
Introduction to Split-C1Version 1.0David E. CullerAndrea DusseauSeth Copen GoldsteinArvind KrishnamurthySteven LumettaSteve LunaThorsten von EickenKatherine YelickComputer Science Division | EECSUniversity of California, BerkeleyBerkeley, CA 94720Split-C@boing.CS.Berkeley.EDUApril 25, 1995Split-C is a parallel extension of the C programming language primarily intended for distributedmemory multiprocessors. It is designed around two objectives. The �rst is to capture certain usefulelements of shared memory, message passing, and data parallel programming in a familiar context,while eliminating the primary de�ciencies of each paradigm. The second is to provide e�cient accessto the underlying machine, with no surprises. (This is similar to the original motivation for C|toprovide a direct and obvious mapping from high-level programming constructs to low-level machineinstructions.) Split-C does not try to obscure the inherent performance characteristics of themachine through sophisticated transformations. This combination of generality and transparencyof the language gives the algorithm or library designer a concrete optimization target.This document describes the central concepts in Split-C and provides a general introduction toprogramming in the language. Both the language and the document are undergoing active devel-opment, so please view the document as working notes, rather than the �nal language de�nition.1This work was supported in part by the National Science Foundation as a Presidential Faculty Fellowship (num-ber CCR-9253705), Research Initiation Award (number CCR-9210260), and Infrastructure Grant (number CDA-8722788), by Lawrence Livermore National Laboratory (task number 33), by the Advanced Research Projects Agencyof the Department of Defense monitored by the O�ce of Naval Research under contract DABT63-92-C-0026, by theSemiconductor Research Consortium under contracts 92-DC-008 and 93-DC-008, and by AT&T. The informationpresented here does not necessarily reect the position or the policy of the Government and no o�cial endorsementshould be inferred.

CONTENTS 2Contents1 Introduction 42 Split-C Primitives Overview 63 Control Paradigm 104 Global Pointers 134.1 Declaring global pointers : 134.2 Constructing global pointers : 144.3 Destructuring a global pointer : 144.4 Using global pointers : 154.5 Arithmetic on global pointers : 164.6 Spread Pointers : 174.7 Using spread pointers : 185 Spread Arrays 195.1 Declaring spread arrays : 195.2 Dynamic allocation of spread objects : 215.3 Address arithmetic : 225.4 Con�guration independent use of spread arrays : 225.5 Con�guration dependent use of spread arrays : 256 Bulk assignment 277 Split-phase Assignment 287.1 Get and put : 287.2 Store : 327.2.1 Global data movement : 327.2.2 Data driven execution : 347.2.3 Message passing : 368 Synchronization 398.1 Executing Code Atomically : 399 Optimizing Split-C Programs 4210 Library extensions 4410.1 Special variables : 44

CONTENTS 310.2 Barriers : 4410.3 Global pointers : 4410.4 Read/Write : 4410.5 Get/Put : 4510.6 Store : 4610.7 Storage management : 4610.8 Global communication : 4710.9 I/O : 4710.10Timing : 4810.11Strings : 4810.11.1String copy : 4810.11.2String concatenation : 4910.11.3Miscellaneous : 4910.12Atomic operations : 5010.13Split-cc intrinsics : 5011 Appendix: Open Issues and Inadequacies 5311.1 Restrictions on global operations : 53

1 INTRODUCTION 41 IntroductionSplit-C is a parallel extension to the C programming language designed for large, distributedmemory multiprocessors. Following the C tradition, Split-C is a general-purpose language, but not a\very high level" language, nor a \big" one. It strives to provide the programmer enough machineryto construct powerful parallel data structures and operate on these in a machine independentfashion with reasonable clarity. At the same time, it does not attempt to hide the fundamentalperformance characteristics of the machine through elaborate language constructs or visionarycompilation. Whereas C \deals with the sort of objects that most sequential computers do,"[1]the extensions in Split-C deal with the additional operations that most collections of computerssupport. In either case, we expect the compiler to be reasonably good at address calculations,instruction scheduling, and local storage management, with the usual optimizations that pertainto these issues.Large-scale multiprocessors introduce two fundamental concerns: there is an active thread ofcontrol on each processor and there is a new level of the storage hierarchy which involves access toremote memory modules via an interconnection network. The Split-C extensions address these twoconcerns under the assumption that the programmer must think about these issues in designinge�ective data structures and algorithms and desires a reasonable means of expressing the resultsof the design e�ort. The presence of parallelism and remote access should not unduly obscurethe resulting program. The underlying machine model is a collection of processors operating ina common global address space, which is expected to be implemented as a physically distributedcollection of memories. The global address space is two dimensional from the viewpoint of addressarithmetic on global data structures and from a performance viewpoint, in that each processor hase�cient access to a portion of the address space. We may call this the local portion of the globalspace. Split-C provides access to global objects in a manner that reects the access characteristicsof the interprocessor level of the storage hierarchy.Split-C attempts to combine the most valuable aspects of shared memory programming with themost valuable aspects message passing and data parallel programming within a coherent framework.The ability to dereference global pointers provides access to data without prearranged co-ordinationbetween processors on which the data happens to reside. This allows sophisticated, linked datastructures to be constructed and used. Split-phase access, e.g., prefetch, allows global pointers tobe dereferenced without causing the processor to stall during access. The global address space andthe syntactic support for distributed data structures provides a means of documenting the globaldata structures in the program. This global structure is usually lost with traditional messagepassing, because it is implicit in the communication patterns. Algorithms that are natural tostate in terms of message passing are more e�cient within a global address framework with bulktransfer; they are as easy to express, and the fundamental storage requirements of the algorithm

1 INTRODUCTION 5are made explicit. Traditional shared-memory loses the inherent event associated with transfer ofinformation, so even simple global operations such as tree summation are hard to express e�ciently.Split-C allows noti�cation to be associated with access to the global addresses using an approachsimilar to split-phase access. Data parallel programming involves phases of local computation andphases of global communication. The global communication phases are often very general, sayscattering data from each processor to every other, so the global address is very useful, but there isno need to maintain consistency on a per-operation basis. Split-C is built upon an active messagesubstrate[AM], so the functionality of the language can easily be extended by libraries that usethe lowest level communication primitive directly, while providing meaningful abstractions withina global address framework.This paper is intended to introduce the pilot version of Split-C. Section 2 provides an overviewof the basic concepts in the language. Sections 3 through 8 explain these concepts in more detail,describe the syntax and provide simple examples. Section 9 discusses optimization strategies, andSection 10 lists the library functions available to the Split-C programmer as well as the primitivesused by the Split-C compiler.

2 SPLIT-C PRIMITIVES OVERVIEW 62 Split-C Primitives OverviewThe extensions introduced in Split-C attempt to expose the salient features of modern multipro-cessor machines in a generic fashion. The most obvious facet is simply the presence of multipleprocessors, each following an independent thread of control. More interesting is the presence of avery large address space that is accessed by these threads. In all recent large-scale multiproces-sors this is realized by storage resources that are local to the individual processors. This trend isexpected to continue. Split-C provides a range of access methods to the global address space, butencourages a \mostly local" programming style. It is anticipated that di�erent architectures willprovide varying degrees of support for direct access to remote memory. Finally, it is expected thatglobal objects will often be shared and this requires an added degree of control in how they areaccessed.Split-C provides the following extensions to C:� Multiple persistent threads: A Split-C program is parallel ab initio. From program beginto program end there are PROCS threads of control within the same program image.2 Eachthread has a unique number given by a special variable MYPROC that ranges from 0 to PROCS�1.Generally, we will use the term processor to mean the thread of control or process on thatprocessor. A variety of convenient parallel control structures can be built on this substrateand several are provided as C preprocessor (cpp) macros, but the basic language de�nitiondoes not prescribe dynamic thread manipulation or task scheduling. A small family of globalsynchronization operations are provided to co-ordinate the entire collection of threads, e.g.,barrier. No speci�c programming paradigm, such as data parallel, data driven, or mes-sage passing, is imposed by the language. However, these programming paradigms can besupported as a matter of convention.� 2D Global Address Space: Any processor can access any object in a large global address space.However, the inherent two dimensional structure of the underlying machine is not lost. Eachprocessor \owns" a speci�c region of the address space and is permitted to access that regionvia standard, local pointers. Rather than introducing a complicated set of mapping functions,as in Fortran-D, or mysterious mappings in the run-time system, as in CM-Fortran or C*,simple mapping rules are associated with multidimensional structures and global pointertypes. Sophisticated mappings are supported by exploiting the relationship between arraysand pointers, as is common in C.� Global pointers: A global pointer refers to an arbitrary object of the associated type anywherein the system. We will use the term global object to mean an object referenced by a globalpointer. A global object is \owned" entirely by a processor, which may have e�cient access to2This is termed the split-join model in [Brooks].

2 SPLIT-C PRIMITIVES OVERVIEW 7the object though standard pointers. A new keyword global is introduced to qualify a pointeras meaningful to all processors. Global pointers can be dereferenced in the same manner asstandard pointers, although the time to dereference a global pointer is considerably greaterthan that for a local pointer, perhaps up to ten times a local memory operation (i.e., acache miss). The language provides support for allocating global objects, constructing globalpointers from local counterparts, and destructuring global pointers. (In general, global objectsmay contain local pointers, but such pointers must be interpreted relative to the processorowning the global object.)A pointer in C references a particular object, but also de�nes a sequence of objects that canbe referenced by arithmetic operations on the pointer. In Split-C the sequence of objectsreferenced by a standard pointer are entirely local to the processor. Address arithmetic on aglobal pointer has the same meaning as arithmetic on a standard pointer by the processor thatowns the object. Hence, all the objects referenced relative to a global pointer are associatedwith one processor.� Spread pointers: A second form of global pointer is provided which de�nes a sequence ofobjects that are distributed or spread across the processors. The keyword spread is usedas the quali�er to declare this form of global pointer. Consecutive objects referenced by aspread pointer are \wrapped" in a helical fashion through the global address space with theprocessor dimension varying fastest. Each object is entirely owned by a single processor, butthe consecutive element, (i.e., that referenced by ++) is on the next processor.� Spread arrays: The duality in C between pointers and arrays is naturally extended to spreadpointers and arrays that are spread across processors, called spread arrays. Spread arraysare declared by inserting a \spreader", ::, which identi�es the dimensions that are to bespread across processors. All dimensions to the left of the spreader are wrapped over theprocessors. Dimensions to the right of the spreader de�ne the object that is allocated withina processor. The spreader position is part of the static type, so e�cient code can be generatedfor multidimensional access. Indexing to the left of the spreader corresponds to arithmeticon spread pointers while indexing to the right of the spreader corresponds to arithmeticon global pointers. The & operator applied to an array expression yields a pointer of theappropriate type. Generic routines that operate independent of the input layout utilize theduality between arrays and pointers to eliminate the higher dimensions.� Split-phase assignment: A new assignment operator, :=, is introduced to split the initiation ofa global access from the completion of the access. This allows the time of a global access to bemasked by other useful work and the communication resources of the system to be e�ectivelyutilized. In contrast, standard assignments stall the issuing processor until the assignment

2 SPLIT-C PRIMITIVES OVERVIEW 8is complete, to guarantee that reads and writes occur in program order. However, thereare restrictions on the use of split assignments. Whereas the standard assignment operatordescribes arbitrary reads and one write, the split assignment operator speci�es either to getthe contents of a global reference into a local one or to put the contents of a local referenceinto a global one. Thus, arbitrary expressions are not allowed on the right hand side of asplit assignment. The := initiates the transfer, but does not wait for its completion. A syncoperation joins the preceeding split assignments with the thread of control. A local variableassigned by a get (similarly, a global variable assigned by a put) is guaranteed to have its newvalue only after the following sync statement. The value of the variable prior to the sync isnot de�ned. Variables appearing in split assignments should not be modi�ed (either directlyor through aliases) between the assignment and the following sync, and variables on the lefthand side should not be read during that time. The order in which puts take e�ect is onlyconstrained by sync boundaries; between those boundaries the puts may be reordered. Nolimit is placed on the number of outstanding assignments.� Signaling assignment: A weaker form of assignment, called store and denoted :-, is providedto allow e�cient data driven execution and global operations. Store updates a global loca-tion, but does not provide any acknowledgement of its completion to the issuing processor.Completion of a collection of such stores is detected globally using all_store_sync, executedby all processors. For global data rearrangement, in which all processors are cooperating tomove data, a set of stores by the processors are followed by an all_store_sync. In addition,the recipient of store can determine if certain number of stores to it have completed usingstore_sync, which takes the expected number of stores and waits until they have completed.This is useful for data driven execution with predictable communication patterns.� Bulk assignment: Transfers of complete objects are supported through the assignment op-erators and library routines. The library operations allow for bulk transfers, which reectthe view that, in managing a storage hierarchy, the unit of transfer should increase with theaccess time. Moreover, bulk transfers enhance the utility of split-phase operations. A singleword get is essentially a binding prefetch. The ability to prefetch an entire object or blockoften allows the prefetch operation to be moved out of the inner loop and increases the dis-tance between the time where the get is issued and the time where the result is needed. Theassignment and split-assignment operators transfer arbitrary data types or structs, as withthe standard C assignment. However, C does not provide operators for copying entire arrays.Bulk operations are provided to operate on arrays.3� Synchronizing assignment: Concurrent access to shared objects, as occurs in manipulating3It is anticipated that Split-C will support range or triplet syntax, ala Fortran90, to copy portions of arrays.

2 SPLIT-C PRIMITIVES OVERVIEW 9linked data structures, requires that the accesses be protected under a meaningful lockingstrategy. Split-C libraries provide a variety of atomic access primitives, such as fetch-and-add, and a general facility for constructing locking versions of structs and manipulating themunder mutual exclusion, single writer multiple reader, or other strategies.

3 CONTROL PARADIGM 103 Control ParadigmThe control paradigm for Split-C programs is a single thread of control on each of PROCS processorsfrom the beginning of splitc_main until its completion. The processors may each follow distinctow of control, but join together at rendezvous points, such as barrier(). It is a SPMD model inthat every processor executes the same logical program image. Each processor has its own stack forautomatic variables and its own static or external variables. Static spread arrays and heap objectsreferenced global pointers provide the means for shared data. Processors are numbered rom 0 toPROCS � 1, with the pseudo-constant MYPROC referring to the number of the executing processor.Figure 1 shows a simple Split-C program to compute an approximation of � through a MonteCarlo integration technique. The idea is to throw darts into the unit square, [0; 1) � [0; 1) andcompute the fraction of darts that hit within the unit circle. This should approximate the ratio ofthe areas, which is �=4. Although the example is contrived, it illustrates several important aspectsof the language.All processors enter splitc_main together. They can each obtain command line arguments inthe usual fashion. In this case the total number of trials is provided; this represents the work thatis to be divided among the processors. Each processor computes the number of trials that it is toperform, initializes its random number generator with a seed based on the value of MYPROC, andconducts its trials. The processors join at the barrier and then all co-operate to sum the hits intototal_hits on processor 0. Finally, processor 0 prints the result.In general, the code executed by di�erent processors is varied using a standard library of controlmacros. These typically involve a test of MYPROC, as in the case of on_one which tests for MYPROC= 0. More interesting macros, such as for_my_2D, will appear in later examples; this is used foriterating over sets of indexes that correspond to locally owned data. The library contains a set ofthese control macros for hiding the index arithmetic in some common control patterns, and userscan easily de�ne their own.Split-C programs may mix this kind of control parallelism, in which di�erent processors are ex-ecuting di�erent code, with data parallelism, in which global operations such as scans or reductionsrequire the involvement of all processors. The global operations are provided by library operations,which by convention are named with the pre�x all_. The assumption is that all processors executethese within a reasonably short time frame. If some processors are signi�cantly behind the others,then performance will degrade, and it some processors fail to execute the operation at all, theprogram may hang. We will discuss these global operations further in Section 5, since they arefrequently used with spread arrays.All Split-C �les should include <split-c/split-c.h>, which de�nes language primitives, such asbarrier and pseudo-constants, such as MYPROC and PROCS. (The current installation uses .sc as the�le type for Split-C �les, which may call normal C routines for local computations.) Most Split-C

3 CONTROL PARADIGM 11�les will also include the standard control macros in <split-c/control.h>. The integer reductionunder addition is one of the standard global communication operations in <split-c/com.h>. Wewill look more closely at how this can be implemented as we introduce more of the language.Implementation note: Example programs with gmake �les for the current release can befound in /usr/cm5/local/src/split-c/examples. The code in this tutorial is in the tutorialsubdirectory there.The example illustrates a bulk synchronous programming style that arises quite frequently inSplit-C. In this style programs are typically constructed as a sequence of parallel phases. Often thephases alternate between purely local computation and global communication, as in this example.Notice also that the program works on any number of processors, even though the number ofprocessors is exposed. The results will not be quite identical because of the initialization of therandom number generator. By default, the compiler produces con�guration independent code. Byfollowing a few simple conventions it is possible to optimize for the machine size, yet run on anycon�guration.Another common style is to allow the threads to co-operate is a less structured fashion throughoperations on shared objects. Split-C supports both styles and a variety of others. The followingsections focus on how the various forms of interaction between processors are supported in Split-C.

3 CONTROL PARADIGM 12#include <stdio.h>#include <stdlib.h>#include <math.h>#include <split-c/split-c.h>#include <split-c/control.h>#include <split-c/com.h>int hit()f int const rand max = 0xFFFFFF;double x = (double) (rand()&rand max)=(rand max);double y = (double) (rand()&rand max)=(rand max);if ((x�x+y�y) � 1.0) return(1);else return(0);gsplitc main(int argc, char ��argv)f int i, total hits, hits = 0;double pi;int trials, my trials;if (argc 6= 2)trials = 1000000;elsetrials = atoi(argv[1]);my trials = (trials + PROCS - 1 - MYPROC)=PROCS;srand(MYPROC�17); /� Di�erent seed on each processor �/for (i=0; i < my trials; i++) hits += hit();barrier();total hits = all reduce to one add(hits);on one fpi = 4.0�total hits=trials;printf("PI estimated at %f from %d trials on %d processors.nn",pi, trials, PROCS);ggFigure 1: Example Split-C program computing and approximation to pi using a parallel MonteCarlo integration technique.

