Introduction to Split-C:

Version 1.0

David E. Culler
Andrea Dusseau
Seth Copen Goldstein
Arvind Krishnamurthy
Steven Lumetta
Steve Luna

Thorsten von Eicken
Katherine Yelick

Computer Science Division — EECS
University of California, Berkeley
Berkeley, CA 94720

Split-C@boing.CS.Berkeley. EDU

April 25, 1995

Split-C is a parallel extension of the C programming language primarily intended for distributed
memory multiprocessors. It is designed around two objectives. The first is to capture certain useful
elements of shared memory, message passing, and data parallel programming in a familiar context,
while eliminating the primary deficiencies of each paradigm. The second is to provide efficient access
to the underlying machine, with no surprises. (This is similar to the original motivation for C—to
provide a direct and obvious mapping from high-level programming constructs to low-level machine
instructions.) Split-C does not try to obscure the inherent performance characteristics of the
machine through sophisticated transformations. This combination of generality and transparency
of the language gives the algorithm or library designer a concrete optimization target.

This document describes the central concepts in Split-C and provides a general introduction to
programming in the language. Both the language and the document are undergoing active devel-
opment, so please view the document as working notes, rather than the final language definition.

!This work was supported in part by the National Science Foundation as a Presidential Faculty Fellowship (num-
ber CCR-9253705), Research Initiation Award (number CCR-9210260), and Infrastructure Grant (number CDA-
8722788), by Lawrence Livermore National Laboratory (task number 33), by the Advanced Research Projects Agency
of the Department of Defense monitored by the Office of Naval Research under contract DABT63-92-C-0026, by the
Semiconductor Research Consortium under contracts 92-DC-008 and 93-DC-008, and by AT&T. The information
presented here does not necessarily reflect the position or the policy of the Government and no official endorsement

should be inferred.

CONTENTS

Contents

1 Introduction

2 Split-C Primitives Overview
3 Control Paradigm

4 Global Pointers

4.1 Declaring global pointers L
4.2 Constructing global pointers L L e
4.3 Destructuring a global pointer L L o
4.4 Using global pointers
4.5 Arithmetic on global pointers L L oo
4.6 Spread Pointers L e e e e
4.7 Using spread pointers L L e e e e e

5 Spread Arrays

5.1 Declaring spread arrays L o e
5.2 Dynamic allocation of spread objects o oo o
5.3 Address arithmetic oL oL
5.4 Configuration independent use of spread arrays,
5.5 Configuration dependent use of spread arrays

6 Bulk assignment

7 Split-phase Assignment

7.1 Getand put L oL
T2 StOTe . . o e e e
7.2.1 Global data movement Lo Lo
7.2.2 Datadriven execution Lo e
7.2.3 Message passingo e e

8 Synchronization

8.1 Executing Code Atomically o
9 Optimizing Split-C Programs

10 Library extensions

10.1 Special variables oL L

CONTENTS 3

10.2 Barriers L o e e e e e e e e e 44
10.3 Global pointers L e e e 44
10.4 Read/Write o 44
10.5 Get/Put . . o oL 45
10.6 Store . . . o L L e 46
10.7 Storage management Lo e e e e e e e 46
10.8 Global communication L L e 47
10.9 T/O . o o o 47
10.10TIMIng o o o e 48
T0IISErngs . . . v v o e e e e e 48
1011 ISEING COPY « v v v v e e e e e e e e 48
10.11.2String concatenation Lo oo e 49
10.11.3Miscellaneouso e e e 49
10.12Atomic operations L L e e e e e 50
10.13Split-cc intrinsics oL L e e e e 50
11 Appendix: Open Issues and Inadequacies 53

11.1 Restrictions on global operations L. 53

1 INTRODUCTION 4

1 Introduction

Split-C is a parallel extension to the C programming language designed for large, distributed
memory multiprocessors. Following the C tradition, Split-C is a general-purpose language, but not a
“very high level” language, nor a “big” one. It strives to provide the programmer enough machinery
to construct powerful parallel data structures and operate on these in a machine independent
fashion with reasonable clarity. At the same time, it does not attempt to hide the fundamental
performance characteristics of the machine through elaborate language constructs or visionary
compilation. Whereas C “deals with the sort of objects that most sequential computers do,”[1]
the extensions in Split-C deal with the additional operations that most collections of computers
support. In either case, we expect the compiler to be reasonably good at address calculations,
instruction scheduling, and local storage management, with the usual optimizations that pertain
to these issues.

Large-scale multiprocessors introduce two fundamental concerns: there is an active thread of
control on each processor and there is a new level of the storage hierarchy which involves access to
remote memory modules via an interconnection network. The Split-C extensions address these two
concerns under the assumption that the programmer must think about these issues in designing
effective data structures and algorithms and desires a reasonable means of expressing the results
of the design effort. The presence of parallelism and remote access should not unduly obscure
the resulting program. The underlying machine model is a collection of processors operating in
a common global address space, which is expected to be implemented as a physically distributed
collection of memories. The global address space is two dimensional from the viewpoint of address
arithmetic on global data structures and from a performance viewpoint, in that each processor has
efficient access to a portion of the address space. We may call this the local portion of the global
space. Split-C provides access to global objects in a manner that reflects the access characteristics
of the interprocessor level of the storage hierarchy.

Split-C attempts to combine the most valuable aspects of shared memory programming with the
most valuable aspects message passing and data parallel programming within a coherent framework.
The ability to dereference global pointers provides access to data without prearranged co-ordination
between processors on which the data happens to reside. This allows sophisticated, linked data
structures to be constructed and used. Split-phase access, e.g., prefetch, allows global pointers to
be dereferenced without causing the processor to stall during access. The global address space and
the syntactic support for distributed data structures provides a means of documenting the global
data structures in the program. This global structure is usually lost with traditional message
passing, because it is implicit in the communication patterns. Algorithms that are natural to
state in terms of message passing are more eflicient within a global address framework with bulk

transfer; they are as easy to express, and the fundamental storage requirements of the algorithm

1 INTRODUCTION 5

are made explicit. Traditional shared-memory loses the inherent event associated with transfer of
information, so even simple global operations such as tree summation are hard to express efliciently.
Split-C allows notification to be associated with access to the global addresses using an approach
similar to split-phase access. Data parallel programming involves phases of local computation and
phases of global communication. The global communication phases are often very general, say
scattering data from each processor to every other, so the global address is very useful, but there is
no need to maintain consistency on a per-operation basis. Split-C is built upon an active message
substrate[AM], so the functionality of the language can easily be extended by libraries that use
the lowest level communication primitive directly, while providing meaningful abstractions within
a global address framework.

This paper is intended to introduce the pilot version of Split-C. Section 2 provides an overview
of the basic concepts in the language. Sections 3 through 8 explain these concepts in more detail,
describe the syntax and provide simple examples. Section 9 discusses optimization strategies, and
Section 10 lists the library functions available to the Split-C programmer as well as the primitives

used by the Split-C compiler.

2 SPLIT-C PRIMITIVES OVERVIEW 6

2 Split-C Primitives Overview

The extensions introduced in Split-C attempt to expose the salient features of modern multipro-
cessor machines in a generic fashion. The most obvious facet is simply the presence of multiple
processors, each following an independent thread of control. More interesting is the presence of a
very large address space that is accessed by these threads. In all recent large-scale multiproces-
sors this is realized by storage resources that are local to the individual processors. This trend is
expected to continue. Split-C provides a range of access methods to the global address space, but
encourages a “mostly local” programming style. It is anticipated that different architectures will
provide varying degrees of support for direct access to remote memory. Finally, it is expected that
global objects will often be shared and this requires an added degree of control in how they are
accessed.

Split-C provides the following extensions to C:

o Multiple persistent threads: A Split-C program is parallel ab initio. From program begin
to program end there are PROCS threads of control within the same program image.? Each
thread has a unique number given by a special variable MYPROC that ranges from 0 to PROCS— 1.
Generally, we will use the term processor to mean the thread of control or process on that
processor. A variety of convenient parallel control structures can be built on this substrate
and several are provided as C preprocessor (cpp) macros, but the basic language definition
does not prescribe dynamic thread manipulation or task scheduling. A small family of global
synchronization operations are provided to co-ordinate the entire collection of threads, e.g.,
barrier. No specific programming paradigm, such as data parallel, data driven, or mes-
sage passing, is imposed by the language. However, these programming paradigms can be

supported as a matter of convention.

o 2D Global Address Space: Any processor can access any object in a large global address space.
However, the inherent two dimensional structure of the underlying machine is not lost. Each
processor “owns” a specific region of the address space and is permitted to access that region
via standard, local pointers. Rather than introducing a complicated set of mapping functions,
as in Fortran-D, or mysterious mappings in the run-time system, as in CM-Fortran or C*,
simple mapping rules are associated with multidimensional structures and global pointer
types. Sophisticated mappings are supported by exploiting the relationship between arrays

and pointers, as is common in C.

o (Global pointers: A global pointer refers to an arbitrary object of the associated type anywhere
in the system. We will use the term global object to mean an object referenced by a global

pointer. A global object is “owned” entirely by a processor, which may have efficient access to

2This is termed the split-join model in [Brooks].

2 SPLIT-C PRIMITIVES OVERVIEW 7

the object though standard pointers. A new keyword global is introduced to qualify a pointer
as meaningful to all processors. Global pointers can be dereferenced in the same manner as
standard pointers, although the time to dereference a global pointer is considerably greater
than that for a local pointer, perhaps up to ten times a local memory operation (i.e., a
cache miss). The language provides support for allocating global objects, constructing global
pointers from local counterparts, and destructuring global pointers. (In general, global objects
may contain local pointers, but such pointers must be interpreted relative to the processor

owning the global object.)

A pointer in C references a particular object, but also defines a sequence of objects that can
be referenced by arithmetic operations on the pointer. In Split-C the sequence of objects
referenced by a standard pointer are entirely local to the processor. Address arithmetic on a
global pointer has the same meaning as arithmetic on a standard pointer by the processor that
owns the object. Hence, all the objects referenced relative to a global pointer are associated

with one processor.

e Spread pointers: A second form of global pointer is provided which defines a sequence of
objects that are distributed or spread across the processors. The keyword spread is used
as the qualifier to declare this form of global pointer. Consecutive objects referenced by a
spread pointer are “wrapped” in a helical fashion through the global address space with the
processor dimension varying fastest. Each object is entirely owned by a single processor, but

the consecutive element, (i.e., that referenced by ++) is on the next processor.

o Spread arrays: The duality in C between pointers and arrays is naturally extended to spread
pointers and arrays that are spread across processors, called spread arrays. Spread arrays
are declared by inserting a “spreader”, ::, which identifies the dimensions that are to be
spread across processors. All dimensions to the left of the spreader are wrapped over the
processors. Dimensions to the right of the spreader define the object that is allocated within
a processor. The spreader position is part of the static type, so efficient code can be generated
for multidimensional access. Indexing to the left of the spreader corresponds to arithmetic
on spread pointers while indexing to the right of the spreader corresponds to arithmetic
on global pointers. The & operator applied to an array expression yields a pointer of the
appropriate type. Generic routines that operate independent of the input layout utilize the

duality between arrays and pointers to eliminate the higher dimensions.

o Split-phase assignment: A new assignment operator, :=, is introduced to split the initiation of
a global access from the completion of the access. This allows the time of a global access to be
masked by other useful work and the communication resources of the system to be effectively

utilized. In contrast, standard assignments stall the issuing processor until the assignment

2 SPLIT-C PRIMITIVES OVERVIEW 8

is complete, to guarantee that reads and writes occur in program order. However, there
are restrictions on the use of split assignments. Whereas the standard assignment operator
describes arbitrary reads and one write, the split assignment operator specifies either to get
the contents of a global reference into a local one or to put the contents of a local reference
into a global one. Thus, arbitrary expressions are not allowed on the right hand side of a
split assignment. The := initiates the transfer, but does not wait for its completion. A sync
operation joins the preceeding split assignments with the thread of control. A local variable
assigned by a get (similarly, a global variable assigned by a put) is guaranteed to have its new
value only after the following sync statement. The value of the variable prior to the sync is
not defined. Variables appearing in split assignments should not be modified (either directly
or through aliases) between the assignment and the following sync, and variables on the left
hand side should not be read during that time. The order in which puts take effect is only
constrained by sync boundaries; between those boundaries the puts may be reordered. No

limit is placed on the number of outstanding assignments.

o Signaling assignment: A weaker form of assignment, called store and denoted :-, is provided
to allow efficient data driven execution and global operations. Store updates a global loca-
tion, but does not provide any acknowledgement of its completion to the issuing processor.
Completion of a collection of such stores is detected globally using all_store_sync, executed
by all processors. For global data rearrangement, in which all processors are cooperating to
move data, a set of stores by the processors are followed by an all_store_sync. In addition,
the recipient of store can determine if certain number of stores to it have completed using
store_sync, which takes the expected number of stores and waits until they have completed.

This is useful for data driven execution with predictable communication patterns.

o Bulk assignment: Transfers of complete objects are supported through the assignment op-
erators and library routines. The library operations allow for bulk transfers, which reflect
the view that, in managing a storage hierarchy, the unit of transfer should increase with the
access time. Moreover, bulk transfers enhance the utility of split-phase operations. A single
word get is essentially a binding prefetch. The ability to prefetch an entire object or block
often allows the prefetch operation to be moved out of the inner loop and increases the dis-
tance between the time where the get is issued and the time where the result is needed. The
assignment and split-assignment operators transfer arbitrary data types or structs, as with
the standard C assignment. However, C does not provide operators for copying entire arrays.

Bulk operations are provided to operate on arrays.®

e Synchronizing assignment: Concurrent access to shared objects, as occurs in manipulating

1t is anticipated that Split-C will support range or triplet syntax, ala Fortran90, to copy portions of arrays.

2 SPLIT-C PRIMITIVES OVERVIEW 9

linked data structures, requires that the accesses be protected under a meaningful locking
strategy. Split-C libraries provide a variety of atomic access primitives, such as fetch-and-
add, and a general facility for constructing locking versions of structs and manipulating them

under mutual exclusion, single writer multiple reader, or other strategies.

3 CONTROL PARADIGM 10

3 Control Paradigm

The control paradigm for Split-C programs is a single thread of control on each of PROCS processors
from the beginning of splitc_main until its completion. The processors may each follow distinct
flow of control, but join together at rendezvous points, such as barrier(). It is a SPMD model in
that every processor executes the same logical program image. Each processor has its own stack for
automatic variables and its own static or external variables. Static spread arrays and heap objects
referenced global pointers provide the means for shared data. Processors are numbered rom 0 to
PROCS — 1, with the pseudo-constant MYPROC referring to the number of the executing processor.

Figure 1 shows a simple Split-C program to compute an approximation of 7 through a Monte
Carlo integration technique. The idea is to throw darts into the unit square, [0,1) x [0,1) and
compute the fraction of darts that hit within the unit circle. This should approximate the ratio of
the areas, which is 7/4. Although the example is contrived, it illustrates several important aspects
of the language.

All processors enter splitc_main together. They can each obtain command line arguments in
the usual fashion. In this case the total number of trials is provided; this represents the work that
is to be divided among the processors. Fach processor computes the number of trials that it is to
perform, initializes its random number generator with a seed based on the value of MYPROC, and
conducts its trials. The processors join at the barrier and then all co-operate to sum the hits into
total_hits on processor 0. Finally, processor 0 prints the result.

In general, the code executed by different processors is varied using a standard library of control
macros. These typically involve a test of MYPROC, as in the case of on_one which tests for MYPROC
= 0. More interesting macros, such as for_my_2D, will appear in later examples; this is used for
iterating over sets of indexes that correspond to locally owned data. The library contains a set of
these control macros for hiding the index arithmetic in some common control patterns, and users
can easily define their own.

Split-C programs may mix this kind of control parallelism, in which different processors are ex-
ecuting different code, with data parallelism, in which global operations such as scans or reductions
require the involvement of all processors. The global operations are provided by library operations,
which by convention are named with the prefix all_. The assumption is that all processors execute
these within a reasonably short time frame. If some processors are significantly behind the others,
then performance will degrade, and it some processors fail to execute the operation at all, the
program may hang. We will discuss these global operations further in Section 5, since they are
frequently used with spread arrays.

All Split-C files should include <split-c/split-c.h>, which defines language primitives, such as
barrier and pseudo-constants, such as MYPROC and PROCS. (The current installation uses .sc as the

file type for Split-C files, which may call normal C routines for local computations.) Most Split-C

3 CONTROL PARADIGM 11

files will also include the standard control macros in <split-c/control.h>. The integer reduction

under addition is one of the standard global communication operations in <split-c/com.h>. We

will look more closely at how this can be implemented as we introduce more of the language.
Implementation note: Example programs with gmake files for the current release can be

found in /usr/cm5/local/src/split-c/examples. The code in this tutorial is in the tutorial
subdirectory there.

The example illustrates a bulk synchronous programming style that arises quite frequently in
Split-C. In this style programs are typically constructed as a sequence of parallel phases. Often the
phases alternate between purely local computation and global communication, as in this example.
Notice also that the program works on any number of processors, even though the number of
processors is exposed. The results will not be quite identical because of the initialization of the
random number generator. By default, the compiler produces configuration independent code. By
following a few simple conventions it is possible to optimize for the machine size, yet run on any
configuration.

Another common style is to allow the threads to co-operate is a less structured fashion through
operations on shared objects. Split-C supports both styles and a variety of others. The following

sections focus on how the various forms of interaction between processors are supported in Split-C.

3 CONTROL PARADIGM

12

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <split-c¢/split-c.h>
#include <split-c/control.h>
#include <split-c/com.h>

int hit()

{
int const rand_max = O0xFFFFFF;
double x = (double) (rand()&rand_max)/(rand_max);
double y = (double) (rand()&rand_max)/(rand_max);
if ((x#x+yx*y) < 1.0) return(1);
else return(0);

}
splitc_main(int argc, char *xargv)
{
int i, total_hits, hits = 0;
double pi;

int trials, my_trials;
if (arge # 2)
trials = 1000000;

else
trials = atoi(argv[1]);

my_trials = (trials + PROCS - 1 - MYPROC)/PROCS;

srand(MYPROCx*17); /* Different seed on
for (i=0; i < my_trials; i++) hits += hit();
barrier();

total_hits = all_reduce_to_one_add(hits);
on_one {
pi = 4.0xtotal hits/trials;
printf("PI estimated at %f from %d trials on %d processors.\n",

pi, trials, PROCS);
}

1

each processor x/

Figure 1: Example Split-C program computing and approximation to pi
Carlo integration technique.

using a parallel Monte

