
0018-9162/00/$10.00 © 2000 IEEE70 Computer

PipeRench: A
Reconfigurable
Architecture
and Compiler

H
ighly specialized embedded computer sys-
tems abound, and workloads for comput-
ing devices are rapidly changing. General-
purpose processors are struggling to effi-
ciently meet these applications’ disparate

needs, and custom hardware is rarely feasible. The
time is ripe for reconfigurable computing, which com-
bines the flexibility of general-purpose processors with
the efficiency of custom hardware. PipeRench, a new
architecture for reconfigurable computing, and its
associated compiler do just that. Combined with a
traditional digital signal processor, microcontroller,
or general-purpose processor, PipeRench can support
a system’s various computing needs without requir-
ing custom hardware.

PipeRench is a reconfigurable fabric—an intercon-
nected network of configurable logic and storage
elements. By virtualizing the hardware, PipeRench
overcomes the disadvantages of using field-program-
mable gate arrays as reconfigurable computing fab-
rics. Unlike FPGAs, PipeRench is designed to efficiently
handle computations. Using a technique called pipeline
reconfiguration, PipeRench improves compilation
time, reconfiguration time, and forward compatibil-
ity. PipeRench’s architectural parameters (including
logic block granularity) optimize the performance of
a suite of kernels, balancing the compiler’s needs
against the constraints of deep-submicron process
technology.

PipeRench is particularly suitable for stream-based
media applications or any applications that rely on
simple, regular computations on large sets of small
data elements. Conventional processors lag in effi-
ciency because of forced serialization of intrinsically
parallel operations; wasted space (small data elements
do not use the processor’s wide data path); and exces-
sive instruction bandwidth for regular, dataflow-dom-
inated computations on large data sets. A system using
a reconfigurable fabric such as PipeRench can

• increase flexibility,
• decrease design time,
• extend system life,
• reduce part count,
• reduce development and maintenance costs, and
• reduce chip fabrication costs through defect

tolerance.

PROBLEMS WITH COMMERCIAL FPGAS
Initial performance results with FPGAs were impres-

sive. However, commercial FPGAs have inherent
shortcomings, which heretofore made reconfigurable
computing impractical for mainstream computing:

• Logic granularity. FPGAs are designed for logic
replacement. The functional units’ granularity is
optimized to replace random logic, not to per-
form multimedia computations.

Reconfigurable computing will change the way computing systems are
designed, built, and used. PipeRench, a new reconfigurable fabric,
combines the flexibility of general-purpose processors with the efficiency
of customized hardware to achieve extreme performance speedup.

Seth Copen
Goldstein
Herman
Schmit
Mihai Budiu
Srihari
Cadambi
Matt Moe
R. Reed
Taylor
Carnegie
Mellon
University

C O V E R F E A T U R E

• Configuration time. The time to load a configu-
ration in the fabric ranges from hundreds of
microseconds to hundreds of milliseconds. For
FPGAs to improve processing speed over that of
a general-purpose processor, they must amortize
this start-up latency over huge data sets, limiting
their applicability.

• Forward compatibility. FPGAs require redesign
or recompilation to benefit from future chip gen-
erations.

• Hard constraints. FPGAs can implement only
kernels of a fixed and relatively small size. This
size restriction makes compilation difficult and
causes large, unpredictable discontinuities be-
tween kernel size and performance.

• Compilation time. A kernel’s synthesis, place-
ment, and routing design phases take hundreds
of times longer than the compilation of the same
kernel for a general-purpose processor.

PipeRench overcomes these problems and maintains
outstanding performance by virtualizing the hard-
ware.

PIPELINED RECONFIGURATION
A configuration’s static nature causes two significant

problems: A computation may require more hardware
than is available, and a single hardware design cannot
exploit the additional resources that will inevitably
become available in future process generations. A tech-
nique called pipelined reconfiguration implements a
large logical configuration on a small piece of hard-
ware through rapid reconfiguration of that hardware.1

With this technique, the compiler is no longer respon-
sible for satisfying fixed hardware constraints. In addi-
tion, a design’s performance improves in proportion
to the amount of hardware allocated to that design.

Pipelined reconfiguration involves virtualizing
pipelined computations by breaking a single static
configuration into pieces that correspond to pipeline
stages in the application. Each pipeline stage is loaded,
one per cycle, into the fabric. This makes performing
the computation possible, even if the entire configu-
ration is never present in the fabric at one time.

Figure 1 illustrates the virtualization process, show-
ing a five-stage pipeline virtualized on a three-stage fab-
ric. Figure 1a shows the five-stage application and each
pipeline stage’s state in seven consecutive cycles. Figure
1b shows the state of the physical stages in the fabric as
it executes this application. In this example, virtual pipe
stage 1 is configured in cycle 1 and ready to execute in
the next cycle; it executes for two cycles. There is no
physical pipe stage 4; therefore, in cycle 4, the fourth
virtual pipe stage is configured in physical pipe stage 1,
replacing the first virtual stage. Once the pipeline is full,
every five cycles generates two results for two consecu-

tive cycles. For example, cycles 2, 3, 7, 8, … consume
inputs; and cycles 6, 7, 11, 12, … generate outputs.

In general, when PipeRench virtualizes an applica-
tion with v virtual stages on a device with a capacity
of p physical stages (p < v), the implementation’s
throughput is proportional to (p – 1)/v. Throughput
is a linear function of the device’s capacity. Therefore,
performance improves with new chip generations not
only because of increases in clock frequency but also
because of decreases in transistor size, without any
redesign, until p = v. Thereafter, an application’s per-
formance continues to improve only through in-
creased clock frequency.

Because some stages are configured while others are
executed, reconfiguration does not decrease perfor-
mance. As the pipeline fills with data, the system con-
figures stages of the computation before that data. In
fact, even if there is no virtualization, configuration
time is equivalent to the application’s pipeline fill time
and so does not reduce the application’s maximum
throughput. A successful pipelined reconfiguration
should configure a physical pipe stage in one cycle. To
achieve this, we connected a wide on-chip configura-
tion buffer to the physical fabric. A small controller
manages the configuration process.

Virtualization through pipelined reconfiguration
imposes some constraints on the kinds of computa-
tions that can be implemented on the fabric. The most
restrictive is that the state in any pipeline stage must
be a function of only that stage’s and the previous
stage’s current state. In other words, cyclic depen-
dencies must fit within one pipeline stage. Therefore,
we allow direct connections only between consecu-
tive stages. However, we do allow virtual connections
between distant stages.

April 2000 71

Cycle:

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 1

Stage 2

Stage 3

1 2 3 4 5 6 7

1 4

5

1

2

1

2

3

2

3

4

3

Configuring Executing

4

5

1

2

5

1

(a)

(b)

Figure 1. Pipeline
reconfiguration show-
ing the virtualization
of a five-stage
pipeline on a three-
stage device: (a) the
virtual pipeline stage
and (b) the physical
pipeline stage (the
numbers in the ovals
refer to the virtual
pipeline stage).

72 Computer

THE PIPERENCH ARCHITECTURE
In its current implementation, PipeRench is an

attached processor. Figure 2a is an abstract view of
the PipeRench architectural class, and Figure 2b is a
more detailed view of a processing element (PE).
PipeRench contains a set of physical pipeline stages
called stripes (see the “How a Reconfigurable System
Handles Computations” sidebar). Each stripe has an
interconnection network and a set of PEs.

Each PE contains an arithmetic logic unit and a pass

register file. Each ALU contains lookup tables (LUTs)
and extra circuitry for carry chains, zero detection,
and so on. Designers implement combinational logic
using a set of N B-bit-wide ALUs. The ALU operation
is static while a particular virtual stripe resides in a
physical stripe. Designers can cascade the carry lines
of PipeRench’s ALUs to construct wider ALUs, and
chain PEs together via the interconnection network to
build complex combinational functions.

Through the interconnection network, PEs can access
operands from registered outputs of the previous stripe,
as well as registered or unregistered outputs of the other
PEs in the same stripe. Because of hardware virtualiza-
tion constraints, no buses can connect consecutive
stripes. However, the PEs access global I/O buses. These
buses are necessary because an application’s pipeline
stages may physically reside in any of the fabric’s stripes.
Inputs to and outputs from the application must use a
global bus to get to their destination.

The pass register file provides efficient pipelined
interstripe connections. A program can write the
ALU’s output to any of the P registers in the pass reg-
ister file. If the ALU does not write to a particular reg-
ister, that register’s value will come from the value in
the previous stripe’s corresponding pass register.

The pass register file provides a pipelined intercon-
nection from a PE in one stripe to the corresponding
PE in subsequent stripes. For data values to move lat-
erally within a stripe, they must use the interconnec-
tion network (see Figure 2a). In each stripe, the
interconnection network accepts inputs from each PE
in that stripe, plus one of the register values from each
register file in the previous stripe. Moreover, a barrel
shifter in each PE shifts its inputs B – 1 bits to the left
(see Figure 2b). Thus, PipeRench can handle the data
alignments necessary for word-based arithmetic.

PIPERENCH COMPILER
Reconfigurable computing’s success depends not

only on good hardware fabrics but also on compilers
that can quickly create efficient configurations. Taking
advantage of PipeRench’s hardware virtualization, we
have developed a compiler that trades off configura-
tion size for compilation speed. Thus, fitting the design
into a limited physical area is not a primary concern.

We parameterized the compiler to facilitate exper-
imenting with different architectures. The compiler
begins by reading a description of the architecture.
This description includes the number of PEs per stripe,
each PE’s bit width, the number of pass registers per
PE, the interconnection topology, PE delay character-
istics, and so on.

The source language is a dataflow intermediate lan-
guage. A single-assignment language with C operators,
DIL allows, but doesn’t require, programmers to spec-
ify the bit width of variables rather than defaulting to

One
stripe

PE

Out

Interconnection network

Barrel
shifter

Barrel
shifter

Arithmetic
logic unit

To interconnection network

Control/carry bitsControl/carry
bits

B

B

B

To global
output bus

X Y

Y

PE PE PE

PE PE PE PE

Global buses Pass registers

Interconnection

Interconnection

Output from
previous stripe

Global
buses

P pass
registers

B− 1
bits
from
previous
PE

B −1 bits
to
next PE

(a)

(b)

N

N

2

2

1

1

0

0

X

Figure 2. PipeRench
architecture: (a) each
stripe contains pro-
cessing elements
(PEs) and an intercon-
nection; (b) a detailed
view of a PE and its
connections.

a standard width for a given data type. DIL can manip-
ulate arbitrary width integer values and (unless directed
explicitly to do otherwise) automatically infers bit
widths, thereby preventing any information loss due
to overflow or conversions. Aside from this one excep-
tion, DIL hides all notions of hardware resources, tim-
ing, and physical layout from programmers.

After parsing, the compiler inlines all modules
(places each function’s definition at that function’s call

site), unrolls all loops, and generates a straight-line,
single-assignment program. Then the bit-value infer-
ence pass computes the minimum width required for
each wire (and implicitly the amount of logic required
for computations). Additionally, when the compiler
determines that any of a wire’s bits are constant, it
uses those constants to simplify the program.2

After the compiler determines each operator’s size,
the operator decomposition pass decomposes high-

April 2000 73

A reconfigurable system partitions com-
putations between the fabric and the sys-
tem’s other execution units. The fabric
does reconfigurable computations; the sys-
tem’s other execution units (for example,
processors) do system computations. The
greatest benefit arises when the fabric
implements the main computation’s com-
putationally intensive portions as a
pipelined data path.

The system performs reconfigurable
computations by configuring the fabric to
implement a circuit customized for each
particular reconfigurable computation. The
compiler embeds computations in a single
static configuration rather than an instruc-
tion sequence, reducing instruction band-
width and control overhead. Because the
circuit is customized for the computation
at hand, function units are sized properly,
and the system can realize all statically
detectable parallelism (up to the fabric’s size
limit).

Reconfigurable computations
A reconfigurable fabric can outperform

a general-purpose processor for computa-
tions that

• operate on bit widths that differ from
the processor’s basic word size,

• have data dependencies that let multi-
ple function units operate in parallel,

• contain basic operations that can
combine into a single specialized
operation,

• can be pipelined,
• enable constant propagation to

reduce operation complexity, or
• reuse the input values many times.

Reconfigurable fabrics give the com-
putational data path more flexibility.
However, their utility and applicability
depend on the interaction between recon-
figurable and system computations, the
interface between the fabric and the sys-

tem, and the way a configuration loads
onto the fabric.

We divide reconfigurable computations
into two categories: Stream-based func-
tions process large, regular data input
streams, potentially produce a large data
output stream, and have little control
interaction with the rest of the computa-
tion. Custom instructions take a few
inputs and produce a few outputs, execute
intermittently, and have tight control inter-
actions with the other processes. Thus,
stream-based functions are suitable for a
system where the reconfigurable fabric is
not directly coupled to the processor,
whereas custom instructions are usually
beneficial only when the fabric is closely
coupled to the processor.

A highly pipelineable
streaming function

A reconfigurable fabric is most effec-
tive when implementing entire pipelines
from applications. A classic example is a
finite-impulse response filter. A streaming

function, the FIR filter samples an input
stream every cycle to convert it into an
output stream. Figure A shows the filter’s
C code and hardware implementation.

The filter’s hardware circuit combines
bit-value analysis, software pipelining, and
retiming techniques. Inputs to the filter are
usually between 8 and 16 bits, underuti-
lizing a typical processor’s function units.
The reconfigurable fabric, on the other
hand, constructs adders and multipliers of
the proper width. In fact, because of data
accumulation, the first adder is smaller
than the last. The filter can also exploit
tremendous parallelism, in the best case
obtaining a new result every cycle through
pipelining. When we map the filter to a
reconfigurable fabric, we implement the
general-purpose multipliers as constant
multipliers, where the constants are the tap
weights (Wi values). This system requires
less hardware and fewer cycles than a gen-
eral-purpose multiplier. Furthermore, all
the data movement is between short local
wires.

*W0 *W1 *W2

Yout

Xin

+ +

for(int i=0; i<maxInput; i++){
 y[i] = 0;
 for (int j=0; j<Taps; j++)
 y[i] = y[i] + x[i+j]*w[j];
}

(1)

(2)

Figure A. A finite-impulse response filter: (1) the C code; (2) the hardware implementation of a
three-tap FIR filter.

How a Reconfigurable System Handles Computations

74 Computer

level operators (for example, multiplies become shifts
and adds) and decomposes operators that exceed the
target cycle time. For example, to avoid carry-chain
delays, this pass splits any wide adder (for example, a
45-bit adder) into several smaller adders. This decom-
position must also create new operators that handle
the routing of the carry bits between the partial sums.
Such rather “naïve” decomposition often introduces
inefficiencies. Therefore, an operator recomposition
pass uses pattern matching to find subgraphs that it
can map to parameterized modules. These modules
take advantage of architecture-specific routing and PE
capabilities to produce a more efficient set of opera-
tors.

The place-and-route algorithm is the key to the com-
piler’s speed.3 Unlike many place-and-route algorithms,
ours is a deterministic, linear-time, greedy algorithm.
It runs between two and three orders of magnitude
faster than commercial tools and yields configurations
with a comparable number of bit operations. For exam-
ple, our compiler can handle a 1D discrete cosine trans-
form in 2.4 seconds, but the Synopsys Design Compiler
with the Xilinx Design Manager takes 75 minutes. The
Xilinx configuration has four times fewer bit opera-
tions. However, our focus is compiling data paths, and
hardware virtualization lets us sacrifice some efficiency
for compilation speed.

EVALUATING PIPERENCH’S PERFORMANCE
Using a compiler and CAD tools, we conducted a

study to optimize PipeRench’s stripe width N, PE
word width B, and number of pass registers per PE P.
One of the kernels, the International Data Encryption
Algorithm (IDEA), illustrates how dynamic compila-
tion can increase performance. In this example, the
reconfigurable system actually outperforms existing
custom hardware.

Kernels
To evaluate PipeRench’s performance, we chose

nine kernels on the basis of their importance, recog-
nition as industry performance benchmarks, and abil-
ity to fit into our computational model:4

• Automatic target recognition (ATR) implements
the shape-sum kernel of the Sandia algorithm for
automatic target recognition.

• Cordic implements the Honeywell timing bench-
mark for Cordic vector rotations.

• DCT is a 1D, 8-point discrete cosine transform.
• DCT-2D is a 2D discrete cosine transform.
• FIR is a finite-impulse response filter with 20 taps

and 8-bit coefficients.
• IDEA implements a complete 8-round Inter-

national Data Encryption Algorithm.
• Nqueens is an evaluator for the N queens prob-

lem on an 8 × 8 board.
• Over implements the Porter-Duff over operator.
• PopCount is a custom instruction implementing

a population count instruction.

Methodology
We used CAD tools to synthesize a stripe on the basis

of parameters N, B, and P in a 0.25-micron five-metal-
layer process. We joined this automatically synthesized
layout with a custom layout for the interconnection.
Using the final layout, we determined the number of
physical stripes that can fit in our silicon budget of 50
mm2 (5 mm by 10 mm). We also determined the delay
characteristics of the stripe’s components—for exam-
ple, LUTs, carry chains, and interconnections. (We
reserve another 50 mm2 for memory to store virtual
stripes, control, and chip I/O.) The compiler uses the
delay characteristics and the number of registers to cre-
ate configurations for each architectural instance, yield-
ing a design of a certain number of stripes at a
particular frequency. We then determined the kernel’s
overall speed in terms of throughput, for each archi-
tectural instance.

We wrote the kernels in DIL. The DIL compiler
automatically synthesizes, places, and routes the design
for each parameterized architecture.

Fabric
Consider the region of space bounded by PE bit widths

B of 2, 4, 8, 16, and 32; stripe widths (N ×B) from 64 to
256 bits; and number of registers P equaling 2, 4, 8, and
16. Two main constraints determine which parameters
generate realizable fabrics: the stripe width and the num-
ber of vertical wires that must pass over each stripe. Stripe
width depends on the number and size of PEs, as well as
the number of registers allocated to each PE. The num-
ber of vertical wires depends on the number and width of
global buses, pass registers, and configuration bits.

64 96 128 160 192 224 256
Stripe width (bits)

B = 16

B = 32

0

5

10

15

20

25

H
ar

m
o

n
ic

 m
ea

n
 o

f
th

ro
u

g
h

p
u

t
(m

ill
io

n
 in

p
u

ts
 p

er
 s

ec
o

n
d

)

B = 2

B = 8

B = 4

Figure 3. The har-
monic mean of
throughput for all ker-
nels (each kernel uses
up to 8 registers) as a
function of stripe width
and PE bit width B.

As the number of registers increases, computational
density (the number of bit operations per second exe-
cuted per unit area) decreases. However, pass regis-
ters are an important component of the interstripe
interconnection. Reducing their number increases
routing pressure, which decreases stripe utilization.
The best balance between computational density and
stripe utilization typically comes from using eight reg-
isters (P equals 8).

Figure 3 shows the harmonic mean of the through-
put for all the kernels on a 100-MHz PipeRench for
various stripe widths and PE sizes. Although wider PE
sizes create fabrics with higher computational density,
the kernels’ natural data sizes are smaller, causing 32-
bit PEs to be underused. On the other end of the spec-
trum, 2-bit PEs are not competitive, because of the
increased time for arithmetic operations, the lack of
raw computational density, and the increased number
of configuration bits needed per application.

Examining each kernel’s individual performance,
we find that the kernels’ characteristics influence
which parameters are best. The 8-bit PEs strike a bal-
ance between utilization and carry-chain delay. For
many kernels, enough parallelism is available to keep
the wider stripes busy, but these stripes have fewer reg-
isters. This means more stripes in the implementation
and, therefore, lower overall throughput. Therefore,
we built PipeRench as a 128-bit-wide fabric having 8-
bit PEs with eight registers each.

Performance and forward compatibility
We compared PipeRench’s performance with the

performance of an Ultrasparc II running at 300 MHz.
Figure 4a shows the raw speedup for each kernel.
Although achieving this performance can be difficult
with the reconfigurable system connected through the
I/O bus, most of the raw speedup is obtainable. In fact,
the I/O bandwidth required is inversely proportional
to the amount of hardware virtualization that occurs.
If bandwidth continues to scale as feature sizes shrink,
I/O bandwidth is not an issue. For example, IDEA has
a virtualization factor of around 12, which means on
average it requires only one input every 12 cycles (that
is, fewer than 8 bits per cycle).

As process technology improves, configurations will
run faster because of both the increased number of
stripes that will fit in a given area and increased clock
speeds. Figure 4b shows how each kernel’s perfor-
mance should scale (without recompilation) for
process generations through 70 nanometers. This scal-
ing is based on the Semiconductor Industry Associ-
ation road map for both the number of transistors
available per unit area and the clock speed. All ker-
nels do not scale in parallel in the same way, because
each kernel has a different number of virtual stripes.
When a kernel fits completely in the physical fabric, it

can no longer benefit from the increased number of
stripes, without recompilation. These scaling effects
are conservative, as they use the low-volume applica-
tion-specific integrated circuit (ASIC) transistor counts
and clock speeds.

Performance in embedded systems
One challenge for reconfigurable computing in

embedded systems is that performance depends on cre-
ating custom configurations that can incorporate what
is typically considered runtime data. For example,
IDEA’s performance on PipeRench depends on gener-
ating a key-specific configuration (one that can encrypt
or decrypt only on the basis of a specific key). The com-
piler can create a complete, single-key optimized IDEA
configuration in less than one minute. However, this is
still too long for an embedded system, which must be
able to work with any key. We can solve this problem
by generating a dynamic configuration.

The IDEA block cipher includes three fundamen-
tal operations: addition modulo 216, 16-bit exclusive
OR, and 16 × 16 multiplication modulo 216 + 1. The
128-bit key generates 36 16-bit subkeys. One operand

April 2000 75

189.7

15.5
11.3 12.0

63.3
42.4

26.0

57.1

29.0

1

10

100

1,000

ATR

Cord
ic

DCT

DCT-
2D FIR

ID
EA

Nquee
ns

Ove
r

Po
pCount

Sp
ee

d
u

p
 o

ve
r

30
0-

M
H

z
U

lt
ra

sp
ar

c
II

1

10

100

ATR

Cord
ic

DCT

DCT-
2D FIR

ID
EA

Nquee
ns

Ove
r

Po
pCount

Sp
ee

d
u

p

 70 nm (2008)
100 nm (2005)
130 nm (2003)
180 nm (1999)

(a)

(b)

Figure 4. Speedup for
nine kernels: (a) raw
speedup of a 128-bit
fabric with 8-bit PEs
and eight registers per
PE, and (b) PipeRench
performance scaled
with process technol-
ogy based on The
National Technology
Roadmap for Semi-
conductors (Semicon-
ductor Industry Asso-
ciation, San Jose,
Calif., 1997), includ-
ing the year projected
for each process gen-
eration.

76 Computer

of every multiplication operation in the algorithm is a
subkey. This multiplication is essential for customiz-
ing an IDEA configuration.

Compilation has two components: generating opti-
mized multipliers and generating the rest of the
pipeline. With an interface that satisfies the multipliers
and the rest of the pipeline, the compiler can perform
these two tasks independently. The compiler generates
the nonmultiplier portion ahead of time, assuming
fixed placement of multiplier inputs and outputs.

To generate the multipliers themselves, a small con-
troller rapidly computes configuration bits for the
stripes that perform the multiplication. This controller
has a lookup table that converts constant multipli-
cands into the necessary configuration bits. Pipe-
Rench’s regular, small configuration bit stream makes
this generation very easy. Using canonical signed digit
(CSD) representations for the subkeys, a multiplier
takes 2.06 stripes on average. The result is a complete
IDEA pipeline of only 177 stripes.

Table 1 compares PipeRench’s implementation with
two optimized software implementations running on
state-of-the-art processors and a custom VLSI design.
PipeRench outperforms the processors by more than
10 times.

Surprisingly, PipeRench also outperforms the 0.25-
micron IDEACrypt Kernel from Ascom Systec Ltd.7

This is due to several factors: First, the PipeRench
implementation of IDEA does not include the time
taken to generate keys. PipeRench targets streaming-
media applications, where key generation involves
only a small preprocessing step. Second, because of
PipeRench’s pipelined nature, it effectively pipelines
IDEA into 177 stages, rendering cipher block chain-
ing (CBC) and other chained implementations imprac-
tical. Nevertheless, PipeRench’s raw throughput is 40
percent faster than that of a fully custom chip.

R econfigurable computing is changing the face of
custom hardware. In the past, “custom hard-
ware” used general-purpose elements; a recon-

figurable device customizes the elements. For
example, reconfigurable computing lets an IDEA
implementation use custom, rather than general-pur-
pose, multipliers for a specific key at runtime. This
level of customization can yield tremendous perfor-
mance improvements. Additionally, because recon-

figurable devices can serve many purposes, they will
likely become common off-the-shelf parts, further
reducing system cost.

At some point in the near future, current processor
technology will cease reaping the gains of Moore’s law.
Reconfigurable computing has the potential to become
a vital component in the next generation of computation
devices. The current implementation of PipeRench is
the first step in realizing this potential. Because
PipeRench is an attached processor, bandwidth between
PipeRench, the main memory, and the processor is lim-
ited. This places significant limitations on the types of
applications that can realize speedup. Nevertheless, the
attached processor is merely the initial phase in the evo-
lution of reconfigurable processors. Just as floating-
point computations migrated from software emulation
to attached processors, then to coprocessors, and finally
to full incorporation in processor instruction set archi-
tectures, so too will reconfigurable computing eventu-
ally become an integral part of the CPU. ❖

References
1. H. Schmit et al., “Pipeline Reconfigurable FPGAs,” J.

VLSI Signal Processing, Mar. 2000, pp. 1-18.
2. M. Budiu, “Detecting and Exploiting Narrow Bitwidth

Computations,” Proc. 2nd Ann. CMU Symp. Computer
Systems, Carnegie Mellon Univ., Pittsburgh, 1999.

3. M. Budiu and S.C. Goldstein, “Fast Compilation for
Pipelined Reconfigurable Fabrics,” Proc. 1999 ACM/
SIGDA 7th Int’l Symp. Field Programmable Gate
Arrays, ACM Press, New York, 1999.

4. S.C. Goldstein et al., “PipeRench: A Coprocessor for
Streaming Multimedia Acceleration,” Proc. 26th Ann.
Int’l Symp. Computer Architecture, IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 28-39.

5. H. Lipmaa, “IDEA: A Cipher for Multimedia Architec-
tures?” Proc. Selected Areas in Cryptography, Lecture
Notes in Computer Science, Vol. 1556, Springer-Verlag,
New York, 1998, pp. 248-263.

6. B. Preneel, V. Rijmen, and A. Bosselaers, “Recent Devel-
opments in the Design of Conventional Cryptographic
Algorithms,” Proc. Computer Security and Industrial
Cryptography, Lecture Notes in Computer Science, Vol.
1528, Springer-Verlag, New York, 1998, pp. 106-131.

7. Ascom Systec Ltd., “IDEACrypt Kernel,” http://www.
ascom.ch/infosec/idea/kernel.html.

Table 1. Comparison of IDEA implementations with other designs.

Processor Clock speed (MHz) Clocks per block Throughput (Mbytes/s)

PipeRench 100 6.3 126.6
Pentium II using MMX5 450 358.0 10.0
Pentium6 450 (scaled) 590.0 6.1
IDEACrypt Kernel 100 3.0 90.0

Seth Copen Goldstein is an assistant professor in the
School of Computer Science at Carnegie Mellon Uni-
versity. His interests include reconfigurable computing
systems, with an emphasis on compilation and system
architectures. Goldstein has a BSE in electrical engi-
neering and computer science from Princeton Univer-
sity and a PhD in computer science from the University of
California at Berkeley. Contact him at seth@cs.cmu.edu.

Herman Schmit is an assistant professor at Carnegie
Mellon University. His interests include reconfigurable
computing systems, field-programmable gate arrays,
and IP-based design methodologies. Schmit has a BSE
in computer science engineering from the University
of Pennsylvania and a PhD in electrical and computer
engineering from Carnegie Mellon University. Con-
tact him at herman@ece.cmu.edu.

Mihai Budiu is a PhD student in the Department of
Computer Science at Carnegie Mellon University. His
interests include reconfigurable hardware design and
high-level language compilation for systems contain-
ing reconfigurable hardware devices. Budiu has a BS
and an MS in computer science from the “Poly-
tehnica” University of Bucharest, Romania. Contact
him at mihaib+@cs.cmu.edu.

Srihari Cadambi is a PhD student in the Department
of Electrical and Computer Engineering at Carnegie
Mellon University. His interests include hardware
compilation—especially synthesis, technology map-
ping, and place-and-route for reconfigurable and
other novel architectures. Cadambi has a B.Tech in
electronics engineering from the Indian Institute of
Technology and an MS in electrical and computer
engineering from the University of Massachusetts,
Amherst. Contact him at cadambi@ece.cmu.edu.

Matt Moe is a PhD student in the Department of Elec-
trical and Computer Engineering at Carnegie Mellon
University. He is working on specialized reconfig-
urable architectures for different application domains
to realize faster and smaller implementations. Moe
has a BS and an MS in electrical and computer engi-
neering. Contact him at moe@ece.cmu.edu.

R. Reed Taylor is a graduate student in the Depart-
ment of Electrical and Computer Engineering at
Carnegie Mellon University. His interests include
reconfigurable hardware, near-Shannon-limit error
codes, and cryptography. Taylor has a BS in electri-
cal and computer engineering from Carnegie Mellon
University. Contact him at rt2i@andrew.cmu.edu.

The MIS and
LAN Managers
Guide to Advanced
Telecommunications

$40 for
Computer Society members

Find out in

How will it
all connect?
How will it
all connect?

Now available from the Computer Society Press

computer.org/cspress/

