
Empirical Study of a Data
ow Language on the CM-51David E. CullerSeth Copen GoldsteinKlaus Erik SchauserThorsten von EickenComputer Science DivisionDepartment of Electrical Engineering and Computer SciencesCollege of EngineeringUniversity of California, BerkeleyAbstract: This paper presents empirical data on the behavior of large data
ow programs ona distributed memory multiprocessor. The programs, written in the data
ow language Id90, arecompiled via a Threaded Abstract Machine (TAM) for the CM-5. TAM re�nes data
ow executionmodels by addressing critical constraints that modern parallel architectures place on the compilationof general-purpose parallel programming languages. It exposes synchronization, scheduling, andnetwork access so that the compiler can optimize against the cost of these operations.The data presented in this paper evaluates the TAM approach in compiling data
ow languageson stock hardware. We present data on the instruction mix, speedup, scheduling behavior, andlocality of large ID90 programs. It is shown that the TAM scheduling hierarchy is able to toleratelong communication latencies, especially when some degree of I-structure locality is present. We in-vestigate how frame allocation strategies, k-bounded loops, and I-structure caching and distributiontogether a�ect the overall e�ciency. Finally we document some scheduling anomalies.1 IntroductionThe goals of data
ow models of computation are to exploit irregular or unstructured parallelismarising in general purpose programs and to enable development of high-level parallel languages inwhich the programmer need not manage every detail of the mapping of program and data onto themachine. It has been demonstrated that direct execution of data
ow graphs is not essential to attainthese goals, as data
ow graphs are equivalent to threaded instruction sets with very weak addressingmodes[9, 18]. Data
ow graphs are, however, very useful in the compilation process[4, 23, 22, 25, 28].At the machine level, the essential aspect of data
ow is e�cient dynamic scheduling. Dynamicscheduling provides tolerance to communication latency, since the processor picks up other usefulwork rather than waiting for each response. It avoids synchronization waits in the same manner,and further reduces the impact of transient load imbalance, since a processor remains busy aslong as any local work is available. Dynamic scheduling supports powerful parallel languages withsynchronizing data access[3] or non-strict order of evaluation[27, 7]. Data
ow processors operategreedily, grabbing hold of any available useful work, rather than sitting idle. The general belief inthe data
ow research community is that if such an eager processor can be built with a reasonablecost/performance ratio, the remaining systems issues involved in actually mapping the computationand data to the machine could be solved.Even though the research area is several years old, today we have almost no solid empirical datato substantiate this belief. There are plenty of novel ideas for implementing dynamic scheduling, butlittle evidence that it actually simpli�es the task of managing resources or scheduling computation,or that it translates into performance on a large scale. Simulations of paper designs and small1This paper was presented at the ISCA '92 Data
ow Workshop. The results are based on the 1992 version of ourcompiler and runtime system. 1



prototypes provide only limited data, since they cannot model the behavior of large programsin-the-large. The Manchester data
ow machine is correctly considered a single processor, as themultiple bit-slice-ALUs are a technological artifact. Monsoon[17] is only available in very smallcon�gurations. At the time the machine was designed, the characteristics of the per-processorstorage hierarchy were not understood, so the issue was intentionally avoided by using fast staticRAM for all the memory in the processor. The network operates at �ve times the processorclock rate, so there is little communication latency. Sigma-1 and EM-4 are available in largecon�gurations, but the only programs that have been run are small, regular, and hand tuned. Staticdata
ow machines have been applied primarily to regular, structured problems[10, 11, 24]. Data
owlanguages, including Sisal and a restricted form of Id, have been implemented on conventionalarchitectures, by exploiting the regular structure in traditional FORTRAN-like applications[5, 19].Our work attempts to �ll some of this empirical vacuum by implementing Id90 on large par-allel machines in a manner that retains the e�cient dynamic scheduling of data
ow models. Theapproach we have taken is to de�ne a threaded abstract machine (TAM) that remedies some basicshortcomings in previous data
ow models and is closer to conventional architectures. TAM exposessynchronization, scheduling, and network access so that the compiler can optimize against the costof these operations. The Id90 compiler has been substantially rewritten to target TL0, the TAMassembly language, rather than a data
ow instruction set. A key step in the compilation processis partitioning the data
ow program graph into threads[22, 28]. The other new aspects of thecompilation process involve management of registers and local storage in the context of dynamicscheduling and code generation for threads. A separate compilation step translates the TL0 codeto native machine code for a variety of platforms, including large network-based multiprocessors(Thinking Machines CM-5 and the nCUBE/2), small shared-memory multiprocessors (Sequent Bal-ance and Motorola Delta), and conventional workstations. The TLO-to-machine step focuses onspeci�cs of the target instruction set and processor/network interface.2 One virtue of this two-stepcompilation approach is that TL0 execution statistics can be collected e�ciently by compiling thedata collection directly into the machine code.In this paper we provide preliminary empirical data on the behavior of large Id90 programscompiled via TAM for the CM-5. This is the �rst commercial machine to provide a su�cientlyaccessible and e�cient processor/network interface allowing a meaningful study of this kind. Ouractive message layer on the machine[29] imposes a per-message overhead that is an order of mag-nitude less than that of commercial message passing systems and approaches current hardwareimplementations of shared-memory and message-driven models. Nevertheless, there is considerableimprovement possible through hardware support, and we intend this paper to provide grist for thedesign of the next generation of machines supporting data
ow languages, e.g., *T and EM-5.The paper is organized as follows. Section 2 explains the TAM model and brie
y outlines howId90 programs are compiled to TAM and then to the CM-5. Section 3 provides crude programperformance data, such as speedup and program behavior, including TL0 level instruction mixes,scheduling behavior, and locality. Section 4 discusses the e�ects of resource management policiesincluding the e�ects of a variety of frame allocation policies, e�orts to reduce contention, includingI-structure spreading and caching and the impact of k-bounded loops. Section 5 documents somedisturbing scheduling anomalies.Brie
y, the main observations of the study are as follows. It is possible to implement a data
owlanguage on stock hardware and provide fast dynamic scheduling, although current processor net-work interfaces are inadequate. The TAM scheduling hierarchy appears to work even under sig-ni�cant latency, especially when some degree of I-structure locality is obtained. Simple frameallocation policies appear to do a reasonable job of balancing the computational load while pre-2A generic back-end translates up to C and uses the local C compiler as an assembler.2



serving a signi�cant degree of locality. However, I-structure load can be extremely unbalanced,resulting in signi�cant contention. Dynamic scheduling of work on a per-processor basis does littleto mediate the e�ects of persistent load imbalance or contention. This must be be addressed inthe way work and data are assigned to processors. Replication of I-structure data can signi�cantlyreduce contention, at a cost. Finally, in a data
ow implementation a host of factors interact incomplex ways: scheduling, assignment of work, allocation of I-structures, and I-structure referencepatterns. The absence of a high-level program execution strategy makes these interactions di�cultto understand or control.2 Threaded Abstract MachineIn this section, we describe TAM[8], a threaded abstract machine that serves as an intermediatestep in compiling the data
ow language Id90 for conventional parallel (and sequential) architec-tures. Historically, Id90 was developed in close connection with dynamic data
ow architectures,especially the MIT Tagged Token Data
ow Architecture. It demands the dynamic scheduling andtagged heap storage that these designs o�er. However, the extent to which these capabilities needto be supported directly in hardware remains an open question. The evolution of the MIT data
owarchitectures has been driven primarily by advancement in compiler technology; each step in un-derstanding how to compile the language resulted in a simpli�cation of the the architecture. TAMrepresents an e�ort to simplify the architecture even further, relying heavily on sophisticated com-pilation techniques. Traub's \compilation as partitioning" framework[26] and Iannucci's threadgeneration for the hybrid architecture[14] demonstrated that it was possible to reduce the amountof dynamic scheduling required. TAM builds directly on this work, but it addresses three otherissues as well. First, there is no hardware management of storage resources. More precisely, thereis no implicit storage allocation in the machine model.3 Storage is explicitly allocated in largechunks, namely activation frames and heap data structures, and the compiler is responsible forstorage management. Second, the low-level scheduling of computation is focused to enhance thelocality of reference within each processor, and allows e�cient dynamic scheduling on conventionalprocessors. Third, the high level scheduling of computation is exposed so that a global strategycan be \compiled in" the program. (Our TAM implementation provides this level of control to theId90 compiler, but we have not fully exercised it.) These goals are quite compatible and can beaddressed within a simple run-time program structure, described below.2.1 Activation framesThe key to understanding TAM and its relationship to data
ow models is to examine the require-ments of a function invocation. In a conventional sequential language, a function is invoked byallocating storage for local variables on the stack (the activation frame), pushing arguments ontothe stack, and transferring control to the entry point of the function. The key di�erence in aparallel language is that the caller does not suspend on every invocation, so it may invoke manyother functions to run concurrently. Thus, the dynamic call structure at any point in time formsa tree, rather than a stack, which grows and shrinks over time. Dynamic data
ow architecturesimplicitly allocate storage for the invocation tree, since the matching store allocates storage on atoken-by-token basis. However, if we examine the language implementations on the TTDA[1] orManchester machine[13] more carefully, we see that the function invocation involves allocating a\context" or portion of the tag space. In e�ect, this allocates an entire region of addresses to the3Our current implementation of deferred reads backs o� from this requirement slightly for performance reasons,but this deviation is not fundamental. 3



function invocation; the matching store is simply a means of representing a sparsely populated ad-dress space. Of course, the other novelty in the data
ow approach is that each argument transferscontrol to an entry point of the function. Thus, we may think of each argument as initiating athread of control within the function invocation. Threads are implicitly synchronized and forkedin the data
ow graph representation.The Explicit Token Store[9] model returns to the conventional idea of allocating storage forlocal variables with each invocation. It makes the further assumption that the entire invocationwill execute on the processor to which the activation frame belongs. Monsoon[17] associates apresence-bit with each frame slot to support the data
ow view which associates a thread of controlwith every element of local data. Hybrid[14] adopted a complementary view, providing explicitthreads of control which suspend upon access to a frame slot that is marked not-present. P-Risc[16] observed that presence-bits can be kept in the frame like local data, rather than as specialtags, and that matching could be simulated by toggling the tag bit atomically and suspending onthe result.What none of these models provide is a way of referring to the set threads associated with aparticular function invocation. They all rely on a scheduling queue that is outside the run-timeprogram structure; this is the token queue in data
ow machines and Monsoon. As a result, thereis no way of articulating what executes next after a thread stops or suspends. Hence, the locusof computation on each processor hops around arbitrarily from thread to thread. This preventse�ective use of a modern processor storage hierarchy, including a large processor register set, sRAMcache, and dRAM main store.4 Moreover, this queue may grow arbitrarily large (as can the activa-tion tree), since it must represent all the parallel threads in the program. The novel contributionin TAM is to maintain the scheduling queue within the collection of activation frames, as suggestedby Figure 1. A portion of each frame is used to hold a stack of instructions pointers, called thecontinuation vector (cv), representing the enabled threads for the corresponding function invoca-tion. The compiler can determine the maximum size of this region in a manner much like registerallocation. The scheduling queue on each processor is formed by simply linking together framescontaining enabled threads.5 This simple scheme addresses our goals, as follows:� The scheduling queue is no longer a specialized resource. There is a single resource that cangrow arbitrarily, the activation tree, and it may occupy all of memory, just like the stack ina conventional language.6 It is allocated only upon function invocation.� The TAM representation dictates a natural scheduling hierarchy which enhances the localityof reference within the processor. When a frame is scheduled, threads are executed fromthat frame until none remain in the cv. We call this dynamic \chunk" of work a quantum.Focusing on the work for a frame should improve the e�ectiveness of the processor cache.More importantly, the processor registers are valid across threads within a quantum. Weexpect that in practice quanta will include several points of potential suspension, since oftenmultiple arguments to a function arrive close together in time or multiple remote fetches willcomplete together.� Dynamic scheduling among threads within the same function is extremely inexpensive. Tofork a new thread, the address of the thread is simply pushed onto the cv. When a threadstops, the next thread is popped o� the cv. Coordination among threads is implemented4This was precisely why the initial design of Monsoon relied on a large static RAM, rather than more cost-e�ectivecache structure.5Observe that the instruction pointer in the frame is a full continuation, since the frame pointer portion isdetermined upon traversing the link to the frame.6As with conventional languages, there is also a heap for arrays and non-local data.4


