
The Challenges and Opportunities of Nanoelectronics
Seth Copen Goldstein

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
412-268-3828 / seth@cs.cmu.edu

Abstract

Nanoelectronics presents the opportunity of incorporating bil-
lions of devices into a single system. Its opportunity is also its
challenge: the economic design, verification, manufacturing,
and testing of billion component systems. In this presentation
I will explore how the abstractions used in computer systems
change as we approach nanoscale dimensions.

1. INTRODUCTION

Future computing systems will inevitably be built using nano-
electronics, i.e., from devices and wires with feature sizes be-
low thirty nanometers. The SIA roadmap [15] predicts that tra-
ditional silicon-based systems will have feature sizes of below
40nm within the decade. There are also advances being made
in building computing systems using new technologies, such
as molecular electronics [2]. Successfully harnessing nano-
electronics requires a rethinking of the abstractions and mod-
els that are the basis of designing computing systems. While
each technology has its own unique requirements, we show
that new abstractions are necessary strictly because the feature
sizes are nanoscale.

The ever increasing improvement in processor performance
is fueled by the ever increasing number of available faster tran-
sistors, but it is driven by a hierarchy of abstractions. One
plausible hierarchy is: Transistors�Logical Gates�Circuits
�Blocks�ISA�Programs. Each abstraction layer hides the
details of the layer below it; helping to control the complex-
ity of designing and implementing a systems with hundreds
of millions of components. They also promote a separation
of responsibilities; allowing independent progress to be made
at different levels of the system. In this paper we examine
how current trends in semiconductor manufacturing as well
as how new technologies, e.g., molecular electronics and self-
assembly will influence the hierarchy of abstractions used to
build computing systems.

From the circuit designers perspective the hierarchy begins
with transistors and works it way through logical gates to func-
tional blocks. Computer architects use the functional blocks
created by circuit designers to create an instruction set archi-
tecture (ISA). The ISA is the abstraction used to define the
processor to programmers. The architect implements the ISA
by combining control, storage, and datapaths. Most of today’s
processors are organized as von Nuemann computers: they
have a single point of control (one program counter) which

controls a deeply pipelined datapath which has many function
units. Intermediate values are stored in a register file while a
single main memory is used to store programs and data. The
success of this model is that it is easy to think about and pro-
gram. However, we need to rethink this model if we are to
efficiently harness the vast number of devices, limit the effect
of increased wire delay, control design complexity, decrease
the power required, and control the cost of manufacturing.

2. FABRICATION

Perhaps the greatest impact of the nanoscale on electron-
ics will be the reduced ability to arbitrarily determine the
placement of the components of a system. The most extreme
example of this is to be found in chemically assembled
electronic nanotechnology (CAEN), a form of molecular elec-
tronics which uses bottom-up assembly to construct electronic
circuits out of nanometer-scale devices. Large-scale molecular
electronics requires some form of self-assembly [2]. When
using self-assembly, individual devices and wires are first
manufactured, and only later assembled into a circuit. While
self-assembly promises to be a very economical process (com-
pared with the cost of traditional semiconductor fabrication),
it cannot be used to create the arbitrary patterns that can be
formed using photolithography. Only simple, crystal-like
structures, can be created using self-assembly. Furthermore,
defect densities of self-assembled circuits are projected to
be orders of magnitude higher then in silicon-based devices.
Thus, self-assembled circuits and architectures will have to be
designed for defect tolerance.

To a lesser extent these same problems will appear as tradi-
tional semiconductor technology continues to scale. The com-
plexity of generating a reliable mask set which produces re-
liable chips is already limiting the ability to create arbitrary
patterns of wires. This can be seen in the trend towards “struc-
tured” ASICs, which allow custom chips to share many of the
same masks [18]. As devices scale down it is also harder
to maintain constant characteristics for all the devices on a
single chip [11]. Some argue that process variation will es-
sentially eliminate the performance gains typically expected
when feature sizes shrink [1]. These trends indicate that as
feature sizes shrink even photolithographically manufactured
chips will need to be crystal-like, i.e., built from very regular
structures.

In order to implement useful reliable functionality on top
of crystal-like structures, post-fabrication customization is re-



quired; this customization will be used for two purposes (1)
to implement the desired functionality and (2) to eliminate the
deleterious effects of the defects [4, 6]. Economics will speed
the movement towards customizable chips. As mask sets be-
come more expensive it becomes more economical to reuse the
same chip for different tasks, i.e., to use programmable hard-
ware (also called a reconfigurable fabric) such as field pro-
grammable gate arrays (FPGAs). A reconfigurable fabric is a
network of processing elements connected by a programmable
interconnect [7]. It can be programmed by determining how
signals are routed on the interconnect. The desire to decrease
time-to-market is also accelerating the trend towards using FP-
GAs for ever higher volume applications.

Defects in manufacturing have been, until now, primarily
the concern of process engineers, not circuit designers or ar-
chitects. In the era of nanoelectronics, delivering chips which
can be viewed as defect free will likely be too expensive. In
fact, this is happening already; for example, state-of-the-art
FPGA chips with known defects can be purchased at a dis-
count [19]. The defective chips can be used because the de-
fects on the particular chip are determined not to affect the cus-
tomer’s design. In the future, defect tolerance will have to be
designed in at the circuit and architectural level. One method is
to use reconfigurable fabrics. Reconfiguration provides defect
tolerance by configuring the desired circuit around the defects,
thus creating a reliable system from an unreliable substrate.
Before the fabric is shipped its defects are mapped [9]. When
the chip is used, the desired circuit is configured around the de-
fects. The main challenge here is to develop architectures and
tools which can—in the field—quickly place-and-route (P&R)
circuits around the defects. Final P&R needs to be done in the
field so that a single configuration can be shipped for all de-
vices, in spite of the fact that each device will have a different
set of defects.

3. DEVICES

Nanoelectronic devices, and here we also include wires, pose
their own challenges. The transistor has thus far proven an
extremely useful building block for digital logic. In addition
to its switching properties, it can be used to construct logical
gates which isolate their inputs from their outputs (I/O iso-
lation) and it has gain which promotes noise immunity [8].
Some nanoelectronic technologies have no equivalent device.
In addition, as dimensions scale down, the wires used to con-
nect the devices become the dominant source of signal delay
and power consumption [15].

Isolation and gain, while not a sine qua non for construct-
ing large scale digital systems, is required if one is going to
build a large system from smaller subunits ones without hav-
ing to redesign the subunits. We should point out that isolation
and gain are not strictly a property of the device, but usually
arises from the device and the design methodology being em-
ployed. For example, static CMOS is a design methodology

which uses the transistor to construct logical blocks. In static
CMOS, the inputs to a logical block are always applied to the
gate of the transistor, which is isolated from its other two ter-
minals. Furthermore, a small change on the gate can cause a
large change on the output due to the connections to power and
ground. There are other transistor-based design methodolo-
gies, such as complementary pass logic (CPL) [13], in which
the inputs and outputs of a logical block are not isolated. Fur-
thermore, there is signal loss—instead of power gain—and,
there is no way to invert a signal, so whenever a function is
computed its complement must also be computed. 1. Large
scale CPL circuits require periodic buffers which restore sig-
nals and provide isolation; allowing individual subsystems to
be composed together to form larger systems.

Some of the proposed logic families for non-silicon nano-
electronics are similar to CPL in that gain and isolation are
not intrinsic in every circuit element. QCAs are an exam-
ple of such a system. Designers of QCA based circuits in-
clude a system clock which helps to isolate inputs from out-
puts as well as add gain to the system [12]. A more traditional
approach is found in nanoFabrics [6] which proposes to use
diode-resister logic combined with clocked molecular latches
for gain and isolation. What these systems (CPL, clocked-
QCA, and NanoFabrics) share in common is they provide log-
ical switching separately from isolation and restoration. In or-
der to manage this extra design dimension we propose a new
model, SirM. SirM stands for switching, isolation, restoration,
and Memory. We call a set of devices a complete SirM fam-
ily if it contains devices which support all the components of
SirM, and therefore, can be used to construct a scalable com-
plete logic family.

An example of a complete SirM family in the domain of
molecular computing is:

� Switching is based on diode-resistor logic using resistors
and molecular diodes. As with CPL, functions and their
complements must be constructed since it is impossible
to construct an inverter out of just diodes and resistors.

� Isolation comes from a molecular latch combined with a
clocking methodology as described in [14].

� Restoration occurs through the use of the above latch.

� Memory can be constructed either directly from
molecules (e.g., the rotaxane [10]) or from the latch.

SirM is an example of the easiest kind of change to the ab-
straction hierarchy. It can be thought of as a new layer be-
tween the new physical devices and today’s abstraction of a
transistor. In other words, a “transistor” like contract can be
established by combining the proper switch, isolator, and re-
storer devices all together. Therefore, we are able to main-
tain the current abstraction, providing backward compatibility

1If the complements of all the inputs are available it is always possible, by
Demorgan’s Law, to compute the function and its complement.



Rin RoutVin

gmVin

Figure 1: The Norton equivalent circuit for one circuit block

Rin1Vin1

gm1Vin1

Rin2 Rout2

gm2Vin2

Vout2
Rout1

Figure 2: The equivalent circuit for cascaded circuit blocks

for tools and ideas while providing the opportunity to pierce
the transistor abstraction when necessary. This provides the
design community with an incremental path towards harness-
ing the underlying devices directly. Furthermore, it does not
change any of the contracts with other layers in the hierarchy.

However, if isolation is separate from switches—which is
currently the case for all two-terminal device families—then
some local analog design is necessary when constructing net-
works of switches. Any two-terminal voltage controlled circuit
to be modeled from its input and output impedances and its
gain. For example, Figure 1, shows a model of a two-terminal
device. The gain of this device is �m�out. If two of these
devices are placed in series, as in Figure 2, then the gain of

the total circuit is
�out2
�in1

� �m1
�out1�in2
�out1��in2

�m2�out2 �

�1
�

���out1��in2
�2. We can see that if the input, e.g., �in2,

does not have infinite input impedances, i.e., it does not pro-
vide isolation, then the gain of a device depends on the struc-
ture of the circuit. The variation in an individual device’s char-
acteristics is even more pronounced if the circuit has fan-in or
fan-out. In fact, every possible path in a circuit needs to be
analyzed in order to determine when a restorer should be in-
serted into the circuit. CPL, when combined with static CMOS
buffers (or inverters) is an example of a complete SirM family
which requires such analysis [20].

All the methods of isolation that we are aware of include
either transistors or a clocking strategy. An important chal-
lenge for the nanotechnologists in the molecular computing
community is to develop a design methodology and an associ-
ated two-terminal device which isolates its inputs from its out-
puts without requiring a clock. Additionally, whatever strategy
is employed should not require global analysis in order to un-
derstand the behavior of a local structure. In other words, the
input to a gate should have a very large impedance, e.g., � in2
in Figure 2 should be as close to infinity as possible.

4. PROCESSORS

Computer architects have improved processor performance by
increasing the use of parallelism and decreasing the overhead

of long communication times. This has been done while
maintaining the abstraction of a single thread of control,
i.e., programs are specified in a sequential language. These
improvements have been enabled by technology scaling:
smaller devices run at faster speeds and increase the total
amount of resources available. The internal structure of a
modern processor, is designed to exploit as much parallelism
as possible within the sequential stream of instructions being
executed. All of the improvements have come at the cost
of increased power consumption and increased complexity.
Furthermore, technology trends (e.g., longer wire delays,
faster clocks, and, increased power densities) are already
limiting the continued application of current techniques.
Nanoelectronics will exacerbate all of these trends as well as
increase the rate of transient faults.

The level of integration available with nanoelectronics sug-
gests a radically different approach: Implement programs di-
rectly in hardware. This approach forces one to abandon two
important abstractions: the instruction set architecture (ISA)
and sequential control. The ISA is the primary abstraction
used by computer architects to hide the internal structure of
the processor. It defines a fixed set of instructions which de-
termine how the processor is used by the programmer (or a
compiler). The main advantage of an ISA is that it allows a
programmer to write down a sequential list of instructions to
define a program. With the advent of sophisticated tools, such
as optimizing compilers, the necessity for writing down such
a low level description of a program becomes less important.
More importantly, the ISA—almost by definition— impedes
the ability to fully exploit the microarchitecture.

We suggest that compiling directly to the hardware will
open up opportunities for creating custom compute engines
tailored directly to the application of interest. The compiler
will create a configuration for a reconfigurable fabric. This
model, often called spatial computing, is more suited for the
regime of nanoelectronics since it directly supports many lev-
els of parallelism. It can essentially create a custom datapath
for the application under execution. Of course, it would be
nearly impossible to program by hand, and relies heavily on
compiler technology and CAD tools.

Tailoring the hardware directly to the program, e.g., spatial
computing, has the potential to overcome the negative effects
of scaling. By eliminating the ISA and allowing tools, such as
compilers, to manipulate the underlying hardware structures
directly one can optimize not only for time, but also for other
important metrics in the nanoelectronics design space, e.g., de-
fect/fault tolerance or power. Let us look at lowering power
dissipation. Dynamic power (� ) is a function of capacitance
(�), voltage (� ), the activity factor (�), and switching fre-
quency (� ), � � �

�
�� ��� . One way to reduce power is to

reduce �, the number of devices that switch per cycle by using
asynchronous circuits [16]. Asynchronous circuits eliminate
the global clock (and its associated global wire), and are based
on local communication and synchronization. In sharp con-



trast to synchronous methodologies, devices in asynchronous
circuits only switch when they are actually computing. An-
other orthogonal approach is to decrease clock frequency by
exploiting parallelism. A fundamental result of early VLSI re-
search is that for many functions there is tradeoff between the
implementation area (�) and the time it takes to compute the
function (� ): �

� � ��, where 	 is between 1 and 2 [17]. If
we fix the time a computation takes, then since total computa-
tion time is inversely proportional to clock frequency (� ) we
obtain, � � �����, and, � � �� ������. In scaled CMOS,
Further power saving are saved because the maximum switch-
ing speed is related to voltage, � � �� ��th�

���
� [3], or in
the the relevant range if we fix �th, � � � [5] and � � �� �.
Thus, � � ������ and since capacitance is roughly propor-
tional to area, � � �����2. If we can effectively harness
the area we can achieve the same performance while reducing
clock frequency and power.

5. CONCLUSIONS

Nanoelectronics holds the promise of continuing technology
scaling to feature sizes below 40nm. However, to harness the
abundance of resources and new constraints concomitant with
this feature size requires a new approach to the abstractions
used to construct computing systems. Instead of clean barri-
ers which hide the details between layers of the design, we
need to develop abstractions which allow tools to manage the
details. Instead of using a hardware description language to
design circuits for a fixed architecture on a chip assumed to
be defect free we suggest using a high-level programming lan-
guage which can be compiled into configurations which are
then mapped onto a reconfigurable fabric avoiding any defects
that might be on a particular chip.

Acknowledgments

This research is funded in part by the NSF under Grants CCR-
9876248 and CCR-0205523 and by DARPA under contracts
MDA972-01-03-0005 and N000140110659.

References

[1] Keith A. Bowman and James D. Meindl. Impact of die-
to-die and within-die parameter fluctuations on the max-
imum clock frequency distribution for gigascale integra-
tion. IEEE JSSC, 37(2), Feb. 2002.

[2] M. Butts, A. DeHon, and S. Goldstein. Molecular elec-
tronics: Devices, systems and tools for gigagate, gigabit
chips. In ICCAD-2002, Nov. 2002.

[3] K. Chen, C. Hu, P. Fang, Ren Lin, and D.L. Wollesen.
Predicting cmos speed with gate oxide and voltage scal-

2For scaled CMOS, static power is becoming an important consideration
and so one could both balance an increase �th and a decrease � to reduce
dynamic and static power at the cost of using more hardware.

ing and interconnect loading effects. IEEE Trans. Elec-
tron Devices, 44(11):1951–57, Nov 1997.

[4] C. P. Collier, E. W. Wong, M. Belohradský, F. M.
Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and
J. R. Heath. Electronically configurable molecular-based
logic gates. Science, 285:391–394, July 16 1999.

[5] Michael J. Flynn, Patrick Hung, and Kevin W. Rudd.
Deep-submicron microprocessor design issues. IEEE
Micro, July 1999.

[6] S.C. Goldstein and M. Budiu. NanoFabrics: Spatial com-
puting using molecular electronics. In Proceedings of the
28th Annual International Symposium on Computer Ar-
chitecture, pages 178–189, June 2001.

[7] Reiner Hartenstein. A decade of research on recon-
figurable architectures - a visionary retrospective. In
Proc. International Conference on Design Automation
and Testing in Europe 2001 (DATE 2001), Exhibit and
Congress Center, Munich, Germany, March 2001.

[8] Robert W. Keyes. What makes a good computer device?
Science, 230(4722):138–144, October 1985.

[9] M. Mishra and S.C. Goldstein. Defect tolerance at the
end of the roadmap. In International Test Conference
(ITC) ’03, September 2003.

[10] N. Spencer M.V. Martinez-Diaz and J.F. Stoddart. The
self-assembly of a switchable [2]rotaxane. Ang. Chem.
Intl. Ed. Eng., 36:1904, 1997.

[11] Sanil Nassif. Delay variability: Sources, impacts and
trends. In Proceedings of the ISSCC, pages 368–9, 2000.

[12] Michael Niemier and Peter Kogge. Exploring and ex-
ploiting wire-level pipelining in emerging technologies.
In Proceedings of the 28th International Symposium on
Computer Architecture, 2001.

[13] J.M. Rabaey. Digital Integrated Circuits: A Design Per-
spective. Prentice-Hall, 1996.

[14] D. Rosewater and S.C. Goldstein. Digital logic using
molecular electronics. In IEEE International Solid-State
Circuits Conference, February 2002.

[15] Sematech. International Technology Roadmap for Semi-
conductors, 2001.

[16] I. E. Sutherland. Micropipelines. Communications of
the ACM, 32(6):720–738, June 1989. The 1988 Turing
Award Lecture.

[17] J.D. Ullman. Computational Aspects of VLSI. Computer
Science Press, 1984.

[18] Ron Wilson. ’structured’ asics arrive. EETimes, May 5
2003.

[19] Inc. Xilinx. Virtex-ii series easypath: Frequently asked
questions. “http://www.xilinx.com/publications/
products/v2/faq/faq101 easypath.pdf”, January 2003.

[20] H. Zhou and A. Aziz. Buffer minimization in pass tran-
sistor logic. In Proceedings of the International Sym-
posium on Physical Design (ISPD-00), pages 105–110,
N.Y., April 9–12 2000. ACM Press.


