
Parallel Programming in Split-C

David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,

Steven Lumetta, Thorsten von Eicken, and Katherine Yelick

Computer Science Division

University of California, Berkeley �

Abstract

We introduce the Split-C language, a parallel exten-
sion of C intended for high performance programming
on distributed memory multiprocessors, and demon-
strate the use of the language in optimizing parallel
programs. Split-C provides a global address space
with a clear concept of locality and unusual assign-
ment operators. These are used as tools to reduce the
frequency and cost of remote access. The language
allows a mixture of shared memory, message passing,
and data parallel programming styles while providing
e�cient access to the underlying machine. We demon-
strate the basic language concepts using regular and
irregular parallel programs and give performance re-
sults for various stages of program optimization.

1 Overview

Split-C is a parallel extension of the C programming
language that supports e�cient access to a global ad-
dress space on current distributed memory multipro-
cessors. It retains the \small language" character of
C and supports careful engineering and optimization
of programs by providing a simple, predictable cost
model. This is in stark contrast to languages that rely
on extensive program transformation at compile time
to obtain performance on parallel machines. Split-
C programs do what the programmer speci�es; the
compiler takes care of addressing and communication,
as well as code generation. Thus, the ability to ex-
ploit parallelism or locality is not limited by the com-
piler's recognition capability, nor is there need to sec-
ond guess the compiler transformations while optimiz-
ing the program. The language provides a small set
of global access primitives and simple parallel storage
layout declarations. These seem to capture most of the
useful elements of shared memory, message passing,
and data parallel programming in a common, famil-
iar context. Split-C is currently implemented on the
Thinking Machines Corp. CM-5, building from GCC

�Send e-mail to: Split-C@boing.CS.Berkeley.EDU

and Active Messages[17] and implementations are un-
derway for architectures with more aggressive support
for global access. It has been used extensively as a
teaching tool in parallel computing courses and hosts
a wide variety of applications. Split-C may also be
viewed as a compilation target for higher level paral-
lel languages.

This paper describes the central concepts in Split-
C and illustrates how these are used in the process of
optimizing parallel programs. We begin with a brief
overview of the language as a whole and examine each
concept individually in the following sections. The
presentation interweaves the example use, the opti-
mization techniques, and the language de�nition con-
cept by concept.

1.1 Split-C in a nutshell

Control Model: Split-C follows an SPMD (single
program, multiple data) model, where each of PROCS
processors begin execution at the same point in a
common code image. The processors may each fol-
low distinct
ow of control and join together at ren-
dezvous points, such as barrier(). Processors are dis-
tinguished by the value of the special constant, MYPROC.
Global Address Space: Any processor may ac-

cess any location in a global address space, but each
processor owns a speci�c region of the global address
space. The local region contains the processor's stack
for automatic variables, static or external variables,
and a portion of the heap. There is also a spread heap
allocated uniformly across processors.
Global pointers: Two kinds of pointers are pro-

vided, re
ecting the cost di�erence between local and
global accesses. Global pointers reference the entire
address space, while standard pointers reference only
the portion owned by the accessing processor.
Split-phase Assignment: A split-phase assign-

ment operator (:=) allows computation and commu-
nication to be overlapped. The request to get a value
from a location (or to put a value into a location) is
separated from the completion of the operation.

Signaling Store: A more unusual assignment op-
erator (:-) signals the processor that owns the up-
dated location that the store has occurred. This pro-
vides an essential element of message driven and data
parallel execution that shared memory models gener-
ally ignore.
Bulk Transfer: Any of the assignment operators

can be used to transfer entire records, i.e., structs. Li-
brary routines are provided to transfer entire arrays.
In many cases, overlapping computation and commu-
nication becomes more attractive with larger transfer
units.
Spread Arrays: Parallel computation on arrays

is supported through a simple extension of array dec-
larations. The approach is quite di�erent from that of
HPF and its precursors because there is no separate
layout declaration. Furthermore, the duality in C be-
tween arrays and pointers is carried forward to spread
arrays through a second form of global pointer, called
a spread pointer.

1.2 Organization

Section 2 describes a non-trivial application, called
EM3D, that operates on an irregular, linked data
structure. Section 3 gives a simple parallel solution
to EM3D, begins a sequence of optimizations on the
program, showing how unnecessary remote accesses
can be eliminated. Sections 4 and 5 show how to
make the remaining remote accesses more e�cient us-
ing split-phase assignments and signaling stores. Sec-
tion 6 discusses bulk transfers and applies them to
EM3D. Section 7 illustrates the use of spread arrays
and how various array layouts are achieved. Section 8
explores how disparate programming models can be
uni�ed in the Split-C context, and Section 9 summa-
rizes our �ndings.

2 An Example Irregular Application

To illustrate the novel aspects of Split-C for paral-
lel programs, we use a small, but rather tricky exam-
ple application, EM3D, that models the propagation
of electromagnetic waves through objects in three di-
mensions [13]. A preprocessing step casts this into
a simple computation on an irregular bipartite graph
containing nodes representing electric and magnetic
�eld values.

In EM3D, an object is divided into a grid of convex
polyhedral cells (typically nonorthogonal hexahedra).
From this primary grid, a dual grid is de�ned by using
the barycenters of the primary grid cells as the vertices
of the dual grid. Figure 1 shows a single primary grid
cell (the lighter cell) and one of its overlapping dual

E nodes
(Electric Field)

(Magnetic Field)
H nodes

Primary
grid cell

Dual grid
 cell

Figure 1: EM3D grid cells.

γα

E node

H node

Wαγ

W

α
β

γ

Figure 2: Bipartite graph data structure in EM3D.

grid cells. The electric �eld is projected onto each
edge in the primary grid; this value is represented in
Figure 1 by a white dot, an E node, at the center of the
edge. Similarly, the magnetic �eld is projected onto
each edge in the dual grid, represented by a black dot,
an H node, in the �gure.

The computation consists of a series of \leapfrog"
integration steps: on alternate half time steps, changes
in the electric �eld are calculated as a linear function of
the neighboring magnetic �eld values and vice versa.
Speci�cally, the value of each E node is updated by
a weighted sum of neighboring H nodes, and then H
nodes are similarly updated using the E nodes. Thus,
the dependencies between E and H nodes form a bi-
partite graph. A simple example graph is shown in
Figure 2; a more realistic problem would involve a
non-planar graph of roughly a million nodes with de-
gree between ten and thirty. Edge labels (weights)
represent the coe�cients of the linear functions, for
example, W
� is the weight used for computing �'s
contribution to
's value. Because the grids are static,
these weights are constant values, which are calculated
in a preprocessing step [13].

1 typedef struct node_t {

2 double value; /* Field value */

3 int edge_count;

4 double *coeffs; /* Edge weights */

5 double *(*values); /* Dependency list */

6 struct node_t *next;

7 } graph_node;

8

9 void compute_E()

10 {

11 graph_node *n;

12 int i;

13

14 for (n = e_nodes; n != NULL; n = n->next)

15 for (i = 0; i < n->edge_count; i++)

16 n->value = n->value

17 - *(n->values[i]) * (n->coeffs[i]);

18 }

Program 1: Sequential EM3D, showing the graph

node structure and E node computation.

A sequential C implementation for the kernel of the
algorithm is shown in Program 1. Each E node con-
sists of a structure containing the value at the grid
point, a pointer to an array of weights (coeffs), and
an array of pointers to neighboring H node values.
In addition, the E nodes are linked together by the
next �eld, creating the complete list e_nodes. E nodes
are updated by iterating over e_nodes and, for each
node, gathering the values of the adjacent H nodes
and subtracting o� the weighted sum. The H node
representation and computation are analogous.

Before discussing the parallel Split-C implementa-
tion of EM3D, consider how one might optimize it for a
sequential machine. On a vector processor, one would
focus on the gather, vector multiply, and vector sum.
On a high-end workstation one can optimize the loop,
but since the graph is very large, the real gain would
come from minimizing cache misses that occur on ac-
cessing n->values[i]. This is done by rearranging the
e_nodes list into chunks, where the nodes in a chunk
share many H nodes. This idea of rearranging a data
structure to improve the access pattern is also central
to an e�cient parallel implementation.

3 Global Pointers

Split-C provides a global address space and al-
lows objects anywhere in that space to be referenced
through global pointers. An object referenced by a
global pointer is entirely owned by a single processor.1

A global pointer can be dereferenced in the same man-
ner as a standard C pointer, although the time to
dereference a global pointer is considerably greater

1The term object corresponds basic C objects, rather than

objects in the sense of object-oriented languages.

1 typedef struct node_t {

2 double value;

3 int edge_count;

4 double *coeffs;

5 double * global (*values);

6 struct node_t *next;

7 } graph_node;

8

9 void all_compute_E()

10 {

11 graph_node *n;

12 int i;

13

14 for (n = e_nodes; n != NULL; n = n->next)

15 for (i = 0; i < n->edge_count; i++)

16 n->value = n->value

17 - *(n->values[i]) * (n->coeffs[i]);

18

19 barrier();

20 }

Program 2: EM3D written using global pointers. Each

processor executes this code on the E nodes it owns.

The only di�erences between this Split-C kernel and

the sequential C kernel are: insertion of the type qual-

i�er global to the list of value pointers and addition

of the barrier() at the end of the loop.

than that for a local pointer. In this section, we il-
lustrate the use of the Split-C global address space on
EM3D and explain the language extension in detail.

3.1 EM3D using global pointers

The �rst step in parallelizing EM3D is to recog-
nize that the large kernel graph must be spread over
the machine. Thus, the structure describing a node
is modi�ed so that values refers to an array of global
pointers. This is done by adding the type quali�er
global in line 5 of Program 2. The new global graph
data structure is illustrated in Figure 3. In the com-
putational step, each of the processors performs the
update for a portion of the e_nodes list. The simplest
approach is to have each processor update the nodes
that it owns, i.e., owner computes. This algorithmic
choice is re
ected in the declaration of the data struc-
ture by retaining the next �eld as a standard pointer
(see line 6). Each processor has the root of a list of
nodes in the global graph that are local to it. All pro-
cessors enter the electric �eld computation, update the
values of their local E nodes in parallel, and synchro-
nize at the end of the half step before computing the
values of the H nodes. The only change to the kernel
is the addition of barrier() in line 19 of Program 2.

Having established a parallel version of the pro-
gram, how might we optimize its performance on a
multiprocessor? Split-C de�nes a straight-forward
cost model: accesses that are remote to the request-

Proc 0

Proc 1

Proc 2

Global Address Space

α
β

γ

Figure 3: An EM3D graph in the global address space

with three processors. With this partitioning, proces-

sor 1 owns nodes � and � and processor 2 owns node

. The edges are directed for the electric �eld compu-

tation phase.

ing processor are more expensive than accesses that
are owned by that processor. Therefore, we want to
reorganize the global kernel graph into chunks, so that
as few edges as possible cross processor regions2. Ad-
ditionally, each processor should be responsible for
roughly the same amount of work. For a given ma-
chine, we could estimate the cost of the kernel loop
on a processor for a given layout as L+XR, where L
is the number of edges to local nodes, R is the num-
ber of edges that cross to other processors, and X

is the relative cost of a remote access. On the CM-
5, the local accesses and
oating point multiply-add
cost roughly 3�s and a remote access costs roughly
14�s. There are numerous techniques for partitioning
graphs to obtain an even balance of nodes and a min-
imum number of remote edges, e.g., [11, 14]. Thus,
for an optimized program there would be a separate
initialization step to reorganize the global graph using
a cost model of the computational kernel. Load bal-
ancing techniques are beyond the scope of this paper,
but the global access capabilities of Split-C would be
useful in expressing such algorithms.

3.2 Language de�nition: Global Pointers

Global pointers provide access to the global address
space from any processor.

Declaration: A global pointer is declared by
appending the quali�er global to the pointer type
declaration (e.g., int *global g; or int *global

garray[10];). The type quali�er global can be used

2Some of the optimizations we use here to demonstrate

Split-C features are built into parallel Grid libraries like the

Parti system [1].

with any pointer type (except a pointer to a func-
tion), and global pointers can be declared anywhere
that standard pointers can be declared.

Construction: A global pointer may be con-
structed using the function toglobal, which takes a
processor number and a local pointer. It may also
be constructed by casting a local pointer to a global
pointer. In this case, the global pointer points to the
same object as the local pointer on the processor per-
forming the cast.

Deconstruction: Semantically, a global pointer
has a component for each of the two dimensions in the
global address space: a processor number and a local
pointer on that processor. These values can be ex-
tracted using the toproc and tolocal functions. Cast-
ing a global pointer to a local pointer has the same
e�ect as tolocal: it extracts the local pointer part
and discards the processor number.

Dereference: Global pointers may be derefer-
enced in the same manner as normal pointers, al-
though the cost is higher.

Arithmetic: Arithmetic on global pointers re-

ects the view that an object is owned entirely by one
processor: arithmetic is performed on the local pointer
part while the processor number remains unchanged.
Thus incrementing a global pointer will refer to the
next object on the same processor3 .

Cost model: The representation of global point-
ers is typically larger than that of a local pointer.
Arithmetic on global pointers may be slightly more
expensive than arithmetic on local pointers. Derefer-
encing a global pointer is signi�cantly more expensive
than dereferencing a local pointer. A local/remote
check is involved, and if the object is remote, a deref-
erence incurs the additional cost of communication.

The current Split-C implementation represents
global pointers by a processor number and local ad-
dress. Other representations are possible on machines
with hardware support for a global address space.
This may change the magnitude of various costs, but
not the relative cost model.

3.3 Performance study

The performance of our EM3D implementation
could be characterized against a benchmark mesh with
a speci�c load balancing algorithm. However, it is
more illuminating to work with synthetic versions of

3There is another useful view of the \next" object: the cor-

responding object on the \next" processor. This concept is

captured by spread pointers, discussed in Section 7.

11

10

 9

8

 7

 6

 5

 4

 3

 2

 1

 0

Ghost optimized (3a)

secsµ
per edge

 Percent Nonlocal Edges

Global pointer (2)

Ghost (3)

Split phase (4)

Store (5,5a,5b)

0% 10% 20% 30% 40% 50%

Figure 4: Performance obtained on several versions

of EM3D using a synthetic kernel graph with 320,000

nodes of degree 20 on 64 processors. The correspond-

ing program number is in parentheses next to each

curve. The y axis shows the average number of mi-

croseconds per edge. Because there are two
oating

point operations per edge and 64 processors, 1 �sec

per edge corresponds to 128 M
ops.

the graph, so that the fraction of remote edges is eas-
ily controlled. Our synthetic graph has 5,000 E and H
nodes on each processor, each of which is connected to
twenty of the other kind of nodes at random. We vary
the fraction of edges that connect to nodes on other
processors to re
ect a range of possible meshes.

Figure 4 gives the performance results for a number
of implementations of EM3D on a 64 processor CM-5
without vector units. The x axis is the percentage of
remote edges. The y axis shows the average time spent
processing a single graph edge, i.e., per execution of
lines 16{17 in Program 2. Each curve is labeled with
the feature and program number used to produce it.
The top curve shows the performance of Program 2,
the �rst parallel version using global pointers. The
other curves re
ect optimizations discussed below. For
Program 2, 2.7 �s are required per graph edge when
all of the edges are local. As the number of remote
edges is increased, performance degrades linearly, as
expected.

3.4 Eliminating redundant global ac-
cesses

Reorganizing the EM3D graph in the global address
space does not necessarily minimize the the number
of remote accesses, because some remote accesses may
be redundant. For example, in Figure 3, two nodes,
� and � on processor 1 reference a common node

Proc 0

Proc 1

Proc 2 H node
E node

E ghost node (not shown)

H ghost node

α
β

γ

Figure 5: EM3D graph modi�ed to include ghost

nodes. Local storage sites are introduced in order to

eliminate redundant remote accesses.

on processor 2. Eliminating the redundant references
requires a more substantial change to the global graph
data structure. For each remote node accessed by a
processor, a local \ghost node" is created with room to
hold a value and a global pointer to the remote node.
Figure 5 shows the graph obtained by introducing the
ghost nodes. The ghost nodes act as temporary stor-
age sites, or caches, for values of dependent nodes that
are remote in the global address space.

The resulting EM3D program is shown in Pro-
gram 3. A new structure is de�ned for the ghost nodes
and a new loop (lines 21{22) is added to read all the
remote values into the local ghost nodes. Notice that
the node struct has returned to precisely what it was
in the sequential version. This means that the update
loop (lines 24{27) is the same as the sequential version,
accessing only local pointers. The Program 3 curve in
Figure 4 shows the performance improvement.

In practice, the performance of parallel programs
is often limited by that of its sequential kernels. For
example, a factor of two in EM3D can be obtained by
carefully coding the inner loop using software pipelin-
ing. The performance curve for this optimized version
is called Program 3a in Figure 4. The ability to main-
tain the investment in carefully sequential engineered
software is an important issue often overlooked in par-
allel languages and novel parallel architectures.

The shape of both Program 3 curves in Figure 4 is
very di�erent from our initial version. The execution
time per edge increases only slightly beyond the point
where 30% of the edges refer to remote nodes. The
reason is that as the fraction of remote edges in the
synthetic kernel graph increases, the probability that
there will be multiple references to a remote node in-
creases as well. Thus, the number of remote nodes
referenced remains roughly constant, beyond some

threshold. In other words, with an increasing num-
ber of remote edges, there are approximately the same
number of ghost nodes; more nodes will depend upon
these ghost nodes instead of depending upon other
local nodes. The graphs obtained from real meshes
exhibit a similar phenomenon.

4 Split-Phase Access

Once the redundant remote accesses have been
eliminated, we want to perform the remaining remote
accesses as e�ciently as possible. The global read op-
erations in line 22 of Program 3 are unnecessarily inef-
�cient. Operationally, a request is sent to the proces-
sor owning the object and the contents of the object
are returned. Both directions involve transfers across
the communication network with substantial latency.
The processor is simply waiting during much of the
remote access. We do not need to wait for each in-
dividual access, we simply need to ensure that they
have all completed before we enter the update loop.
Thus, it makes sense to issue the requests one right
after the other and only wait at the end. In essence,
the remote requests are pipelined through the commu-
nication network.

Split-C supports overlapping communication and
computation using split-phase assignments. The pro-
cessor can initiate global memory operations by using
a new assignment operator :=, do some computation,
and then wait for the outstanding operations to com-
plete using a sync() operation. The initiation is sepa-
rated from the completion detection and therefore the
accesses are called split-phase.

4.1 Split-phase access in EM3D

We can use split-phase accesses instead of blocking
reads to improve the performance of EM3D, where we
�ll the values in the ghost nodes. We replace = by :=

in line 8 of Program 4 and use the sync operation to
ensure the completion of all the global accesses before
starting the compute phase. By pipelining global ac-
cesses, we hide the latency of all but the last global
access and obtain better performance, as indicated by
the Program 4 curve in Figure 4.

4.2 Language de�nition: Split-Phase Ac-
cess

get: The get operation is speci�ed by a split-phase
assignment of the form: l := g where l is a local
l-value and g is a dereference of a global l-value.
The right hand side may contain an arbitrary global
pointer expression (including spread array references

1 typedef struct node_t {

2 double value;

3 int edge_count;

4 double *coeffs;

5 double *(*values);

6 struct node_t *next;

7 } graph_node;

8

9 typedef struct ghost_node_t {

10 double value;

11 double *global actual_node;

12 struct ghost_node_t *next;

13 } ghost_node;

14

15 void all_compute_E()

16 {

17 graph_node *n;

18 ghost_node *g;

19 int i;

20

21 for (g = h_ghost_nodes; g != NULL; g = g->next)

22 g->value = *(g->actual_node);

23

24 for (n = e_nodes; n != NULL; n = n->next)

25 for (i = 0; i < n->edge_count; i++)

26 n->value = n->value

27 - *(n->values[i]) * (n->coeffs[i]);

28

29 barrier();

30 }

Program 3: EM3D code with ghost nodes. Remote

values are read once into local storage. The main com-

putation loop manipulates only local pointers.

discussed below), but the �nal operation is to derefer-
ence the global pointer. Get initiates a transfer from
the global address into the local address, but does not
wait for its completion.

put: The put operation is speci�ed by a split-phase
assignment of the form: g := e where g is a global
l-value and e is an arbitrary expression. The value
of the right hand side is computed (this may involve
global accesses) producing a local r-value. Put initi-
ates a transfer of the value into the location speci�ed
by expression g, but does not wait for its completion.

sync: The sync() operation waits for the comple-
tion of the previously issued gets and puts. It syn-
chronizes, or joins, the thread of control on the proces-
sor with the remote accesses issued into the network.
The target of a split-phase assignment is unde�ned
until a sync has been executed and is unde�ned if the
source of the assignment is modi�ed before executing
the sync.

By separating the completion detection from the
issuing of the request, split-phase accesses allow the
communication to be masked by useful work. The
EM3D code above overlaps a split-phase access with

other split-phase accesses, which essentially pipelines
the transfers. The other typical use of split-phase ac-
cesses is to overlap global accesses with local compu-
tation. This is tantamount to prefetching.

Reads and writes can be mixed with gets and puts;
however, reads and writes do not wait for previous
gets and puts to complete. A write operation waits for
itself to complete, so if another operation (read, write,
put, get, or store) follows, it is guaranteed that the
previous write has been performed. The same is true
for reads; any read waits for the value to be returned.
In other words, only a single outstanding read or write
is allowed from a given processor; this ensures that the
completion order of reads and writes match their issue
order [7]. The ordering of puts is de�ned only between
sync operations.

5 Signaling Stores

The discussion above emphasizes the \local compu-
tation" view of pulling portions of a global data struc-
ture to the processor. In many applications there is
a well understood global computation view, allowing
information to be pushed to where it will be needed
next. This occurs, for example in stencil calculations
where the boundary regions must be exchanged be-
tween steps. It occurs also in global communication
operations, such as transpose, and in message driven
programs. Split-C allows the programmer to reason
at the global level by specifying clearly how the global
address space is partitioned over the processors. What
is remote to one processor is local to a speci�c other
processor. The :- assignment operator, called store,
stores a value into a global location and signals the
processor that owns the location that the store has
occurred. It exposes the e�ciency of one-way com-
munication in those cases where the communication
pattern is well understood.

5.1 Using stores in EM3D

While it may seem that the store operation would
primarily bene�t regular applications, we will show
that it is useful even in our irregular EM3D problem.
In the previous version, each processor traversed the
\boundary" of its portion of the global graph getting
the values it needed from other processors. Alterna-
tively, a processor could traverse its boundary and
store values to the processors that need them.

The EM3D kernel using stores is given in Pro-
gram 5. Each processor maintains a list of \store
entry" cells that map local nodes to ghost nodes on
other processors. The list of store entry cells acts as
an anti-dependence list and are indicated as dashed

1 void all_compute_E()

2 {

3 graph_node *n;

4 ghost_node *g;

5 int i;

6

7 for (g = h_ghost_nodes; g != NULL; g = g->next)

8 g->value := *(g->actual_node);

9

10 sync();

11

12 for (n = e_nodes; n != NULL; n = n->next)

13 for (i = 0; i < n->edge_count; i++)

14 n->value = n->value

15 - *(n->values[i]) * (n->coeffs[i]);

16

17 barrier();

18 }

Program 4: EM3D with pipelined communication

lines in Figure 6. The all_store_sync() operation on
line 19 ensures that all the store operations are com-
plete before the ghost node values are used. Note also
that the barrier at the end the routine in Program 4
has been eliminated since the all_store_sync() en-
forces the synchronization. The curve labeled \Store"
in Figure 4 demonstrates the performance improve-
ment with this optimization. (There are actually three
overlapping curves for reasons discussed below.)

Observe that this version of EM3D is essentially
data parallel, or bulk synchronous, execution on an ir-
regular data structure. It alternates between a phase
of purely local computation on each node in the graph
and a phase of global communication. The only
synchronization is detecting that the communication
phase is complete.

A further optimization comes from the following
observation: for each processor, we know not only
where (on what other processors) data will be stored,
but how many stores are expected from other pro-
cessors. The all_store_sync() operation guarantees
globally that all stores have been completed. This is
done by a global sum of the number of bytes issued
minus the number received. This incurs communica-
tion overhead, and prevents processors from working
ahead on their computation until all other processors
are ready. A local operation store_sync(x) waits only
until x bytes have been stored locally. A new ver-
sion of EM3D, referred to as Program 5a, is formed
by replacing all_store_sync by store_sync in line 19
of Program 5. This improves performance slightly,
but the new curve in Figure 4 is nearly indistinguish-
able from the basic store version{it is one of the three
curves labeled \Store."

1 typedef struct ghost_node_t {

2 double value;

3 } ghost_node;

4

5 typedef struct store_entry_t {

6 double *global ghost_value;

7 double *local_value;

8 } store_entry;

9

10 void all_compute_E()

11 {

12 graph_node *n;

13 store_entry *s;

14 int i;

15

16 for (s = h_store_list; s != NULL; s = g->next)

17 s->ghost_value :- *(s->local_value);

18

19 all store sync();

20

21 for (n = e_nodes; n != NULL; n = n->next)

22 for (i = 0; i < n->edge_count; i++)

23 n->value = n->value

24 - *(n->values[i]) * (n->coeffs[i]);

25 }

Program 5: Using the store operation to further opti-

mize the main routine.

H ghost node

E ghost node (not shown)

E node
H node

Proc 0

Proc 1

Proc 2

α
β

γ

Direction of Stores

Figure 6: EM3D graph modi�ed to use stores

5.2 Language de�nition: Signaling Stores

store: The store operation is speci�ed by an as-
signment of the form: g :- e where g is a global l-
value and e is an arbitrary expression. The value of
the right hand side is computed producing a local r-
value. Store initiates a transfer of the value into the
location speci�ed by expression g, but does not wait
for its completion.

all store sync: The all_store_sync is a form of
global barrier that returns when all previously issued
stores have completed.

store sync(n) The store_sync function waits un-
til n bytes have been stored (using :-) into the local
region of the address space. It does not indicate which
data has been deposited, so the higher level program
protocol must avoid potential confusion, for example

by detecting all the stores of a given program phase.

The completion detection for stores is independent
from that of reads, writes, gets and puts. In the cur-
rent implementation, each processor maintains a byte
count for the stores that it issues and for the stores
it receives. The all_store_sync is realized by a global
operation that determines when the sum of the bytes
received equals the sum of that issued and resets all
counters. The store_sync(n) checks that the receive
counter is equal or greater than n and decrements both
counters by n. This allows the two forms of comple-
tion detection to be mixed; with either approach, the
counters are all zero at the end of a meaningful com-
munication phase.

6 Bulk Data Operations

The C language allows arbitrary data elements or
structures to be copied using the standard assignment
statement. This concept of bulk transfer is potentially
very important for parallel programs, since global op-
erations frequently manipulate larger units of infor-
mation. Split-C provides the natural extension of the
bulk transfers to the new assignment operators. An
entire remote structure can be accessed by a read,
write, get, put, or store in a single assignment. Unfor-
tunately, C does not de�ne such bulk transfers on ar-
rays, so Split-C provides a set of functions: bulk_read,
bulk_get, and so on. Many parallel machines provide
hardware support for bulk transfers. Even machines
like the CM-5, which support only small messages in
hardware,4 can bene�t from bulk transfers because
more of the packet payload is utilized for user data.

Again, there is a small performance improvement
with the bulk store version of EM3D (called Pro-
gram 5b), but the di�erence is not visible in the three
store curves in Figure 4. The overhead of cache misses
incurred when copying the data into the bu�er costs
nearly as much time as the decrease in message count
saves, with the �nal times being only about 1% faster
than those of the previous version.

We have arrived a highly structured version of
EM3D through a sequence of optimizations. Depend-
ing on the performance goals and desired readability,
one could choose to stop at an intermediate stage.
Having arrived at this �nal stage, one might consider
how to translate it into traditional message passing
style. It is clear how to generate the sends, but gen-
erating the receives without introducing deadlock is
much trickier, especially if receives must happen in

4On the CM-5, each Split-C message can contain 16 bytes

of user data. Four bytes of the 20 byte CM-5 network packet is

used for header information.

the order data arrives. The advantage of the Split-C
model is that the sender, rather than receiver, speci-
�es where data is to be stored, and data need not be
copied between message bu�ers and the program data
structures.

7 Spread Arrays

In this section we shift emphasis from irregular,
pointer-based data structures to regular, multidimen-
sional arrays, which are traditionally associated with
scienti�c computing. Split-C provides a simple ex-
tension to the C array declaration to specify spread

arrays, which are spread over the entire machine. The
declaration also speci�es the layout of the array. The
two dimensional address space, associated cost model,
and split phase assignments of Split-C carry over to
arrays, as each processor may access any array ele-
ment, but \owns" a well de�ned portion of the array
index space.

Most sequential languages support multidimen-
sional arrays by specifying a canonical linear order,
e.g., 1-origin column-major in Fortran and 0-origin
row-major in C. The compiler translates multidimen-
sional index expressions into a simple address calcula-
tion. In C, for example, accessing A[i][j] is the same
a dereferencing the pointer A + i*n + j. Many par-
allel languages eliminate the canonical layout and in-
stead provide a variety of layout directives. Typically
these involve mapping the array index space onto a
logical processor grid of one or more dimensions and
mapping the processor grid onto a collection of pro-
cessors. The underlying storage layout and index cal-
culation can become quite complex and may require
the use of run-time \shape" tables, rather than simple
arithmetic. Split-C retains the concept of a canon-
ical storage layout, but extends the standard layout
to spread data across processors in a straight-forward
manner.

7.1 \Regular" EM1D

To illustrate a typical use of spread arrays, Pro-
gram 6 shows a regular 1D analog of our EM3D ker-
nel. The declarations of E and H contain a spreader

(::), indicating that the elements are spread across
the processors. This corresponds to a cyclic layout
of n elements, starting with element 0 on processor
0. Consecutive elements are on consecutive processors
at the same address, except that the address is in-
cremented when the processor number wraps back to
zero. The loop construct, for_my_1d, is a simple macro
that iteratively binds i to the indexes from 0 to n-2

that are owned by the executing processor under the

1 void all_compute_E(int n,

2 double E[n]::,

3 double H[n]::)

4 {

5 int i;

6 for_my_1d(i,n-1)

7 if (i != 0)

8 E[i] = w1*H[i-1] + w2*H[i] + w3*H[i+1];

9 barrier();

10 }

Program 6: A simple computation on a spread array,

declared with a cyclic layout.

canonical layout, i.e., processor p computes element p,
then p + PROCS and so on. Observe, that if n = PROCS

this is simply an array with one element per processor.
In optimizing this program, one would observe that

with a cyclic layout two remote references are made in
line 8, so it would be more e�cient to use a blocked
layout. Any standard data type can be spread across
the processors in a wrapped fashion. In particular,
by adding a dimension to the right of the spreader,
e.g., E[m]::[b], we assign elements to processors in
blocks. If m is chosen equal to PROCS, this corre-
sponds to a blocked layout. If m is greater than PROCS,
this is a block-cyclic layout. The loop statement
for_my_1d(i,m)would be used to iterate over the local
blocks. One may also choose to enlarge the block to
include ghost elements at the boundaries and perform
the various optimization described for EM3D.

7.2 Language de�nition: Spread Arrays

Declaration: A spread array is declared by in-
serting a single spreader to the right of an array di-
mensions.

Addressing: All dimensions to the left of the
spreader are spread across processors, while dimen-
sions to the right de�ne the per processor subarrays.
The spread dimensions are linearized in row major or-
der and laid out in a wrapped fashion starting with
processor zero.

Spread pointers: A second form of global
pointer, quali�ed by the keyword spread, provides
pointer arithmetic that is identical to indexing on
spread arrays.

Figure 7 shows some declarations (with element
types omitted for brevity) and their corresponding lay-
outs. The declaration of X produces a row-oriented
layout by spreading only the �rst dimension. Because
Split-C inherits C's row-major array representation, a
column layout is not as simple. However, the e�ect can
be obtained by spreading both dimensions and round-
ing the trailing dimension up to a multiple of PROCS.

m

X[n]::[m];

n

m

Y[n][m+k]::;

k

n

m

n

Z[n][m]::;

Figure 7: Spread array declarations and layouts, with

processor zero's elements highlighted. Assumes n is 7,

m is 9, k is 3, and there are 4 processors.

0

11

1 2
3 4 5
6 7 8
9 10

0

11

1 2
3 4 5
6 7 8
9 10

0

11

1 2
3 4 5
6 7 8
9 10

0

11

1 2
3 4 5
6 7 8
9 10

0

11

1 2
3 4 5
6 7 8
9 10

0

11

1 2
3 4 5
6 7 8
9 10 b1 b2x blocks

on processorsr*c

M[n/(r*b1)][m/(c*b2)][r][c]::[b1][b2]

c

r

Figure 8: A declaration for a blocked/cyclic layout

in both dimensions. Each block shows the number of

the processor that owns it. Shown for n=8, m=9, r=4,

c=3, where there are 12 processors.

The declaration of Y shows such a matrix, assuming
that k is the computed constant such that m + k is a
multiple of PROCS. The Z array is blocked, but has its
elements scattered across processors.

To see how spread arrays can achieve other layouts,
consider a generic declaration of the form

M[n/(r*b1)][m/(c*b2)][r][c]::[b1][b2].
Logically, we may think of this as a two dimensional
matrix of size n by m. Physically, it has blocks of size
b1 by b2. A special property holds if we choose r*c to
be a multiple of PROCS: the dimensions r and c act as
an r by c processor grid. The layout becomes blocked-
cyclic in both dimensions. Figure 8 shows a particular
case of this for 12 processors, where r is 4 and c is
3. The number in each block is the number of the
processor that owns that block. In each column there
are 8 blocks spread across only 4 distinct processors;
in each row there are 9 blocks spread across 3 distinct
processors.

Since the data layout is well-de�ned, programmers
can write their own control macros (like the for_my_1d
macro) that iterate over arbitrary dimensions in ar-
bitrary orders. They can also encode subspace it-
erations, such as iterations over lower triangular, or

diagonal elements, or all elements to the left of an
owned element. Spread arrays are sometimes declared
to have a �xed number of elements per processor, for
example, the declaration int A[PROCS] will have a sin-
gle element for each processor.

The relationship between arrays and pointers in
C is carried over to spread arrays in Split-C spread

pointers. Spread pointers are declared with the word
spread, e.g.int *spread p, and are identical to global
pointers, except with respect to pointer arithmetic.
Global pointers index the memory dimension and
spread pointers index in a wrapped fashion in the pro-
cessor dimension.

7.3 Matrix Multiply in Split-C

In many cases it is critical that blocking be em-
ployed to reduce the frequency of remote operations,
but not so critical how the blocks are actually laid out.
For example, in matrix multiplication a block size of b
will reduce the number of remote references by a fac-
tor of b. However, the three matrices may have very
di�erent aspect ratios and not map well onto the same
processor grid. In the blocked matrix multiply shown
in Program 7, C is declared (in line 2) as a n by m

matrix of b by b blocks and a blocked inner-product
algorithm is used. The call to matrix_mult in line 17
invokes a local matrix multiply, which is written to
operate on conventional C arrays. Observe that the
layouts for the three arrays may be completely di�er-
ent, depending on the aspect ratios, but all use the
same blocking factor. The iterator for_my_2d is used
to bind i and j to the appropriate blocks of C under
the owner-computes rule.

Figure 9 shows the performance of four of matrix
multiply versions. The lowest curve, labeled \Un-
blocked" is for a standard matrix multiply on square
matrices up to size 256�256. The performance curves
for the blocked multiply are shown using n

8
� n

8
blocks:

\Unopt" gives the results for a straightforward C lo-
cal multiply routine with full compiler optimizations,
whereas \Blocked" uses an optimized assembly lan-
guage routine that pays careful attention to the lo-
cal cache size and the
oating point pipeline. A �-
nal performance curve in Figure 9 uses a clever sys-
tolic algorithm, Cannon's algorithm, which involves
�rst skewing the blocks within a square processor grid
and then cyclic shifts of the blocks at each step, i.e.,
neighbor communication on the processor grid. All
remote accesses are bulk stores and the communica-
tion is completely balanced. It peaks at 413 MFlops
which on a per processor basis far exceeds published
LINPACK performance numbers for the Sparc. This

1 void all_mat_mult_blk(int n, int r, int m, int b,

2 double C[n][m]::[b][b],

3 double A[n][r]::[b][b],

4 double B[r][m]::[b][b])

5 {

6 int i,j,k,l;

7 /* Local copies of blocks */

8 double la[b][b], lb[b][b];

9

10 for_my_2D(i,j,l,n,m) {

11 double (*lc)[b] = tolocal(C[i][j]);

12

13 for (k=0;k<r;k++) {

14 bulk get(la, A[i][k], b*b*sizeof(double));

15 bulk get(lb, B[k][j], b*b*sizeof(double));

16 sync();

17 matrix_mult(b,b,b,lc,la,lb);

18 }

19 }

20 barrier();

21 }

Program 7: Blocked matrix multiply.

comparison suggests that the ability to use highly opti-
mized sequential routines on local data within Split-C
programs is as important as the ability to implement
sophisticated global algorithms with a carefully tuned
layout.

8 Fusion of Programming Models

Traditionally, di�erent programming models, e.g.,
shared memory, message passing, or data parallel,
were supported by distinct languages on vastly dif-
ferent architectures. Split-C supports these models by
programming conventions, rather than enforcing them
through language constraints.

Split-C borrows heavily from shared memory mod-
els in providing several threads of control within a
global address space[10, 12]. Virtues of this approach
include: allowing familiar languages to be used with
modest enhancements[6, 3, 2], making global data
structures explicit, rather than being implicit in the
pattern of sends and receives, and allowing for power-
ful linked data structures. This was illustrated for the
EM3D problem above; applications that demonstrate
irregularity in both time and space[4, 18] also bene�t
from these features.

Split-C di�ers from previous shared memory lan-
guages by providing a rich set of memory operations,
not simply read and write. It does not rely on novel
architectural features, nor does it assume communi-
cation has enormous overhead, thereby making bulk
operations the only reasonable form of communica-
tion [16, 9]. These di�erences arise because of dif-
ferences in the implementation assumptions. Split-C

8 16 32 64 128 256 512 1024

 400

 350

 300

 250

 200

 150

 100

 50

 0

Mflops

Matrix dimension

Blocked

Cannon

Unopt

Unblocked

Figure 9: Performance of multiple versions of matrix

multiply on 64 Sparc processor CM-5.

is targeted toward distributed memory multiproces-
sors with fast,
exible network hardware, including the
Thinking Machines CM-5, Meiko CS-2, Cray T3D and
others. Split-C maintains a clear concept of locality,
re
ecting the fundamental costs on these machines.

Optimizing global operations on regular data struc-
tures is encouraged by de�ning a simple storage layout
for global matrices. In some cases, the way to mini-
mize the number of remote accesses is to program the
layout to ensure communication balance[5]. For exam-
ple, an n-point FFT can be performed on p processors
with a single remap communication step if p2 � n [5].
In other cases, e.g., blocked matrix multiplication, the
particular assignment of blocks to processors less im-
portant than load balance and block size.

The approach to global matrices in Split-C stems
from the work on data parallel languages, especially
HPF [8] and C* [15]. A key design choice was to avoid
run-time shapes or dope vectors, because these are in-
consistent with C and with the philosophy of least
surprises. Split-C does not have the ease of porta-
bility of the HPF proposal or of higher level parallel
languages. Some HPF layouts are harder to express in
Split-C but some Split-C layouts are very hard to ex-
press in HPF. The major point of di�erence is that in
Split-C, the programmer has full control over data lay-
out, and sophisticated compiler support is not needed
to obtain performance.

9 Summary

This paper has introduced Split-C, a new parallel
extension to C which is designed to allow optimiza-
tion of powerful algorithms for emerging large-scale

multiprocessors. It supports a global address space
with a clear notion of local and global access and a
simple data layout strategy to allow programmers to
minimize the frequency of remote access. It provides a
rich set of assignment operators to optimize the remote
accesses that do occur and to integrate co-ordination
among processors with the
ow of data. With these
simple primitives, it captures many of the best aspects
of shared memory, message passing, and data parallel
programming avoidingmany of the drawbacks of each.
It retains a \small language" philosophy, so program
performance is closely related to the program text.
The languages concepts and optimization techniques
have been illustrated by a simple example, which we
believe will prove challenging for other available lan-
guage systems.

Acknowledgements

We would like to thank Ken Stanley for optimizing
the local matrix multiply code, and Randy Wang and
Su-Lin Wu for writing the original EM3D code.

This work was supported in part by the National
Science Foundation as a PFF (number CCR-9253705),
RIA (number CCR-9210260), Graduate Research Fel-
lowship, and Infrastructure Grant (number CDA-
8722788), by Lawrence Livermore National Labora-
tory, by the Advanced Research Projects Agency of
the DODmonitored by ONR under contract DABT63-
92-C-0026, by the Semiconductor Research Consor-
tium and by AT&T. The information presented here
does not necessarily re
ect the position or the policy
of the Government and no o�cial endorsement should
be inferred.

References

[1] H. Berryman, J. Saltz, and J. Scroggs. Execution
Time Support for Adaptive Scienti�c Algorithms on

Distributed Memory Multiprocessors. Concurrency:

Practice and Experience, pages 159{178, June 1991.

[2] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk,

R. Overbeek, J.Patterson, and R. Stevens. Portable

Programs for Parallel Processors. Holt, Rinehart, and
Winston, 1987.

[3] E. Brooks. PCP: A Parallel Extension of C that is

99% Fat Free. Technical Report UCRL-99673, LLNL,

1988.

[4] S. Chakrabarti and K. Yelick. Implementing an Ir-

regular Application on a Distributed Memory Multi-

processor. In Principles and Practice of Parallel Pro-

gramming, San Diego, CA, 1993.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay,

K. Schauser, E. Santos, R. Subramonian, and T. von

Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Principles and Practice of Parallel

Programming, May 1993.

[6] F. Darema, D. George, V. Norton, and G. P�ster. A

Single-Program-Multiple Data Computational Model
for EPEX/FORTRAN. Parallel Computing, 7:11{24,

1988.

[7] M. Dubois and C. Scheurich. Synchronization, Coher-

ence, and Event Ordering in Multiprocessors. IEEE

Computer, 21(2):9{21, February 1988.

[8] High Performance Fortran Forum. High Performance

Fortran language speci�cation version 1.0. Draft, Jan.
1993.

[9] S. Hiranandani, K. Kennedy, and C.-W. Tseng.
Compiler optimziations for Fortran D on MIMD

distributed-memory machines. In Proceedings of the

1991 International Conference on Supercomputing,
1991.

[10] B. A. C. Inc. TC2000 Technical Product Summary.

1989.

[11] B. W. Kernighan and S. Lin. An E�cient Heuris-

tic Procedure for Partitioning Graphs. Bell System

Technical Journal, 49:291{307, 1970.

[12] D. Lenoski, J. Laundon, K. Gharachorloo, A. Gupta,

and J. L. Hennessy. The Directory Based Cache Co-
herance Protocol for the DASH Multiprocessor. In In

Proceedings of the 17th International Symposium on

Computer Architecture, pages 148{159, 1990.

[13] N. K. Madsen. Divergence Preserving Discrete Sur-

face Integral Methods for Maxwell's Curl Equations
Using Non-Orthogonal Unstructured Grids. Technical

Report 92.04, RIACS, February 1992.

[14] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning

Sparse Matrices with Eigenvectors of Graphs. Siam

J. Matrix Anal. Appl., 11(3):430{452, July 1990.

[15] J. Rose and G. Steele Jr. C*: An Extended C Lan-
guage for Data Parallel Programming. In Proceedings

of the Second International Conference on Supercom-

puting, Vol. 2, pages 2{16, May 1987.

[16] A. Skjellum. Zipcode: A Portable Communication

Layer for High Performance Multicomputing { Prac-

tice and Experience. Unpublished draft, March 1991.

[17] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Inte-

grated Communication and Computation. In Inter-

national Symposium on Computer Architecture, 1992.

[18] C.-P. Wen and K. Yelick. Parallel Timing Simulation
on a Distributed Memory Multiprocessor. In Interna-

tional Conference on CAD, Santa Clara, California,

November 1993. To appear.

