
Appears inProc. of The 26th Annual International Sym-
posium on Computer Architecture, May 1999, Atlanta,
Georgia.

PipeRench: A Coprocessor for Streaming Multimedia Acceleration

Seth Copen Goldstein† Herman Schmit∗ Matthew Moe∗ Mihai Budiu† Srihari Cadambi∗

R. Reed Taylor∗ Ronald Laufer∗

School of Computer Science† and Department of ECE∗

Carnegie Mellon University
Pittsburgh, PA 15213

†{seth,mihaib }@cs.cmu.edu
∗{herman,moe,cadambi,rt2i,rel }@ece.cmu.edu

Abstract

Future computing workloads will emphasize an archi-
tecture’s ability to perform relatively simple calculations
on massive quantities of mixed-width data. This pa-
per describes a novel reconfigurable fabric architecture,
PipeRench, optimized to accelerate these types of computa-
tions. PipeRench enables fast, robust compilers, supports
forward compatibility, and virtualizes configurations, thus
removing the fixed size constraint present in other fabrics.
For the first time we explore how the bit-width of processing
elements affects performance and show how the PipeRench
architecture has been optimized to balance the needs of
the compiler against the realities of silicon. Finally, we
demonstrate extreme performance speedup on certain com-
putingkernels (up to 190x versus a modern RISC processor),
and analyze how this acceleration translates toapplication
speedup.

1. Introduction

Workloads for computing devices are rapidly changing.
On the desktop, the integration of digital media has made
real-time media processing the primary challenge for ar-
chitects [10]. Embedded and wireless computing devices
need to process copious data streaming from sensors and
receivers. These changes emphasize simple, regular com-
putations on large sets of small data elements. There are two
important respects in which this need does not match the
processing strengths of conventional processors. First, the
size of the data elements underutilizes the processor’s wide
datapath. Second, the instruction bandwidth is much higher
than it needs to be to perform regular, dataflow-dominated
computations on large data sets.

Both of these problems are being addressed through pro-
cessor architecture. Most recent ISAs have multimedia in-
struction set extensions that allow a wide datapath to be

switched into SIMD operation [17]. The instruction band-
width issue has created renewed interest in vector process-
ing [14, 24].

A fundamentally different way of addressing these prob-
lems is to configure connections between programmable
logic elements and registers in order to construct an effi-
cient, highly parallel implementation of the processing ker-
nel. This interconnected network of processing elements is
called areconfigurable fabric, and the data set used to pro-
gram the interconnect and processing elements is aconfigu-
ration. After a configuration is loaded into a reconfigurable
fabric, there is no further instruction bandwidth required to
perform the computation. Furthermore, because the oper-
ations are composed of small basic elements, the size of
the processing elements can closely match the required data
size. This approach is calledreconfigurable computing.

Despite reports of amazing performance [11], reconfig-
urable computing has not been accepted as a mainstream
computing technology because most previous efforts were
based upon, or inspired by, commercial FPGAs and fail to
meet the requirements of the marketplace. The problems
inherent in using standard FPGAs include

1. Logic granularity: FPGAs are designed for logic re-
placement. The granularity of the functional units is
optimized to replace random logic, not to perform mul-
timedia computations.

2. Configuration time: The time it takes to load a con-
figuration in the fabric is calledconfiguration time.
In commercial FPGAs, configuration times range from
hundreds of microseconds to hundreds of milliseconds.
To show a performance improvement this start-up la-
tency must be amortized over huge data sets, which
limits the applicability of the technique.

3. Forward-compatibility: FPGAs require redesign or
recompilation to gain benefit from future generations
of the chip.

4. Hard constraints: FPGAs can implement only ker-

1

nels of a fixed and relatively small size. This is part
of the reason that compilation is difficult—everything
must fit. It also causes large and unpredictable discon-
tinuities between kernel size and performance.

5. Compilation time: Currently the synthesis, placement
and routing phases of designs take hundreds of times
longer than what the compilation of the same kernel
would take for a general-purpose processor.

This paper describes PipeRench, a reconfigurable fab-
ric designed to increase performance on future computing
workloads. PipeRench realizes the performance promises of
reconfigurable computing while solving the problems out-
lined above. PipeRench uses a technique calledpipeline
reconfigurationto solve the problems of compilability, re-
configuration time, and forward-compatibility. The archi-
tectural parameters of PipeRench, including the logic block
granularity, were selected to optimize the performance of a
suite of kernels, balancing the needs of a compiler against
design realities in deep-submicron process technology.

PipeRench is currently used as an attached processor.
This places significant limitations on the types of applica-
tions that can realize speedup, due to limited bandwidth be-
tween PipeRench, the main memory and the processor. We
believe this represents the initialphase in the evolution of re-
configurable processors. Just as floating-point computation
migrated from software emulation, to attached processors,
to coprocessors, and finally to full incorporation into pro-
cessor ISAs, so will reconfigurable computing eventually be
integrated into the CPU.

In the next section, we use several examples to illustrate
the advantages and architectural requirements of reconfig-
urable fabrics. We introduce the idea of pipeline reconfigu-
ration in Section 3, and describe how this technique solves
the practical problems faced by reconfigurable computing.
Section 4 describes a class of architectures that can imple-
ment pipelined reconfiguration. We evaluate these architec-
tures in Section 5. We cover related work in Section 6, and
in Section 7 we summarize and discuss future research.

2. Reconfigurable Computing

2.1. Attributes of Target Kernels

Functions for which a reconfigurable fabric can provide
a significant benefit exhibit one or more of the following
features:

1. The function operates on bit-widths that are different
from the processor’s basic word size.

2. The data dependencies in the function allow multiple
function units to operate in parallel.

for (int i=0; i<maxInput; i++) {
y[i] = 0;
for (int j=0; j<Taps; j++)

y[i] = y[i] + x[i+j]*w[j];
}

Figure 1. C code for a FIR filter and a pipelined
version for a three-tap filter.

3. The function is composed of a series of basic opera-
tions that can be combined into a single specialized
operation.

4. The function can be pipelined.
5. Constant propagation can be performed, reducing the

complexity of the operations.
6. The input values are reused many times within the

computation.

These functions take two forms.Stream-based functions
process a large data input stream and produce a large data
output stream, whilecustom instructionstake a few inputs
and produce a few outputs. After presenting a simple ex-
ample of each type of function toillustrate how a reconfig-
urable fabric can improve performance, we discuss the ways
in which a fabric can be integrated into a complete system.

2.2. A Stream-Based Function: FIR

A reconfigurable fabric can be most effective when used
to implement entire pipelines from applications. Here we
investigate a simple but prototypicalpipeline for implement-
ing a finite-impulse response (FIR) filter. The FIR filter
exhibits all but feature 3 from the requirement list in Sec-
tion 2.1. Figure 1 shows the C code and a hardware imple-
mentation. When FIR is mapped to a reconfigurable fabric,
the general-purpose multipliers shown in the hardware de-
scription are implemented as constant multipliers, where the
constants are thew[i] values. This results in less hardware
and fewer cycles than a general-purpose multiplier.

Figure 2 compares an 8-bit FIR using 12-bit coefficients
running on a particular instance of PipeRench to imple-
mentations on a Xilinx FPGA using parallel distributed
arithmetic (shown as Xilinx PDA in Figure 2) and double-
rate bit-serial distributed arithmetic (shown as Xilinx DDA).
Both the PipeRench chip and Xilinx FPGA are implemented
in 100mm2 of silicon using a 0.35 micron process. The

2

0

50

100

150

200

0 50 100 150 200 250

FIR Filt er Taps

PipeRench

Xilinx PDA

Xilinx DDA

TI DSP

M
e

g
as

am
p

le
s

P
e

r
S

e
co

n
d

(M
S

P
S

)

Figure 2. Performance on 8-bit FIR filters:
PipeRench, Xilinx FPGA using parallel and serial
arithmetic, and Texas Instruments DSP.

int
popCount(unsigned n) {

int sum=0, i;
for (i=0; i<8; i++)

sum += (n >> i) & 1;
return sum;

}

Figure 3. C code and its hardware implementation
for population count.

FPGA runs at approximately 60MHz for both applications,
while PipeRench’s clock is 100MHz. PipeRench outper-
forms both Xilinx implementations over a broader range of
filter sizes. Similarly, PipeRench outperforms the Texas
Instruments TMS320C6201, a commercial DSP that runs
at 200 MHz and contains two 16x16-bit integer multipli-
ers, on filters larger than a few taps. PipeRench exhibits
the same high level of performance as the FPGA. Due to
its support for hardware virtualization, as described in Sec-
tion 3, PipeRench exhibits the same graceful degradations
of performance as the DSP.

2.3. Custom Instructions: Population Count In-
struction

Most processors, with the exception of vector supercom-
puters, do not include a native population count instruction
and thus it must be implemented in software (see Figure 3).
Using a reconfigurable fabric, popCount() can be imple-
mented as a custom instruction giving a raw performance
improvement of more than an order of magnitude. The
function exhibits three of the qualifying features (1, 2, and

CPU

L2

L1

Main Memory

Memory Bus

I/O Bus

Reconfigurable
Fabric

Functional Unit

Loosely Coupled
Attached processor

Tightly Coupled
Coproccessor

800MB/sec

1.3GB/sec

5GB/sec

133MB/sec

Figure 4. Possible locations for reconfigurable fabric
in memory hierarchy. Bandwidth figures are typical
for a 300 MHz Sun UltraSPARC-II.

3) from Section 2.1. The reconfigurable computing solu-
tion replaces theO(n) loop with an adder tree of height
O(logn). Furthermore, the adders used are significantly
narrower than the adders on the processor. The circuit can
also be pipelined, so that when executed on a vector it retires
one result every cycle.

In evaluating a reconfigurable fabric, it is important to
take into account both configuration time and the commu-
nication latency and bandwidth between the processor and
the fabric. If popCount() is called only once, it makes little
sense to configure the fabric to perform the operation since
the time to configure the fabricwill be larger than the savings
obtained by executing popCount() on the fabric.

When popCount() is used outside of a loop and data
dependencies require that the result be used immediately
after it is computed, the fabric needs direct access to the
processor registers. On the other hand, if popCount() is
used in a loop, where there are no immediate dependencies
on the results, performance can be better if the fabric can
directly access memory. In this paper we concentrate on the
latter case.

2.4. The Fabric’s Place

Reconfigurable fabrics provide the computational datap-
ath with more flexibility. Their utility and applicability is
influenced by the manner in which they are integrated into
the datapath. We recognize three basic ways in which a
fabric may be integrated into a system: as an attached pro-
cessor on the I/O or memory bus, as a coprocessor, or as a
functional unit on the main CPU. (See Figure 4.)

Attached-processor systems, e.g. PAM [1], Splash [4],
and DISC [25], have no direct access to the processor.
Rather, they are controlled over a bus. The primary fea-
ture of attached processors is that they are easy to add to

3

existing computer systems. However, due to the bandwidth
and latency constraints imposed by the bus they can en-
hance only computations that have a high computation–to–
memory-bandwidth ratio. Thus, they are most suited to
stream-based functions that require little or no communica-
tion with the host processor.

In coprocessor architectures, there is a low-latency, high-
bandwidth connection between the processor and the re-
configurable fabric, which increases the number of stream-
based functions that can profitably be run on the fabric. Re-
cent examples of such systems include Garp [13] and Napa-
1000 [19]. Further specialization occurs when the fabric is
on the main processor’s data path,as in functional-unit archi-
tectures like P-RISC [18], Chimaera [12], and OneChip [26].
All of these allow custom instructions to be executed. The
reconfigurable unit is on the processor datapath and has ac-
cess to registers. However, these implementations restrict
the applicability of the reconfigurable unit by disallowing
state to be stored in the fabric and in some cases by dis-
allowing direct access to memory, essentially eliminating
their usefulness for stream-based processing.

In this paper we describe pipelined reconfigurable archi-
tectures, which can be used in any of the fashions described
above. However, in order to describe the system we are
currently building, we limit ourselves to describing how we
would apply it as an attached-processor system. The natural
evolution of this fabric to a coprocessor or a function unit
would only enhance its applicability.

3. Pipelined Reconfigurable Architectures

In the previous section, we described how application-
specific configurations of reconfigurable fabrics can be used
to accelerate certain applications. The computation is em-
bedded in a single static configuration rather than in a
sequence of instructions, thereby reducing the instruction
bandwidth.

The static nature of these configurations, however, causes
two significant problems. First, the computation may re-
quire more hardware than is available. Second, given more
hardware, there is no way that a single hardware design can
exploit the additional resources that will inevitably become
available in future process generations. In this section, we
review a technique called pipeline reconfiguration [20], that
allows a large logical design to be implemented on a small
piece of hardware throughrapid reconfiguration of that hard-
ware. With this technique, the compiler is no longer respon-
sible for satisfying fixed hardware constraints. In addition,
the performance of a design improves in proportion to the
amount of hardware allocated to that design; as future pro-
cess technology makes more transistors available, the same
hardware designs achieve higher levels of performance.

Pipeline reconfiguration is a method of virtualizing

pipelined hardware application designs by breaking the
single static configuration into pieces that correspond to
pipeline stages in the application. These configurations are
then loaded, one per cycle, into the fabric. This makes it pos-
sible to perform the computation, even if though the whole
configuration is never present in the fabric at one time.

The virtualizationprocess is illustrated in Figure5, which
shows a five-stage pipeline being virtualized on a three-
stage fabric. The top portion of this figure shows the five-
stage application and the state of each of the stages of the
pipeline in five consecutive cycles. The bottom half of the
figure shows the state of the physical stages in the fabric
that is executing this application. An effective metaphor
for this procedure is scrolling on a text window. Once
the pipeline is full, every five cycles generates two results
from the pipeline. In general, when av-stage application
is virtualized on a device with a capacity ofp-stages (p <
v), the throughput of the implementation is proportional to
(p − 1)/v. Throughput is a linear function of the capacity
of the device; therefore performance improves due to both
increases in clock frequency and decreases in feature size,
without any redesign, untilp = v. Thereafter, applications’
performance continues to gain only through increased clock
speed.

Because the configurationof stages happens concurrently
with the execution of other stages, there is no loss in perfor-
mance due to reconfiguration. As the pipeline is filling with
data, stages of the computation are being configured ahead
of that data. Even if there is no virtualization, configuration
time is equivalent to the pipeline fill time of the application
and therefore does not reduce the maximum throughput of
the application.

In order for this virtualization process to work, the state
in any pipeline stage must be a function only of the current
state of that stage and the current state of the previous stage.
In other words, cyclic dependencies must fit withinone stage
of the pipeline. Interconnect that directly skips over one or
more stages is not allowed, nor are connections from one
stage to a previous stage. Fortunately, many computations
on streaming data can be pipelined within these constraints.
Furthermore, by including structures we callpass registers,
it is possible to create virtual connections between distant
stages.

The primary challenge facing pipeline reconfiguration is
configuring a computationally significant pipeline stage in
one clock cycle. To do this, we connect a wide on-chip
configuration buffer (either SRAM or DRAM) to the nearby
fabric allowing a pipeline stage to be configured in one cycle.
We use thewordstripeto describe both thephysical stages in
the fabric (thephysical stripes), and the configuration words
that are written into them (thevirtual stripes). Any virtual
stripe can be written into any physical stripe. Therefore,
all physical stripes must have identical functionality and

4

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

1 2 3 4 5 6Cycle:

Virtual Pipestage

1Stage 1

Stage 2

Stage 3

4

5

1

2

1

2

3

2

3

4

3

Physical Pipestage

Configuring ExecutingLegend:

Figure 5. Pipeline Reconfiguration. This diagram
shows the process of virtualizing a five-stage pipeline
on a three-stage device.

interconnect.
Before a physical stripe is reconfigured with a new virtual

stripe, the state of the resident virtual stripe, if any, must be
stored outside of the fabric. Conversely, when a virtual
stripe is returned to the fabric, any stored state for the stripe
must be restored within the physical stripe [5].

4. PipeRench

In this section, we describe a class of pipeline reconfig-
urable fabrics, called PipeRench devices, and define critical
architectural parameters for this class of fabrics. These ar-
chitectural parameters are the subject of the performance
evaluation described in Section 5.

An abstract view of the PipeRench architectural class is
shown in Figure 6. The device is composed of a set of
physical pipeline stages, or stripes. Each stripe is composed
of interconnect and processing elements (PE), which contain
registers and ALUs. An ALU is composed of look-up tables
(LUTs) and extra circuitry for carry-chains, zero-detection,
etc. The PEs have access to a global I/O bus. Through
the interconnect network, the PEs can access operands from
registered outputs of the previous stripe as well as registered
or unregistered outputs of the other PEs in the stripe. There
are no busses that go to a previous stripe; this is required
by hardware virtualization (as discussed in [5]) and makes
long feedback loops impossible, since any feedback must
be contained within one stripe. The global I/O busses are

ALU

ALU

Register File

PE 0

PE 0

ALU

ALU

PE 1

PE 1

Interconnect

Stripe n

Stripe n+1

Stripe n+2

ALU

ALU

PE N-1

PE N-1

...

...

...Register File Register File Register File

Register File Register File

Network

Interconnect
Network

G
l
o
b
a
l

B
u
s
s
e
s

G
l
o
b
a
l

B
u
s
s
e
s

Figure 6. PipeRench Architecture: PEs and inter-
connect.

required because the pipeline stages in an application may be
physically located in any of the stripes in the fabric; inputs
to and outputs from the application must use a global bus to
get to their destination.1

All PipeRench devices have four global busses. Two of
thesebusses arededicated to storing and restoring stripestate
during hardware virtualization. The other two are used for
input and output. Combinational logic is implemented using
using a set ofN B-bit wide ALUs. The ALU operation
is static while a particular virtual stripe is located in the
physical stripe. The carry lines of PipeRench’s ALUs may
be cascaded to construct wider ALUs. Furthermore, ALUs
may be chained together via the interconnect network to
build complex combinational functions.

4.1. Pass Register File

We organize each stripe as an array of processing ele-
ments (PEs). Each PE contains one ALU and a pass register
file. As described in Section 3, there can be no unregistered
interconnect between stripes. Furthermore, any state caused
by registered feedback within the stripe must be saved and
restored. The pass register is designed to provide efficient
pipelined (registered) interstripe connections. Each pass
register file has one dedicated register that can be used for
intra-stripe feedback and therefore must have its state stored
and restored.

As illustrated in Figure 7, the output of the ALU can be
written to any one of theP registers in the pass register file.
If the register is not written by the ALU, the value in the pass
register is loaded from the value in the corresponding pass
register in the previous stripe. This reduces the amount of
state that can be contained in the pass register file to a single
register, because data that travels through the pipeline does

1By limiting the set ofphysical stripes that may hold a particular virtual
stripe one can eliminate the global busses. This reduces utilization, but
may increase clock frequency sufficiently to make it worthwhile.

5

ALU

...

...

Read
Port

B

B

1 2 P

Pass Register File

Write
Port

Stripe n

Stripe n+1

ALU

Figure 7. The pass register interconnect.

Out

Global
Busses

Interconnect Network

P Pass
Registers

Output from
Previous
Stripe

Barrel Shifter Barrel Shifter

B-1
bits
from
next
PE

B-1
bits
to
next
PE

Control/Carry
Bits

To Interconnect Network

ALU
Control/Carry

Bits

BB

B
To Global Output Bus

A B

A B

Figure 8. Complete architectural class.

not need to be saved and restored. The pass register file also
provides a way to route intermediate results computed on
one stripe to a stripe somewhere down the pipeline, without
wasting ALUs or the interconnect network within the stripe.
Like the ALU operation, the specific registers that are writ-
ten to and read from the pass register file are static while a
virtual stripe is resident; different PEs can read and write
different registers, but the registers that a particular PE ac-
cesses change only when a different virtual stripe configures
the physical stripe.

4.2. Interconnect Network

The pass register file provides pipelined interconnect
from a PE in one stripe to the corresponding PE in sub-
sequent stripes. If data values need to move laterally within
the stripe, they must use the interconnect network, which is
illustrated as a horizontal bar in Figure 6. Ineach stripe, the
interconnect network accepts inputs from theeach of the PEs
in that stripe, as well as one of the registered values from the
previous stripe. Like the ALU operations and the pass reg-
ister files, the interconnect network is programmed during

configuration and remains unchanged during the lifetime of
the virtual stripe.

The interconnect we evaluate in Section 5 is a full cross-
bar. This is expensive in terms of hardware, but it makes
every design easily placeable by the compiler. Furthermore,
a rich network is necessary to achieve good utilization in a
reconfigurable fabric [9]. In fact, most fabrics use over 50%
of their available area on interconnect. As shown in Sec-
tion 5, even with a full crossbar we use less than 50% of the
area for the interstripe interconnect. Though we use a full
crossbar, it connects only PEs to PEs—i.e., it is aB-bit wide,
NxN crossbar, as opposed to an(NxB)x(NxB) crossbar.
A key to making this interconnect useful is that each PE has
a barrel shifter that can shift its inputs up toB−1 bits to the
left (see Figure 8). This allows our architecture to do data
alignments that are necessary for word-based arithmetic as
described in [6].

4.3. Physical Implementation

Currently we are planning to design this system in
100mm2 of silicon in a 0.25 micron process. Half of that
area is for the reconfigurable fabric, while the other half is
for memory to store virtual stripes, control, and chip I/O.
Fifty square millimeters of silicon provides approximately
500kb of virtual configuration storage, which is adequate
for very large applications.

4.4. Architectural Parameters

Figure 8 summarizes one of theN PEs in a stripe for
our parameterized architecture. In the following section, we
explore the following three architectural parameters:

• N : the number of PEs in the stripe;

• B: the width, in bits, of each PE;

• P : the number of B-bit wide registers in the pass reg-
ister file per PE.

5. Evaluation

In this section we explore the design space of pipelined
reconfigurable architecures. Using a compiler and CAD
tools, we look at how several kernels perform on implemen-
tations of the fabric that differ in the parameters described
in Section 4.4.

5.1. Kernels and Applications

Performance and utilization data were gathered for
PipeRench implementations of various kernels. The ker-
nels were chosen based on demand for the applications in

6

the present and near future, their recognition as industry
performance benchmarks, and their ability to fit into our
computational model.

ATR implements the shapesum kernel of the Sandia algo-
rithm for automatic target recognition [22]. This algo-
rithm is used to find an instance of a template image in
a larger image, and to distinguish between images that
contain different templates.

Cordic is a 12 stage implementation of the Honeywell tim-
ing benchmark for Cordic vector rotations [15]. Given
a vector in rectangular coordinates and a rotation angle
in degrees, the algorithm finds a close approximation
to the resultant rotation.

DCT is a one-dimensional, eight-point discrete cosine
transform [16]. DCT-2D, a two-dimensional DCT, is
an important algorithm in digital signal processing and
is the core of JPEG image compression.

FIR is described in Section 2.2. Here we implement a FIR
filter with 20 taps and 8-bit coefficients.

IDEA implements a complete eight-round International
Data Encryption Algorithm with the key compiled into
the configuration [21]. IDEA is the heart of Phil Zim-
merman’s Pretty Good Privacy (PGP) data encryption.

Nqueens is an evaluator for the Nqueens problem on an
8x8 board. Given the coordinates of chess queens on
a chessboard, it determines whether any of the queens
can attack each other.

Over implements the Porter-Duff over operator [2]. This
is a method of joining two images based on a mask of
transparency values for each pixel.

PopCount is described in section Section 2.3.

We also evalute the performance of PipeRench on two
complete applications, JPEG and PGP. In each of these ap-
plications we assume PipeRench is integrated into the sys-
tem on the PCI bus, which has a peak memory bandwidth
of 132MB/sec.

5.2. Methodology

Our approach is to use CAD tools to synthesize a stripe
based on the parametersN , B, andP . We join this auto-
matically synthesized layout with a custom layout for the
interconnect. Using the final layout we determine the num-
ber of physical stripes that can fit in our silicon budget of
50 mm2 (5 mm x 10 mm) and the delay characterisitics of
the components of the stripe (e.g., LUTs, carry-chain, in-
terconnect, etc.). The delay characterisitics and number of
registers are then used by the compiler to create configura-
tions for each of the architectural instances,yielding a design
of a certain number of stripes at a particular frequency. We
can then determine the overall speed of the kernel, in terms
of throughput, foreach architectural instance.

The CAD tool flow synthesizes each design point and
automatically places and routes the final design. Although
the automatic tool flow does not yield the optimal design,
we assume that the various points are equally non-optimal,
allowing us to compare the designs. Preliminary analysis
showed the CAD tools doing quite well, except for the in-
terconnect, which we hand optimize.

The kernels are written in a single-assignment C-like
language, DIL, which is intended for both programmers
and as an intermediate language for a high-level language
compiler that targets reconfigurable architectures. The DIL
compiler automatically synthesizes and places and routes
our largest designs in a few seconds [3]. It is parameterizable
so that we can generate configurations for any pipelined
reconfigurable architecure as described in Section 4.

5.3. The Fabric

There are two main constraints that determine which pa-
rameters generate realizable fabrics: the width of a stripe
and the number of vertical wires that must pass over each
stripe. The width of a stripe is influenced by the size and
number of the PEs and the number of registers allocated to
each PE. We limit the width of a stripe to 4.9mm in order to
allow two of them to be placed side by side.2

The second constraint is to accomodate the number of
vertical wires that pass over the stripes within two metal
layers. These wires include those for the global busses, the
pass registers, and the configuration bits.

We explore the region of the space bounded by PE bit-
widths (B) of 2, 4, 8, 16, and 32 bits; stripe widths (N x B)
of between 64 bits and 256 bits; and registers (P) of 2, 4,
8 and 16.3 Figure 9 shows the computational density (bit-
ops/area-time) of the realizable parameters when four and
eight registers are allocated to each PE. Interestingly, the
result is essentially independent of stripe width. The reason
for this is that as the stripe width increases, the amount of
area per stripedevoted to interconnect increases, but the total
number of stripes decreases—yeilding a constant amount of
total area devoted to interconnect. In fact, the total area de-
voted to interstripe interconnect is less than 50% of the area
devoted to the fabric. The total delay from the output of one
stripe into the PE of the next stripe remains approximately
constant because the wire capacitance of the interstripe in-
terconnect (5mm long in all cases) dominates the transistor
delays.

The computational density does not seem to have a mono-
tonic relationship with PE width. This seems counter-

2Virtualization requires that data be allowed to flow between any two
stripes, including the last physical one and the first physical one. To obtain
consistent routing delay times we arrange the stripes in two columns: in
one column the data flows down and in the other it flows up. This avoids a
long path from the last to the first physical stripe.

3Some of the wider stripes can be implementedonly with eight registers.

7

Four Register Computational Density

0

5000

10000

15000

20000

25000

64 80 96 112 128 144 160 176 192 208 224 240 256

Stripe Width

M
eg

ab
it

O
pe

ra
tio

ns
/m

m
2-

se
c

2 4 8 16 32
PE Bit-width

Eight Register Computational Density

0

5000

10000

15000

20000

25000

64 80 96 112 128 144 160 176 192 208 224 240 256

Stripe Width

M
eg

ab
it

O
pe

ra
tio

ns
/m

m
2-

se
c

2 4 8 16 32
PE Bit-width

Figure 9. Computational density.

intuitive; as PE size increases, the overhead of configura-
tion decreases and the ability to optimize the PE increases.
Therefore, computational density should increase. But our
delay metric includes the delay associated the carry chain
of one PE, which increases with PE width. The increased
carry chain delay counters the reduction in size per bit of
the wider PEs causing the computational density to remain
relatively constant. On the other hand, if we were to use
only logical operations to measure delay, we would observe
a near-linear increase in computational density as PE size
increases.

Because registers consume substantial area, density goes
down as the number of registers increases (compare the
two graphs in Figure 9). In fact, since we use registers
mainly to implement pipelined interstripe interconnect, they
contribute little to computational density. However, as we
will see, they are extremely useful in compiling kernels to
the fabric.

The last effect we examine is the size of the configuration
word. The configuration word size approximately halves as
PE widths double. On the other hand, as the width of the
stripe increases, the configuration word increases slightly.
For 128-bit stripes, the configuration bits for a stripe range
from 1280 bits for a 4-bit PE to 164 bits for a 32-bit PE.

5.4. The Compiler

The compilation process maps source written in a
dataflow intermediate language (DIL) to a particular in-
stance of PipeRench. DIL is a single-assignment language
with C operators and a type system that allows the bit-width
of variable to be specified. The compiler converts the source
into a dataflow graph and then, through many transforma-
tions, creates a final configuration. The important transfor-
mations for this study are operator decomposition, operator

recomposition, fitting, and place-and-route.
The operator decomposition pass breaks up operators so

that they can execute within the target cycle time. For ex-
ample, a wide adder needs to be broken up into several
smaller adders due to the carry-chain delays. The decompo-
sition must also create new operators that handle the routing
of the carry bits between the partial sums. For operations
that require carry bits, the decomposed version is signifi-
cantly larger and has additional routing constraints. Thus, as
PE size decreases, the penalty for decomposition increases.
Currently, the interaction between operator decomposition
and place-and-route requires each stripe to have at least six
PEs.

The naive decomposition for an operator routes the carry
signal on the interstripe interconnect. It also results in sign-
extending the single carry bit to the size of the smaller
adders. To compensate for this, the operator recomposi-
tion pass uses pattern matching to find subgraphs that can
be mapped to parameterized modules designed to take ad-
vantage of architecture-specific routing and PE capabilities.
Most importantly for this study, this slightly reduces the
overhead of decomposed carry operations.

The fitting pass matches the wire and operator widths
to the size of a PE. This can require the insertion of sign-
extension operators to increase the width of wires that are
not multiples of a PE width. As the PE width increases, this
causes both underutilization of PEs and a larger percentage
of sign-extension PEs. Furthermore, routing operations be-
come more complex as extracting bits from wires that are
not PE-aligned often involves using an extra PE.

Place-and-route is the key to the compiler. It places
and routes the operators in the graph onto stripes under the
timing constraint imposed by the target cycle time. Thus,
as the clock rate or the delay through the PE increases, the
utilization ofeach stripe can decrease, unless the kernel has

8

0

10

20

30

40

50

60

70

80

ATR

Cor
dic DCT

DCT-2
D

FIR
ID

EA

Nqu
ee

ns
Ove

r

Pop
Cou

nt

M
ill

iio
ns

 o
f i

np
ut

s/
S

ec
on

d

2 4 8 16
 Number of Registers per PE

Figure 10. The harmonic mean of the throughput for
all fabric parameters as a function of registers.

sufficient parallelism so that independent operators can be
placed in a stripe. This is particularly true of stripes with
many PEs.

In addition to assigning operators to PEs and wires to
the interconnect, the place-and-route pass assigns wires to
the pass registers. If there are insufficient pass registers,
the compiler will time-multiplex wires on registers. Time-
multiplexing slows the circuit down in order to allow multi-
ple values to reside in a single registers. For example, if two
wires are assigned to a single register, then the register holds
one wire on the odd cycles and another on the even ones.
While time-multiplexing does not increase the circuit size
significantly, it does reduce the throughput by a constant
factor. For architectures with few registers this is a severe
penalty, as time-multiplexing factors of more than ten may
be required.

One of the goals for the DIL compiler was compilation
speed. It achieves high speed compilation in part by trading
off result quality for faster compilation. This affects the re-
sults by introducing more time-multiplexing than necessary.

5.5. Compiler/Fabric Interaction

The real question, of course, is not the raw hardware per-
formance available, but how well it can be utilized. Using
the parameterizable compiler we compiled configurations
for each kernel. Before evaluating the effects of overall
width, number of PEs, or number of bits per PE, we narrow
down the design space by examing the effect of pass regis-
ters. For a given stripe width and bits-per-PE, as the number
of registers increase, the computational density decreases.
However since pass registers make up an important compo-
nent of the interstripe interconnect, reducing the number of
pass registers increases routing pressure, which decreases
stripe utilization and causes the compiler to time-multiplex
the values on the registers. As Figure 10 shows, the best

balance of computation density with utilization is most often
achieved at eight registers. The average time multiplexing
factor for all the kernels average across all the fabrics ranges
from over 60 for two registers, to 12 at four registers, 2 at
eight registers,and 1 at sixteen registers. IDEA and Nqueens
have higher factors at eight registers than the other kernels.
The rest of the evaluation occurs with eight pass registers
per PE, i.e.P = 8.

Figure 11 shows the throughput achieved for various
stripe widths and PE sizes at eight registers per PE. As
can be seen, though the wider PE sizes create fabrics with
higher computational density, the natural data sizes of the
kernels are smaller, causing 32-bit PEs to be underutilized.
On the other end of the spectrum, 2-bit PEs are not com-
petitive due to increased times for arithmetic operations, the
lack of raw computational density, and the increased number
of configuration bits needed per application.

If we examine the performance of the individual kernels
(see Figure 11) we can see that the characteristics of the
kernels greatly influence which parameters are best. For
example, DCT needs at least 8 PEs in the stripe4, ruling
out 32-bit PEs for all but the widest stripe. The peak at
128 bits occurs because there is a sufficient number of PEs
to eliminate time multiplexing. While wider stripes can be
utilized because there is sufficient parallelism in the DCT
algorithm.

FIR operates mostly on 8-bit and wider numbers. This
makes 4-bit PEs less attactive due to the carry chain delay
associated with crossing PEs. There is enough parallelism
to keep the wider stripes busy. These stripes have fewer
registers, which increases the number of stripes in the im-
plementation, thereby reducing its overall throughput.

IDEA takes wide inputs, so stripes of less than 96-bits
require substantial time-multiplexing. Unlike DCT and FIR
there is not enough parallelism to utilize the wider stripes.

In summary, we need to choose a fabric that is at least 128
bits wide. We also want at least 12 PEs in the stripe. Since
not all kernels have sufficient parallelism to utilize wide
stripes, we want to choose the narrowest stripe to which all
kernels can be compiled. Thus, we choose a 128-bit wide
fabric made up of eight-bit PEs with eight registers each.

5.6. Performance Versus General-Purpose Proces-
sors

Using the eight-bit PE 128-bit stripe with eight regis-
ters we compare the performance of PipeRench to that of
a general-purpose processor, the UltraSparc-II running at
300 Mhz. Figure 12 shows the raw speedup for all ker-
nels. This performance is hard to achieve with PipeRench

4Eight PEs are required to transpose the data for the two-dimensional
DCT.

9

Throughput for IDEA

0

1

2

3

4

5

6

7

8

64 80 96 112 128 144 160 176 192 208 224 240 256
Stripe Width in Bits

M
ill

io
ns

 o
f I

np
ut

s/
S

ec
on

d

2 4 8 16 32

PE Bit-width

B = 2

B = 8

B = 4

B = 16

B = 32

Throughput for FIR

0

5

10

15

20

25

30

35

40

45

64 80 96 112 128 144 160 176 192 208 224 240 256
Stripe Width in Bits

M
ill

io
ns

 o
f I

np
ut

s/
S

ec
on

d

2 4 8 16 32

PE Bit-width

B = 2

B = 8

B = 4
B = 16

B = 32

Throughput for DCT

0

2

4

6

8

10

12

14

16

18

20

64 80 96 112 128 144 160 176 192 208 224 240 256
Stripe Width in Bits

M
ill

io
ns

 o
f I

np
ut

s/
S

ec
on

d

2 4 8 16 32

PE Bit-width
B = 2

B = 8

B = 4

B = 16

B = 32

Harmonic Mean of Throughput

0

5

10

15

20

25

64 80 96 112 128 144 160 176 192 208 224 240 256
Stripe Width in Bits

M
ill

io
ns

 o
f I

np
ut

s/
S

ec
on

d

2 4 8 16 32

PE Bit-width

B = 2

B = 8

B = 4

B = 16

B = 32

Figure 11. The throughput for various kernels on a 100MHz PipeRench. The kernels use up to 8 registers.

189.7

15.5
11.3 12.0

63.3
42.4

26.0

57.1

29.0

1

10

100

1000

ATR

Cor
dic DCT

DCT-2
D

FIR
ID

EA

Nqu
ee

ns
Ove

r

Pop
Cou

nt

S
pe

ed
up

 O
ve

r
a

30
0M

hz
 U

ltr
aS

pa
rc

-I
I

Figure 12. Speedup of eigth-bit PE, eight registers
per PE, 128-bit wide stripe.

connected via the I/O bus, but a large fraction of the raw
speedup is achievable.

Table 1 shows the speedup from using PipeRench versus

Application Input Size (MB) Speedup
PGP 0.14 1.07

9.2 1.12
18.39 1.12
27.59 1.12

JPEG 2.02 1.06
10.13 1.08
11.74 1.07
11.75 1.07

Table 1. Speedups for PGP and JPEG using a 100
MHz 128-bit 53-stripePipeRench on a 32-bit 33 MHz
PCI bus compared to a 330 Mhz UltraSparc-II.

doing the entire application on the main processor. For
PGP, we replace code for IDEA (accounting for 12% of the
application) with invocations of PipeRench, reducing the
time for this portion of the code to zero and yielding an

10

average speedup of almost 12%. For JPEG, by running the
two-dimensional DCT kernel on PipeRench, we obtain an
average improvement of about 7.2%. We also find that the
PCI bus imposes no serious bottlenecks on the performance
of these applications.

6. Related Work

Numerous other architectural research efforts are focused
on efficiently harnessing huge numbers of transistors for
media-centric computing workloads. The lineage of these
systems derives from either FPGAs or existing computer
architectures. Those decended from FPGAs are termed “re-
configurable computing systems”, and include PRISC [18],
DISC [25], NAPA [19], GARP [13], Chimaera [12], One-
Chip [26], RAW [23], and RaPiD [8]. None of these recon-
figurable computing systems support an architectural ab-
straction like virtual hardware. In every case, the compiler
must be aware of all the system constraints, and if it vio-
lates any constraint, it has failed. This makes compilation
difficult, slow, and unpredictable. Furthermore, there is no
facility in these architectures for forward-compatibility, so
that every application needs to be compiled for every new
chip. PipeRench offers hardware virtualization, forward
compatibility, and easier compilation. Like most of the
aforementioned architectures, PipeRench differs from FP-
GAs in that its basic word size is more than one or two bits
and that its interconnect is less general and more efficient
for computation.

PipeRench addresses many of the problems faced by
other computer architectures. We focus on uniprocessor sys-
tems because PipeRench exploits fine-grained parallelism.
The most insightful comparisons are to MMX, VLIW, and
vector machines.

The mismatch between application data size and native
operating datasizehas been addressed by extending the ISAs
of microprocessors to allow a wide data path to be split into
multiple parallel data paths, as in Intel’s MMX [17]. Ob-
taining SIMD parallelism to utilize the parallel data paths
is nontrivial, and works only for very regular computations
where the cost of data alignment does not overwhelm the
gain in parallelism. PipeRench has a rich interconnect to
provide for alignment and allows PEs to have different con-
figurations so that parallelism need not be SIMD.

VLIW architectures are designed to exploit dataflow par-
allelism that can be determined at compile time [7]. VLIWs
have extremely high instruction bandwidth demands. A sin-
gle PipeRench stripe is similar to a VLIW processor using
many small, simple functional units. But in PipeRench, af-
ter the stripe is configured, it is used to perform the same
computation on a large data set, thereby amortizing the in-
structions over more data.

The instruction bandwidth issue has been addressed by

vector microprocessors such as T0 [24] and IRAM [14]. The
problem with vector architectures is that the vector register
file is a physical or logical bottleneck that limits scalability.
Allocating additional functional units in a vector processor
requires an additional port on the vector register file. The
physical bottleneck of the register file can be ameliorated
by providing direct forwarding paths to allow chained oper-
ations to bypass the register file, as in T0 [24]. This places
large demands on the issue hardware. A logical bottleneck is
caused by the limited namespace of the register file. This can
be addressed by implementing register renaming to avoid
false dependencies. Thus, vector microprocessors are sub-
ject to the same complexities in issue and control hardware
design as modern superscalar processors. All connections in
PipeRench are local, and there is no central logical or phys-
ical bottleneck. Therefore, the number of functional units
can grow without increasing the complexity of the issue and
control hardware.

7. Future Work and Conclusions

In this paper we have described a new reconfigurable
computing architecture, PipeRench, which emphasizes per-
formance on future computing workloads. PipeRench uses
pipelined reconfiguration to overcome many of the difficul-
ties faced by previous attempts to use reconfigurable com-
puting to tackle these important applications. PipeRench
enables fast, robust compilers; supports forward compat-
ibility; and virtualizes hardware, removing the fixed size
constraint present in other fabrics. As a result, the designer
base is broadened, development cycles are shortened, and
application developers can amortize the cost of development
over multiple process generations.

We first examined computational density of the fabric, by
automatically synthesizing hardware based on a number of
architectural parameters, including: size of the PE, the num-
ber of PEs, and the number of registers. Raw computational
density is relatively flat across the space of architectures.
The architectural parameters could only be tuned when we
had a retargetable compiler and could measure the amount
of exploitable computational power in the fabric.

Using the compiler and hardware synthesis flow in tan-
dem, we found that PEs with bit-widths of eight are the
best compromise between flexibility and efficiency across
a broad range of kernels. When these PEs are arranged
in moderately wide stripes (e.g. 128 bits wide) we can
obtain significant performance improvements over general-
purpose processors, in some cases achieving improvement
of two orders of magnitude. These performance numbers
are conservative. Both hardware performance and compiler
efficiency can be significantly optimized.

We are currently building a PCI-based board that will in-
clude one or more PipeRench chips. Although PipeRench is

11

currently being built into a system as an attached processor,
we are examining how to move it closer to the processor.
We expect that just as the computing demands of the past
decades forced floating-pointprocessors to become floating-
point units, the computing workloads of the near future will
cause PipeRench to move from an attached processor to
reconfigurable unit.

8. Acknowledgements

The authors wish thank the reviewers for the helpful
comments. This work was supported by DARPA contract
DABT63-96-C-0083. We also received financial support
from Altera Corporation, and technical support from STMi-
croelectronics.

References

[1] P. Bertin and H. Touati. PAM programming environments:
Practice and experience. In D. A. Buell and K. L. Pocek, ed-
itors,Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 133–138, Napa, CA, Apr. 1994.

[2] J. Blinn. Fugue for MMX. IEEE Computer Graphics and
Applications, pages 88–93, March-April 1997.

[3] M. Budiu and S. Goldstein. Fast compilation for pipelined re-
configurable fabrics. InProceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable
Gate Arrays (FPGA ’99), Montery, CA, Feb. 1999.

[4] D. Buell, J. Arnold, and P. Athanas.SPLASH2: FPGAs in a
custom computing machine. AW, 196.

[5] S. Cadambi, J. Weener, S. Goldstein, H. Schmit, and
D. Thomas. Managing pipeline-reconfigurable FPGAs. In
Proceedings of the 1998 ACM/SIGDA Sixth International
Symposium on Field Programmable Gate Arrays, February
1998.

[6] D. Cherepacha and D. Lewis.A datapath oriented architecture
for FPGAs. InSecond International ACM/SIGDA Workshop
on Field Programmable Gate Arrays, 1994.

[7] R. P. Colwell, R. P. Nix, J. J. O’Donenell, D. B. Papworth, and
P. K. Rodman. A VLIW architecture for a trace scheduling
compiler. InProceedings of ASPLOS-II, pages 180–192,Mar.
1987.

[8] D. Cronquist, P. Franklin, S. Berg, and C. Ebling. Specifying
and compiling applications for RaPiD. In K. Pocek and
J. Arnold, editors,Proceedings of IEEE Workshopon FPGAs
for Custom Computing Machines, pages 116–127,Napa, CA,
Apr. 1998. IEEE Computer Society, IEEE Computer Society
Press.

[9] A. DeHon. Reconfigurable Architectures for General-
Purpose Computing. PhD thesis, Massachusetts Institute of
Technology, September 1996.

[10] K. Diefendorff and R. Dubey. How multimedia workloads
will change processor design.IEEE Computer, 30(9):43–45,
September 1997.

[11] S. Hauck. The roles of FPGAs in reprogrammable systems.
Proceedings of the IEEE, pages 615–638, Apr. 1998.

[12] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The
Chimaera reconfigurable functional unit. InIEEE Symposium

on FPGAs for Custom Computing Machines (FCCM ’97),
pages 87–96, April 1997.

[13] J. Hauser and J. Wawrzynek. Garp: A MIPS processor with a
reconfigurable coprocessor. InIEEE Symposium on FPGAs
for Custom Computing Machines, pages 24–33, April 1997.

[14] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick. Scalable
processors in the billion-transistor era: IRAM.IEEE Com-
puter, pages 75–78, September 1997.

[15] S. Kumar and et al. Timimg sensitivity stressmark. Tech-
nical Report CDRL A001, Honeywell, Inc., January 1997.
http://www.htc.honeywell.com/projects/acsbench/ .

[16] C. Loeffler, A. Ligtenberg, and G. Moschytz. Practical fast
1-d dct algorithms with 11 multiplications. InProc. Interna-
tional Conference on Acoustics Speech, and Signal Process-
ing 1989 (ICASSP ’89), pages 9880–991, 1989.

[17] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multime-
dia PCs.Communications of the ACM, 40(1):24–38, 1997.

[18] R. Razdan and M. Smith. A high-performance microarchi-
tecture with hardware-programmable functional units. In
MICRO-27, pages 172–180, November 1994.

[19] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt,
J. Arnold, and M. Gokhale. The NAPA adaptive processing
architecture. InIEEE Symposium on FPGAs for Custom
Computing Machines (FCCM ’98), April 1998.

[20] H. Schmit. Incremental reconfiguration for pipelined appli-
cations. In J. Arnold and K. L. Pocek, editors,Proceedingsof
IEEE Workshopon FPGAs for CustomComputing Machines,
pages 47–55, Napa, CA, Apr. 1997.

[21] B. Schneier. The IDEA encryption algorithm.Dr. Dobb’s
Journal, 18(13):50, 52, 54, 56, December 1993.

[22] J. Villasenor, B. Schoner, K. Chia, and C. Zapata. Config-
urable computing solutions for automatic target recognition.
In J. Arnold and K. L. Pocek, editors,Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines,pages
70–79, Napa, CA, Apr. 1996.

[23] E. Waingold, M. Taylor, D. Srikrishna, et al. Baring it all
to software: Raw machines.IEEE Computer, pages 86–93,
September 1997.

[24] J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck, D. John-
son, and N. Morgan. Spert-II: A vector microprocessor sys-
tem. IEEE Computer, 29(3):79–86, March 1996.

[25] M. J. Wirthlin and B. L. Hutchings. A dynamic instruction set
computer. In P. Athanas and K. L. Pocek, editors,Proceed-
ings of IEEE Workshop on FPGAs for Custom Computing
Machines, pages 99–107, Napa, CA, Apr. 1995.

[26] R. Wittig and P. Chow. OneChip: An FPGA processor with
reconfigurable logic. InIEEE Symposium on FPGAs for
Custom Computing Machines, 1996.

12

