
Distributed Watchpoints:
Debugging Very Large Ensembles of

Robots

De Rosa, Goldstein, Lee, Campbell, Pillai

Aug 19, 2006



8/19/2006 Distributed Watchpoints2

Motivation

• Distributed errors are hard to find with traditional debugging tools

• Centralized snapshot algorithms

– Expensive

– Geared towards detecting one error at a time

• Special-purpose debugging code is difficult to write, may itself
contain errors



8/19/2006 Distributed Watchpoints3

Expressing and Detecting Distributed Conditions

“How can we represent, detect, and trigger on distributed
conditions in very large multi-robot systems?”

• Generic detection framework, well suited to debugging

• Detect conditions that are not observable via the local state of one
robot

• Support algorithm-level debugging (not code/HW debugging)

• Trigger arbitrary actions when condition is met

• Asynchronous, bandwidth/CPU-limited systems



8/19/2006 Distributed Watchpoints4

Distributed/Parallel Debugging:
State of the Art

Modes:

• Parallel: powerful nodes, regular (static) topology, shared memory

• Distributed: weak, mobile nodes

Tools:

• GDB

• printf()

• Race detectors

• Declarative network systems with debugging support (ala P2)



8/19/2006 Distributed Watchpoints5

Example Errors: Leader Election

Scenario: One Leader Per Two-Hop Radius



8/19/2006 Distributed Watchpoints6

Example Errors: Token Passing

Scenario: If a node has the token, exactly one
of it’s neighbors must have had it last timestep



8/19/2006 Distributed Watchpoints7

Example Errors: Gradient Field

Scenario: Gradient Values Must Be Smooth



8/19/2006 Distributed Watchpoints8

Expressing Distributed Error Conditions

Requirements:

• Ability to specify shape of trigger groups

• Temporal operators

• Simple syntax (reduce programmer effort/learning curve)

A Solution:

• Inspired by Linear Temporal Logic (LTL)

– A simple extension to first-order logic

– Proven technique for single-robot debugging [Lamine01]

• Assumption: Trigger groups must be connected

– For practical/efficiency reasons



8/19/2006 Distributed Watchpoints9

Watchpoint Primitives

• Modules (implicitly quantified over all connected sub-ensembles)

• Topological restrictions (pairwise neighbor relations)

• Boolean connectives

• State variable comparisons (distributed)

• Temporal operators

nodes(a,b,c); n(b,c) & (a.var > b.var) & (c.prev.var != 2)



8/19/2006 Distributed Watchpoints10

Distributed Errors: Example Watchpoints

nodes(a,b,c);n(a.b) & n(b,c) & (a.isLeader == 1) &
(c.isLeader == 1)

nodes(a,b,c);n(a,b) & n(a,c) & (a.token == 1) &
(b.prev.token == 1) & (c.prev.token == 1)

nodes(a,b);(a.state - b.state > 1)



8/19/2006 Distributed Watchpoints11

Watchpoint Execution

nodes(a,b,c)…

21 43 65 87

109 1211 1413 1615

1817 2019 2221 2423

2625 2827 3029 3231

1

2

3

1 2

1 9

.

.

.

.

1 9 2

1 9 10



8/19/2006 Distributed Watchpoints12

Performance: Watchpoint Size

• 1000 modules, running for 100 timesteps

• Simulator overhead excluded

• Application: data aggregation with landmark routing

• Watchpoint: are the first and last robots in the watchpoint in the same state?



8/19/2006 Distributed Watchpoints13

Performance: Number of Matchers

• This particular watchpoint never terminates early

• Number of matchers increases exponentially

• Time per matcher remains within factor of 2

• Details of the watchpoint expression more important than size



8/19/2006 Distributed Watchpoints14

Performance: Periodically Running
Watchpoints



8/19/2006 Distributed Watchpoints15

Future Work

• Distributed implementation

• More optimization

• User validation

• Additional predicates



8/19/2006 Distributed Watchpoints16

Conclusions

• Simple, yet highly descriptive syntax

• Able to detect errors missed by more conventional techniques

• Low simulation overhead



Thank You



8/19/2006 Distributed Watchpoints18

Backup Slides



8/19/2006 Distributed Watchpoints19

Optimizations

• Temporal span

• Early termination

• Neighbor culling

• (one slide per)


