Lazy Threads
Gamteb Monte Carlo neutron transport 40,000 220.8 139.0
Paraffins | Enumerate isomers of paraffins 19 6.6 24
Simple Hydrodynamicsand heat conduction | 11100 5.0 33
MMT Matrix multiply test 500 705 66.5

Table 2 Dynamic run-time in seconds on a SparcStation 10 for the 1d90 benchmark
programsunder the TAM model and lazy threads with multiple strands using explicit seeds.
The programs are described in [7].

the seed version. The reason isthat our stacklet management code does not use register
windows, which introduce a high overhead on the Sparc. For afair comparison we
wrote an assembly version of Fib that also does not use register windows. This highly
optimized assembly version runsonly 18% faster than the synchronizer version, which
incorporates al the mechanisms for multithreading support.

Further evidence that lazy threads are efficient is presented in Table 2, where we
compare our lazy thread model with TAM for some larger programs on the Sparc. At
thistimeour |d90 compiler usesaprimitiveversion of explicit seed creation. Inaddition
to the primitives described so far, the compiler uses strands, a mechanism to support
fine-grained paralelism within a thread [9]. We see a performance improvement
ranging from 1.1 timesfaster for coarse-grained programs|ike bl ocked matrix multiply
(MMT) to 2.7 timesfaster for finer-grained programs. We expect an additional benefit
of up to 30% when the compiler generates code using synchronizers.

Next, we look at the efficiency of work-stealing combined with seeds on a parallel
machine by examining the performance of the synthetic benchmark proposed in [16]
and also used in [25]. Grainisadoubly recursive program that computes a sum, but
each leaf executes aloop of ¢ instructions, allowing usto control the granularity of the
leaf nodes. We compare its efficiency to the sequential C code compiled by gcc. As
shown in Figure 9, using stackletswe achieve over 90% efficiency when thegrain size
isaslittleas 400 cycles. Compare thisto the grain size of an invocation of fib, which
is approximately 30 cycles. Most of the inefficiency comes from the need to poll the
CM-5 network. The speed-up curve in Figure 9 showsthat even for very fine-grained
programs, the thread seeds successfully exploit the entire machine.



Efficiency

Figure9 Efficiency of lazy threads on the CM-5 compared to the sequential Cimplemen-
tation as a function of granularity. We use the synthetic benchmark Grain [16, 25].
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We have shown that by integrating a set of innovative techniques for call frame man-
agement, call/return linkage, and thread generation we can provide afast paralel call
which obtains nearly the full efficiency of a sequential call when the child thread exe-
cutes locally and runs to completion without suspension. This occurs frequently with
aggressively parallel languages such as 1d90, as well as more conservative languages

such as C with paralld calls.

The centra ideaisto pay for what you use. Thus, alocal fork is performed essentially
as a sequentia call, with the attendant efficient stack management and direct transfer
of control and data. The only preparation for paralelism is the use of bounded-size
stacklets and the provision of multiple return entry pointsin the parent. If the child
actually suspends before completion, control is returned to the parent so that it can
take appropriate action. Similarly, remotework isgenerated lazily. When athread has
work that can be performed remotely, it exposes an entry point, called a thread seed,
that will produce the remote work on demand. If the work ends up being performed
localy, it is simply inlined into the local thread of control as a sequential call. We
exploit the one bit of flexibility in the sequentia call, the indirect jump on return, to
providevery fast synchronization and to avoid explicit checking for special cases, such

as stacklet underflow.

Empirical studieswith a parallel extension to C show that these techniques offer very
good parale performance and support fine-grained parallelism even on a distributed
memory machine. Integratingthese methodsinto aprototypecompiler for 1d90 results,
depending on the frequency of paralld cals in the program, in an improvement by
nearly afactor of two over previous approaches.
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