
NIFDY: A Low Overhead, High Throughput Network Interface

Timothy Callahan and Seth Copen Goldstein
{timothyc,sethg}@cs.berkeley.edu

Computer Science Division
University of California-Berkeley

Abstract
In this paper we present NIFDY, a network interface that uses ad-
mission control to reduce congestion and ensures that packets are
received by a processor in the order in which they were sent, even
if the underlying network delivers the packets out of order. The
basic idea behind NIFDY is that each processor is allowed to have at
most one outstanding packet to any other processor unless the des-
tination processor has granted the sender the right to send multiple
unacknowledgedpackets. Further, there is a low upper limit on the
number of outstanding packets to all processors.

We present results from simulations of a variety of networks
(meshes, tori, butterflies, and fat trees) and traffic pattems to ver-
ify NIFDY's efficacy. Our simulations show that NIFDY increases
throughput and decreases overhead. The utility of NIFDY increases
as a network's bisection bandwidth decreases. When combined
with the increased payload allowed by in-order delivery NIFDY in-
creases total bandwidth delivered for all networks. The resources
needed to implement NIFDY are small and constant with respect to
network size.

1 Introduction
An efficient interconnection network is essential for high-speed
parallel computing. Although processor speeds and raw network
performance have increased dramatically, network interfaces have
not efficiently integrated these resources. Thus system performance
has not kept pace with the performance of the individual compo-
nents. In this paper we present a network interface that more
closely matches modern network characteristics while remaining
independent of the network design.

Interconnection networks deliver maximum performance when
the offered load is limited to a fraction of the maximum bandwidth.
We call this the operating range of the network. Many people have
obscrved that when the offered load exceeds the operating range,
throughput falls off dramatically [JacEE, Jai90, SS89, RJ90, KS91,
Aga91, BK941. Researchers have investigated this problem for
both WAN and MPP networks. The WAN solutions are based on
deep networks with long messages and generally use software pro-
tocols at the end points (Jac88, RJ90, KMCL93, SBB'911. Most
MPP networks, which are shallower and have shorter messages,
either ignore the issue or control congestion in the network fab-
ric itself [CBLK94, Da1Y 1, LAD+Y2, Da1901. In this paper we
propose a network interface called NIFDY-Network Interface with

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the AGM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee andlor specific permission.
ISCA '95, Santa Mar'gherita Ligure Italy
0 1995 AGM 0-89791 -698-0/95/0006...$3.50

Flow-control and in-order Delivery-which adapts the WAN style
solutions to MPP networks. In short, NIFDY performs admission
control at the edges of the network; a packet i s injected into the
network only if the destination is expected to be able to accept the
packet.

When the network is running within its operating range, soft-
ware overhead represents the largest cost in message transmission.
Some of this overhead arises in matching the functionality of the
network fabric to the application requirements. NIFDY removes the
overhead required for reordering packets by delivering packets to
the processor in the order in which they were sent. This allows
network designers to exploit various techniques, e.g. adaptive rout-
ing, to increase network performance without imposing additional
overhead on the applications.

In the rest of this section we explain our assumptions about the
underlying network and present the basic design of NIFDY. In Sec-
tion 2 we present the complete design of NIFDY, its implementation
cost, and how it interacts with the processorand network. Section 3
describes the simulator which was used to verify the performance
of NIFDY and Section 4 presents the results we obtained from it. In
Section 5 we compare our approach to previous work on network
design. In Section 6 we propose some extensions to NIFDY to handle
unreliable networks and networks of workstations.

1.1 The Underlying Network
NIFDY is designed primarily for MPPs where the processors are
tightly coupled by a fast, shallow interconnect. Unlike previous
work to increase performance of such systems, our approach does
not presuppose a particular kind of network or router. We assume
only that once the network has accepted a packet it will eventually
he delivered to its destination, if processors continue to accept
packets. (In Section 6 we show how NIFDY can be extended to
handle unreliable networks.)

On most networks proposed for MPPs, the main source of per-
formance degradation is congestion. Congestion can be caused in
two places: at the end-points and intemally in the network fab-
ric. End-point congestion arises when packets arrive at a node
faster than the node can process them. Intemal congestion can
arise for several reasons. First, a number of senders may combine
to generate traffic that exceeds the network's bisection bandwidth.
Second, hot spots in the network may cause unnecessary blocking
and reduce utilization. Third, faults in the network may restrict
the available bandwidth. Finally, end-point congestion can cause
congestion intemal to the network; we call this secondary blocking.

To handle hardware faults and transient congestion, many net-
work topologies--e.g. fat trees and multibutterflies-provide mul-
tiple paths that spread out traffic between nodes. While networks
with altemative paths can provide some congestion tolerance, they
don't solve the problem entirely and can even aggravate it. If there
is no direct feedback to the sending node (as is the case in most, if
not all, MPP networks), then backpressureis the only mechanism to
stop the sender from sending packets. In this case, adaptive routing

230

mailto:timothyc,sethg}@cs.berkeley.edu

may fill up the network buffers along all possiblepaths between the
sender and the bottleneck, causing extreme secondary blocking.

To avoid secondary blocking, when a node is sending to a blocked
or overloaded receiver it must stop or slow its injection of packets
into the network. Two schemes have been proposed to accomplish
this: rate-based flow control (RBFC) and credit-based flow control
(CBFC). RBFC limits each sender to a rate that is known not to
induce secondary blocking, assuming the receiver is pulling packets
out of the network. CBFC gives each sender a credit of packets that
i t can inject before secondary blocking will happen. The problem
with both these schemes is that MPP traffic is bimodal-processors
are usually sending either at full speed or hardly at all. With RBFC
a fixed rate will not properly utilize the network; for instance,
the optimal rate when only one sender is active is different from
the optimal rate when all senders are active. While CBFC solves
this problem, i t does not eliminate secondary blocking if many
senders have accumulated credits and simultaneously send a burst of
packets. In addition, RBFC requires negotiation between the sender
and the rcceiver or requires global information to be maintained in
the network, while CBFC requires overhead for maintaining the
credits, possibly on a per-receiver basis. These costs, combined
with the bimodality of MPP traffic, have prevented designers from
using RBFC or CBFC in MPP networks.

The price of randomized routing techniques is that packets may
be delivered out of order. Even meshes and tori using dimension-
order routing may deliver packets out of order if they utilize multiple
virtual channels to alleviate congestion [Da190]. For medium-
sized transfers on the CM-5, [KC941 showed that reconstructing
the original transmission order accounted for as much as 30% of
the total transfer time. The Synoptics ATM Switch routes packets
adaptively within the switch and then reorders them before they
leave the switch. This link-by-link reordering increases the latency
of the switch by a factor of five [BT89]. From these observations
we conclude that reordering should be performed only once, at the
destination, and that if possible the reordering should be performed
in hardware.

1.2 NIFDY in a Nutshell
NIFDY is a network interface that uses admission control to perform
both in-order delivery and end-to-end flow control. To handle the
bimodality of MPP traffic and ensure in-order delivery, NIFDY has
two communication modes. The default case is scalar mode in
which only a single packet can be outstanding to a given destina-
tion processor. To allow for higher bandwidth communication, a
processor can request bulkmode which, if granted, gives the sender
extra credits that can be used for communicating only with the
granting processor.

For every scalar packet sent, the destination processor number is
recorded in an outstanding packet table (OPT). Until an acknowl-
edgment (ack) is received from the destination and the entry in
the the OPT is cleared, NIFDY will not inject any further packets
destined for that processor. However, if the OPT is not full, it can
send a packet to another processor. This keeps packets from one
processor to another in order. Furthermore, it reduces end-point
congestion and adjusts to hot-spots, the bisection bandwidth, and
possible faults. For shallow networks, the round-trip latency is
smaller than the time it takes to inject a packet into the network and
no extra latency is noticed even for consecutive sends to the same
destination.

By keeping the OPT small enough, we can adjust for network
volume, ensuring that secondary blocking is reduced. If a processor
is not responding to the network, each processor will send at most

one packet to it; no further packets will be sent until the destination
processor wakes up and accepts a packet. At this point NIFDY
will send an ack, allowing another packet to be sent. NIFDY also
incorporates an outgoing buffer pool which reduces head-of-line
blocking in the network interface. Thus, if several messages are
ready to go to different processors, they can be interleaved up to
the limit of the OPT.

To accommodate deeper networks and large round-trip times,
the NIFDY protocol has a transfer mode in which multiple unac-
knowledged packets can be in transit between two processors. In
the case where the sender has multiple packets to be sent to a single
destination it can request a bulk dialog. If the receiver grants such
a dialog in the ack, then the sender can send more than oine packet
per ack. By limiting the number and size of bulk dialogs a receiver
will grant, we can again limit secondary blocking even for bimodal
traffic.

In short, NIFDY implements a simple extension to network in-
terfaces that allows increased flexibility in network design while
limiting congestion and decreasing software overhead. NNFDY'S re-
source requirements increase with desired performance, not with
the number of nodes in the machine.

2 The NIFDY Unit
NIFDY is a network interface that increases system performance
by decoupling the processor and the underlying network fabric.
The processor sends packets by inserting them into NIFDY, then
NIFDY takes over and injects them into the network at the earliest
opportunity, according to the protocol described below. NIFDY
handles flow control, ordering of packets, and, if extended for
unreliable networks, packet retransmission. In this section we
describe the basic design, the parameters to tune NIFDY to match the
processor and the network, and the implementation costs of NIFDY.
The ideas in NIFDY can be added to any network interface.

NIFDY distinguishes two types of network data packets, scalar
and bulk. Scalar packets are best used for short messages while
bulk packets are best used for large block transfers. In addition,
NIFDY generates acknowledgment (ack) packets, which are used to
keep packets in order and to provide access control. Every scalar
packet is acked individually and bulk packets are acked using a
sliding window protocol. The ack packets share the same network
as the data packets, but are consumed by the receiving NIFDY.

Each processor can send only one scalar packet at a time to
any other processor. For every scalar packet sent, the destination
processor number is recorded in an outsstandingpacket table (OPT).
Until an acknowledgment is received from the destination processor
and the entry in the the OPT is cleared, NIFDY will not inject any
more packets bound for that processor. However, if the OPT is not
full, it can send a scalar packet to a different destination.

Clearly, there is no way that packets can become misordered in
the network if there is at most one outstanding packet between each
sender/receiver pair at any instant. The basic flow control is also
evident: If the receiving node is ignoring the network, or for some
other reason is not pulling packets out of the network rapidly, the
sender will not get its ack and will refrain from sending any more to
that node. This also provides a mechanism for congestion control
within the network; if the packets or acknowledgements between
a sendedreceiver pair must cross a hot spot, the round-trip delay
(and thus the delay between consecutive packets sent to the same
destination) will increase, throttling the bandwidth of conversations
and reducing congestion.

The restriction of having only one outstanding packet may seem

2 31

To Processor From Processor

\ I

1 find emDtv buffer I
1 , . I I

AlTivals 1

(nonhulk) i ~

r
FIFO ~

buffer ~

, - ,

10 Drocersor I

To Network From Network

Figure 1 : Block diagram of thc NIFDY unit with support for bulk dialogs.

excessive at first, but for the types of low-latency tightly-coupled
multiprocessor networks we are considering, i t has little effect on
throughput.' We are relying on the fact that wormhole or cut-
through routing will be used, so that in the absence of contention,
the head of the packet can often reach the destination before the
tail has even left the source. Since the ack can be sent as soon as
the header of the incoming packet is processed, in many cases the
sender will receive an ack for the packet it is currently sending. We
will look at this issue more in Section 2.4.

When a network has a high round-trip latency, sending multi-
packet messages as scalar packets may not fully utilize the network.
We overcome this by sending multi-packet messages using the
bulk protocol. in this protocol, the sender requests a bulk dialog,
which, if granted, allows the sender to have more than one packet
outstanding to the destination. Although the network may deliver
the multiple outstanding packets out of order, the receiving NIFDY
puts them back in order before presenting them to the processor.

Instead of piling up in the network, packets are blocked in the
sender's NIFDY. This reduces secondary blocking and increases
throughput. Since both the packet and the ack have to traverse the
network, any hot spot or network congestion will slow down both,
delaying injection of more packets into the network. NIFDY usually
reacts to a slow receiver or network congestion long before packets
back up all the way to the node's network port; this has the key
benefit that NIFDY can start sending to other ready destinations. By
contrast, if backpressure is the only way of telling when to slow
down, a sender will continue injecting packets to a slow receiver
until its entrance LO the network is blocked, at which point i t is
usually blocked from sending to any other destination. in fact, we
expect that by reducing secondary blocking NIFDY will enhance the
value of adaptive routing, since altemative paths will be available
more often.

' In fact, the number of outstanding messages per processor for these
networks under lightly loaded conditions is often less than one [Cu194]

2.1 Protocol Implementation
Networks have different characteristics which affect the amount of
traffic that they can handle before congestion reduces throughput.
Thus, for best performance, NIFDY will have to be tuned for each
network. This is done by adjusting four parameters.

0: Size of outstanding packet table (OPT)

B: Size of the outgoing buffer pool

D : Maximum number of bulk dialogs each receiver can maintain
simultaneously.

W : Receiver window size for the bulk dialog protocol.

For most shallow networks, the most important parameters are
0 and B. If the OPT is large, then the processor can have more
outstanding packets in the network. To reduce head-of-line block-
ing at the sending NIFDY unit, there can be a pool of buffers to
hold outgoing packets. As long as the OPT is not full, any eligible
packet in the pool (we define eligibility below) can be sent. This
allows the processor to interleave small packet streams for multiple
processors.

The parameters D and W determine the number and size of bulk
dialogs. Each sender can maintain only one outgoing bulk dialog,
although it can send packets in non-bulk mode to other destinations
concurrently with a bulk dialog. Each receiver can maintain D
incoming bulk dialogs, each with a different sender. For each bulk
dialog, W packet buffers are available in hardware at the receiver
to provide storage for the sliding window protocol.

2.1.1 Scalar Packets

Figure 1 is a block diagram of the NIFDY unit. (This figure also
shows extensions for the bulk protocol, which will be explained
later.) Packets enter NIFDY from the processor if there is an empty

232

buffer in the outgoing pool. To maintain the correct transmission
order of packets to the same destination, the runWeligibility unit
ranks each packet in the pool relative to the other packets for the
same destination. The rank value indicates how many other packets
there are in front of it. When a packet arrives at the pool, its rank
is assigned based on the contents of the pool and the OPT: the
rank is one plus the number of waiting and outstanding packets
for the same destination. Whenever an ack from a processor is
received, all packets in the pool to the same processor have their
rank decremented by one, bringing to zero the rank of the next
packet to be transmitted (making it “eligible”).

When the network can accept another packet, and there is a free
entry in the OPT, and there is at least one eligible packet in the
buffer pool, then one of the eligible packets is chosen for sending.
The chosen packet is injected into the network, and the destination
processor number is recorded in the OPT. Until an ack is received
from that processor, no further packets are eligible for transmission
to it. Note that every packet must contain the source processor ID
in its header so that the destination processor can retum an ack.

When a data packet is received from the network, it is inserted
into the arrivals FIFO buffer. When it is accepted by the processor
an ack is returned.2

2.1.2 The Bulk Protocol

Figure 1 also shows how NIFDY handles bulk dialogs. The header
of each packet includes a bulk-request bit. A sender requests bulk
mode by setting the bulk-request bit in the header of a non-bulk
packet. The receiver grants bulk mode to the sender by including a
bulk dialog number in the ack it returns. A receiver may maintain
multiple bulk dialogs, so it must give each active sender a different
dialog number. If the receiver can’t grant bulk mode because it
is already participating in the maximum number of bulk dialogs,
the ack will indicate the rejection to the requesting sender. In this
case, the sender will continue sending its data using scalar packets,
and can continue requesting bulk mode, which may eventually be
granted if a bulk dialog slot becomes available.

When a node sends to a receiver that has granted it a bulk di-
alog, it does not insert the receiver’s ID into the O P T instead the
ranWeligibility unit tracks the outstanding packets for the bulk di-
alog. The multiple outstanding packets may arrive at the receiving
NIFDY out of order; hardware buffers provide a place to store such
packetsuntil the intervening ones arrive. Packets that arrive in order
are not held up and can be streamed to the processor immediately
via cut-through buffering. Sequence numbers, which need only be
as large as W , are included in the header of each packet to provide
ordering information. A {sequence nurnbec dialog number} pair
replaces the bits that would have been used as the source identifier.
The NIFDY unit at the receiving end replaces the dialog number in
the header with the source identifier before giving the packet to the
processor.

A sender exits bulk mode by setting a bulk exit bit in the header
of the last packet. A receiver can also terminate a bulk dialog in
which case the transmission continues in scalar mode.

2.2 Software Issues
To get full performance out of NIFDY, the software communication
layer must take into account three features of NIFDY. First, the
processor must initiate bulk mode requests; NIFDY won’t attempt

*An alternative, but surprisingly less effective, strategy is to send the
ack earlier, when the packet is inserted into the arrivals FIFO.

bulk mode on its own.3 Second, every packet includes its source
node address. Finally, packets are delivered in the order in which
they are sent.

In order to utilize the bulk mode of NIFDY, the communication
layer will have to tum on the bulk-mode request bit in the header
of outgoing packets. The designer will have to decide what size
transfers will request bulk mode. If the size is too small, the
resources might go to the wrong sender. If too large, unnecessary
delays will result.

Since the NIFDY protocol requires an ack to be retumed to the
sender, the sender’s address is encoded in the header of every packet.
If this is exposed to the receive handlers, then the source node never
needs to be included in the data portion of the packets. For instance,
5 1 % ofthe request messages in the Split-C library include the source
processor ID in the message. The generic active message specifica-
tion requires that all request messages include the source ID [Mar].
In all these cases, the source ID required in the packet header by
NIFDY could be put to good use. Thus, NIFDY’s requirement of
including the source ID in every packet does not actually increase
overhead.

Because the messages are delivered in order, large transfers can
be accomplished without requiring a round trip to initialize the
destination processor’s data structures or buffers. The first rnessage
can initialize the destination processor while subsequent messages
contain the data. The payload per packet is increased because later
packets need not include any bookkeeping information.

Ifthe extension in Section 6.1 is implemented, then messages that
expect replies could be marked as not requiring an ack. Instead, the
reply itself would serve as an ack. The reply could also be marked
as not needing an ack, reducing the overhead of acks to those cases
where the sender is unsure whether the receiver can respond.

2.3 Implementation Cost
Aside from the control logic, which is relatively small in terms of
chip area, there are three sets of buffers and two content-addressable
memories needed to implement NIFDY. The buffers can be imple-
mented using single-ported RAM, taking up less area per bit than
typical three-ported register files. Thus, the DW + B buffers
needed can be implemented in a small space.

In order to implement the outstanding packet table, a small
content-addressable memory is required. The memory contains
only the tags, which must be long enough to contain the node iden-
tifiers. The number of tags is equal to 0, the maximum number
of outstanding scalar packets. As shown in Section 4.2, eight is
usually more than sufficient. If we assume that 16 bits are enough
for node identification (allowing 65536 different nodes), fhen we
have a 16-bit by 8-entry content-addressablememory. The rank de-
termination logic also requires a small CAM of size log the number
of nodes (e.g. 16) bits by B (e.g. 8) entries.

2.4 Parameter Selection and Performance
Analysis

Initial estimates of the parameters for the NIFDY unit can be obtained
by considering some parameters of the connected network and the
expected traffic distributions. We will consider many distributions
in Section 4. Here we give a flavor of how NIFDY would be tuned to
a network by looking at network parameters and traffic between a

’Of course, NIFDY could be extended to set the bulk-mode request blt
automatically based on the locally observed traffic pattern; wc have not
investigated this possiblity in depth.

233

r z n k

T a c k p r o c

T r o u n d t r s p

Meaning
Number of nodes
Distance to destination in hops
Packet payload in bytes
Total time for processor to send packet (software
overhead)
Total time for processor to receive packet (soft-
ware overhead)
Total time for one packet to cross a link along the
path from source to destination in the absence of
contention (i.e. hardware bandwidth limitation
on interpacket arrival times)
Total latency involved in generating and process-
ing ack
Total latency from the time the header of the
packet leaves NIFDY unit to the time the ack has
been processed

Table 1 : Network characteristics influencing selection of NIFDY
parameters.

single source/destination pair separated by d hops. Table 1 defines
the parameters we are using. Without the NIFDY unit, the maximum
bandwidth between two nodes in the network is

(1)

which expresses that the bandwidth can be limited by the send
overhead, the receive overhead, or the physical bandwidth.

W
Bandwidth =

max (Ts e n d , Tr, c e t 2) e 77 i n k)

2.4.1 Scalar Mode Parameters

When the NIFDY unit is included, the critical network parameter is
packet latency. In most networks this latency is a function of d ,
the number of hops between the nodes, so we will write latency as
TLat (d) . The time from when a packet starts leaving until the ack is
received and processed, defined as T r o z l n d t r z p (d) , can be calculated
as

(2)

where T a c k p r o c is the time it takes the NIFDY unit to generate and
process the ack at both ends. Because the sending node must wait
until it gets the ack before sending the next packet to the same
node, packets can be sent no faster than once every Troundtrzp (d)
cycles. To attain full bandwidth between two nodes separated by
d hops using the basic NIFDY protocol (with no bulk dialogs), we
need T r o u n d t r z p (d) 5 max(TSend, Trecetue, z t n k) .

T r o u n d t r r p (d) = 2 % a t (d) + Tackproc

2.4.2 Parameters for Bulk Dialogs

When bulk dialogs are included because pairwise bandwidth would

calculations to decide the size of the window. For simplicity, we
will assume that TTecelve is the limiting factor. If this is not the
case, then T L z n k or Tsend would be substituted.

We use a sliding window protocol in which acks are combined
so that only one ack is sent for every W/2 packets. (Recall that W
is the receiver window size.) In this case an ack will be sent only
when all of the packets in that half of the window have arrived; to
avoid bandwidth restriction, this ack must get back to the sender
before all of the packets in the other half of the window have been
injected. The round-trip time must be less than or equal to the

he unnecessarily limited using the hasic protocol, we can use similar

injection time for W/2 + 1 packets. (The + I is there because the
round-trip time overlaps with the injection of the last packet from
the other half of the window.)

We could instead have used a sliding window protocol in which
every packet is acknowledged as it is received. In this case, to
reach maximum throughput we have

D, the parameter controlling the number of bulk dialogs per re-
ceiver, is normally set to one. However, in the unlikely event that
the send rate is much slower than the receive rate, it would be de-
sirable to increase D to the maximum point at which one receiver
can handle D senders without falling behind.

When choosing parameters for the bulk dialogs, performance
under light traffic loads must be balanced with performance under
heavy traffic loads. Less restrictive parameters (more bulk dialogs,
larger windows) will give better performance with light traffic but
may lead to excessive congestion when all processors try to send
simultaneously. More restrictive parameters will give better, more
predictable performance with heavy traffic, but may unduly restrict
light traffic.

Network characteristics determine at what point generous NIFDY
parameters lead to congestion. A small network volume means
that a few extra packets will cause congestion more quickly. Also,
a small bisection bandwidth means that excess packets are more
likely to get blocked within the network, compounding congestion.
Note that if a slow receiver, rather than bisection bandwidth, is the
bottleneck, bulk packets will wait in the reorder buffers and not add
to network congestion.

2.4.3 Example Network Parameters

In this section we try to estimate good NIFDY parameters for two
specific networks. We will assume that the NIFDY processing takes
2 cycles at each end, for a total of Tackproc = 4. We will also
assume that the T s e n d is 40 cycles and T,,,,,,, is 60 cycles.

First we look at an 8-by-8 mesh using wormhole routing. Mul-
tiple virtual channels are not needed because it is a mesh, not a
torus. The flit size used is one word (32 bits), and each flit buffer
holds at most two flits. Our simulated mesh had a one-way latency
of TLat(d) = 4d + 14. With uniform traffic, the maximum and
average intemode distances are 14 and 6 hops respectively; hence
Equation 2 gives maximum and average roundtrip latencies of 144
and 80 cycles respectively.

Since the limiting factor without the NIFDY unit would be the
60-cycle receive overhead, i t is clear that the roundtrip latency of
the basic NIFDY protocol will often be the limiting factor in pairwise
bandwidth with an uncongestednetwork. Thus it appears that using
a bulk dialog may help. Equation 3 indicates that in order to hide
the maximum NIFDY roundtrip latency of 144 cycles, we will need
a bulk window size of W 2 2(Troundtr lp(d) /Trecezve - 1) . So
we would want at least 2 packets, possibly 3 or 4 if we can afford
to be generous.

This wormhole mesh has an exceptionally low volume-ight
words per node (two words for each incoming link). Thus even
if each node has only one eight-word packet in the network, the
network will be full. This, combined with the mesh’s low bisection
bandwidth of T,@, leads to a conservative decision regarding how

234

many packets to allow on the network. An initial guess would have
0 = 4, B = 4 , D = 1, and W = 2.

The other network we will consider is a full 4-ary fat tree of 64
nodes. With three levels ofrouters, the maximum intemode distance
is 6 hops, and the average distance is not much less than that. In this
case Tiat = 5d + 2, giving a round-trip latency of 32 + 32 + 4 =
68 cycles. Thus it appears that the basic NIFDY protocol may be
sufficient, and bulk dialogs will help only marginally.

Our simulated fat tree’s volume is 10 buffers per node, much
greater than that of the mesh. This large volume, along with the fat-
tree’s large bisection bandwidth, means we can be less restrictive in
allowing packets into the network. Thus, although bulk dialogs are
only marginally useful, they probably won’t hurt much either. The
main effort should be to reduce the restrictions on scalar packets
as much as possible. This can be done by making the OPT large
(0 = 8 entries) and by making the buffer pool for waiting packets
large (B = 8 buffers) to reduce head-of-line blocking.

3 Simulation
Empirical results were gathered using a parallel simulator written in
C++ and executed on a Thinking Machines CM-5. In these experi-
ments, the simulated objects are distributed across the CM-5 nodes
and connected using links provided by the simulator framework.
Most simulation parameters are supplied at run time, allowing easy
exploration of the design space.

Each cycle is simulated explicitly and synchronously by all ob-
jects; at any time in the simulation, all objects have executed up to
the same point. The only exception is when real Split-C programs
are driving the simulator. In this case, the network simulations on
the CM-5 nodes are still synchronous, but the computation on each
node is allowed to run ahead (in simulated time) up to the next point
where it interacts with the network. Synchronization between the
network simulation and the computation is simplified because only
polling message reception is allowed; thus the computation always
initiates interaction with the network.

The simulator supports the following networks (as well as others
not used in this paper4).

Two- and three-dimensional meshes and tori utilizing worm-
hole routing with virtual channels. The size in each dimen-
sion, the number of virtual channels, and buffer sizes are all
run-time parameters. Links were one byte wide for all simu-
lations reported here.

4-ary fat tree with 1 -byte links, using either cut-through or
store-and-forward routing.

Fat tree more similar to the CM-5 [LADS 921. Routers in the
first two levels are connected to two parents rather than four,
reducing bisection bandwidth as compared to a full 4-ary fat-
tree. Also, the link bandwidth was reduced to 4 bits per cycle
as in the CM-5 network.

Multibutterflies, with adjustable dilation and radix. In this re-
port we use a butterfly (dilation 1, radix 4) and a multibutterfly
(dilation 2, radix 4).

All topologies support two logically independent networks, the
request network and the reply network, in order to deal with fetch
deadlock. With all topologies other than the CM-5 fat tree, the two

r Ouerations I Processor c v c K l
I Active message send I
I Active message poll (no message) I 22 I

Active message receive
(dispatch, handle, return)
One-way latency (incl. software)
from send to beginning of handler

Table 2: Measured CM-5 parameters used in our simulator.

networks are demand-multiplexed over the same physical links in
order to make use of all available bandwidth even when the traffic
is unevenly divided between the two logical networks. With the
CM-5 fat tree, the two networks are strictly time-multiplexed every
other cycle, so that each network is limited to eight bits every two
cycles regardless of the traffic on the other network.

The simulator supports the following traffic loads.

Pseudo-random, bursty traffic. Burst length distributions
are adjustable, global barriers can be included between send
bursts, and nodes can programmed to enter ‘non-responsive’
periods during which they neither send packets nor pull them
from the network interface. Dedicated state for each pseudo-
random number generator ensures that the same sequence of
bursts is generated regardless of network and NIFDY configu-
ration used. Packet size is eight words including header.

The cyclic-shift all-to-all communication pattern described
in [BK94]. This and the following two traffic patterns use
the CMAM and Split-C libraries from the CM-5, and thus
use six-word packets (for ull networks, not just the CM-5
imitation).

EM3D, an irregular electromagnetics application [CDGt93].

Radix sort, which uses single-packet messages for both count-
ing the keys and transferring each key to its appropriate des-
tination [Dus94].

When the NIFDY units are included in the simulation, all NIFDY
parameters are adjustable. An option allows the NIFDY units to be
included but disabled. In this configuration, the extra buffering
in the outgoing message pool and the arrivals queue of the NIFDY
units can still be utilized. This allows us to separate the effects of
the NIFDY protocol itself from the benefit of simply having extra
buffering. When comparing NIFDY to buffering only, the same total
amount of buffering is always used, although in order to make the
fairest comparison it is redistributed to be most effective for each
case. For example, with the NIFDY protocol, the capacity of the
arrivals queue is at most two packets; without the protocol, best
performance results from allocating at least half of the total buffer-
ing resources to the arrivals queue. Of course, the acks used in the
NIFDY protocol are included directly in the simulations, competing
with data packets for network bandwidth.

For realistic timings on our simulations, we ran several tests on
a real CM-5 to estimate packet sending and receiving overheads as
well as CM-5 network latency and bandwidth. These parameters,
summarized in Table 2, agree closely with those reported in [vE93].

4The simulator is available at
ftp://ftp.cs.berkeley.edu/pub/packages/nifdy/nifdy.html

235

ftp://ftp.cs.berkeley.edu/pub/packages/nifdy/nifdy.html

4 Results

4.1 Synthetic Workload
To leam which NIFDY parameters were best for which networks and
to measure the overall effectiveness of NIFDY’s flow control, we ran
many simulations for each network. Because performance at both
heavy and light network loads is important, we used two different
traffic pattems for these runs: one which rewards graceful handling
of heavy traffic loads, and one which rewards rapid packet delivery
under light traffic.

Both traffic patterns consist of phases separated by bamers. A
node that is sending during a phase will attempt to send its packets
(typically 100 to 300 of them) as quickly as possible. Processors
send single- or multi-packet messages; all the packets in a single
message are sent consecutively and to the same destination. At the
end of a message, a sender randomly chooses a new destination
and message length and immediately starts sending to the new
destination.

To ensure that every node makes progress sending, no node can
start the next phase until all sending nodes complete the current
phase. As with real MPP bulk-synchronous applications, if some
nodes are favored by the topology and are able to send their out-
going data quickly, sooner or later they will have to wait until the
other nodes catch up. In a bulk-synchronous application the bot-
tom line is how quickly each communication phase is completed;
thus our metric is the number of packets delivered within a fixed
number of cycles. Note that this metric measures only the benefit
of reduced network congestion; the in-order delivery provided by
NIFDY will give an additional bandwidth benefit, dependent upon
the application (see Section 2.2).

In the heavy traffic pattem, all nodes send each phase, and mes-
sage lengths - the number of consecutive packets a processor
sends to its destination before changing to a new destination -
are uniformly chosen from one to five packets. In the light traffic
pattern, each node has only a 33% chance of sending each phase,
reducing contention in the network. Since nodes are less likely
to poll during light traffic, our simulated nodes periodically ignore
the network; these periods of ignoring the network are triggered
pseudo-randomly and independently for each node. With light traf-
fic the message length distribution includes lengths of 10 and 20
packets; most messages are short, but long messages account for
more packets overall. Thus the light traffic benchmark mainly mea-
sures pairwise bandwidth with only some contention in the network
and some possibility of target collisions (multiple nodes sending to
the same receiver) and unresponsive receivers.

Figures 2 and 3 show the performance benefit of NIFDY for vari-
ous networks under both traffic loads, comparing no NIFDY; buffer-
ing only (without the NIFDY protocol); and NIFDY using the best
set of parameters for that network. The graph compares packet
throughput for each case, showing the benefit just from the reduced
network congestion allowing more packets to get to their destina-
tions. For the networks that deliver packets out of order, the actual
benefit of NIFDY will likely be greater; NIFDY’S in-order delivery
can result in more payload per packet in multi-packet messages,
and can also reduce the receive processing time.

The best NIFDY parameters, chosen to give the best average per-
formance with both test traffic pattems, are shown in Table 3. The
ideal NIFDY parameters for the fat-tree variations are less restrictive
than those for the meshes; fat trees have greater bisection band-
width, greater volume, and more altemative paths between nodes,
so that having a few extra packets in the network does not hurt as
much as it does with the mesh. The CM-5 network has smaller bulk

Figure 2: Performance benefit from flow control of NIFDY for dif-
ferent networks: packets delivered in 1,000,000 cycles. “Heavy”
synthetic traffic. Does not reflect additional benefit of in-order
delivery from NIFDY,

Figure 3: Performance benefit from flow control of NIFDY for dif-
ferent networks: packets delivered in I,OOO,000 cycles. “Light”
synthetic traffic. Does not reflect additional benefit of in-order
delivery from NIFDY.

windows than the full fat tree even though the round-trip latency
is twice as great; this is because of the CM-5 network’s smaller
volume and bisection bandwidth, which makes congestion a more
important factor. Finally, observe that the butterfly is the only
network where it is best to have no bulk dialogs: every packet trav-
els only three hops, resulting in very low round-trip latency, and
there are no altemative paths between nodes, making congestion
avoidance more critical.

4.2 Scalability
Is it necessary to increase the size of the OPT or the outgoing buffer
pool (0 or B) as the number of nodes in the network gets larger
in order to maintain the same relative benefit from NIFDY? This
would be an undesirable finding, since we would like NIFDY to be
scalable-we don’t want to have to make all the NIFDY units bigger
when we increase the number of nodes in our MPP.

236

Table 3: Characteristics of simulated 64-node networks along with best NIFDY parameters for each network, used in Figure 2 and 3. d is the
number of hops, L is packet length in bytes.

Varying Pool Size and Network Size Varying OPT Size and Network Size

Figure 4: Throughput for various 0 and B on various sized fat-
trees.

To answer this question we ran some simulations of the full fat
tree, using only short messages and no bulk dialogs in order to
concentrate on the effects of 0 and B. The first part of Figure 4
shows throughput (normalized to a network without NIFDY) vs.
machine size for different values of B. In general, increasing B
gives better performance for any size network. However, for a
fixed B, the relative benefit of NIFDY does not decrease and in
most cases increases as the size of the MPP grows. This result
means that a system designer can choose B once, depending on the
desired performance and cost, and then can expect to maintain that
performance benefit even as the MPP scales to large sizes.

The second part of Figure 4 shows normalized throughput vs.
machine size for different values of 0. The most important thing
to see from this graph is that 0 = 8 is the best parameter across all
machine sizes except for the largest we looked at (where the best
value of 0 is 4).

While these figures may differ depending on network volume and
other factors, we do expect NIFDY performance to stay constant or
increase as the network size grows-while keeping the same small
fixed parameters in NIFDY. In fact, the results should be even more
favorable on networks in which the bisection bandwidth does not
scale linearly with the number of nodes, such as a two-dimensional
mesh. In these cases the per-node bandwidth would have to de-
crease as the machine size grows in order to avoid congestion at the
bisection, making smaller values of 0 and B more desirable.

4.3 Cyclic Shift
In this subsection we consider a specific traffic pattern, the cyclic
shift (C-shift) studied in [BK94], which provides all-to-all commu-
nication. We implemented this traffic pattem using the "real traffic"
interface to our simulator and the CM-5-style network in order to
make comparisons with [BK94].

The C-shift communication pattem consists of P - 1 phases.
In the first phase, processor i sends to processor (z + 1) rnod P ;
in phase p, processor z sends to processor (z + p) mod P; until
p = P - I . As long as the phases remain separate, each receiver is
matched with exactly one sender. However, as observed in [BK94],
some nodes may finish the current phase early and move to the next
phase, resulting in one node receiving from two senders. This slows
the progress of both senders, allowing other senders to catch up and
aggravating the condition. Figure 5 shows the number of]packets
in the network for each receiver as the pattem progresses, clearly
indicating the accumulation of packets outside certain receivers.
One solution used in Strata [BK94] is to insert global barriers
between phases.

Results are summarized in Figure 6. Using NIFDY'S congestion
control alone results in better performance than optimized barriers.
When NIFDY'S in-order delivery is exploited, the benefit is even
greater. These results can be explained by looking at Figure 5.
Some piling up does occur with NIFDY(due to the different path
lengths between different pairs of nodes), but these perturbations
dissipate and the network retums to even utilization of all receivers.
This dissipation occurs because the "rightful" sender to a receiver
has the advantage that it owns the bulk dialog to that receiver.
Thus it will be allowed to finish rapidly and move on to the next
receiver; at that point the sender behind it can attain the bulk dialog.
Although this effect is dependent on NIFDY parameters and network
characteristics, in all cases performance was much better with NIFDY
than with nothing at all.

4.4 EM3D
EM3D, a program for solving electromagnetic problems in three
dimensions and a common parallel benchmark [CDGt93], was
also used to drive our simulations. The results of our simulations
for a number of different networks are summarized in Figure 7 (for
the light network load) and Figure 8 (for the heavy network load).
For networks that deliver packets out of order, two NIFDY results arc
presented: one which gives the benefit just from the flow control
("NIFDX-'I), and another in which the Split-C library that interfaced
to our network simulator was altered to take advantage of the in-
order delivery provided by NIFDY. For networks that deliver packets

237

Without NIFDY. no barriers

" 0 1 2 3 4 5 6 7 8 9
Time x 100,000 cycles

With NIFDY. one dialog, no barriers

-

R
..~

R
Time x 100,000 cycles

Figure 5 : Network congestion with C-shift: pending packets per
receiver without and with NIFDY [no barriers in either case). Shading
is interpolated between white for no pendingpackets and black for
20 or more pending packets. In both cases, the same number of
packets are transferred, but NIFDY finishes earlier.

Figure 6: Throughput for C-shift on 32-node CM-5 network.

Figure 7: EM3D cycles per iteration with less communication.
(ln the computation graph generated by the parameters, most arcs
are local to processors.) n-nodes = 200, dmodes = 10, local-p =
80, distspan = 5. NIFDY- reflects benefit from flow control only;
NIFDY exploits in-order delivery as well.

FatTree FatTree Fat Tree Mesh Torus Mesh butterfly

Figure 8: EM3D cycles per iteration with more communication.
(In the computation graph generated by the parameters, most arcs
are between processors.) n a o d e s = 100, d-nodes = 20, local-p =
3, dist-span = 20. NIFDY- reflects benefit from flow control only;
NIFDY exploits in-order delivery as well.

in order (the 2D mesh and the butterfly), the library intended for
in-order delivery was used for all runs.

Without in-order delivery, the difference between NIFDY and
the buffers-only configurations is negligible. Once the library takes
advantage of the in-order delivery provided by NIFDY ,it outperforms
the buffers-only configuration in all cases.

4.5 Radix Sort
Finally, we ran simulations of a radix sort based on [Dus94]. Each
iteration of radix sort consists of two communication phases: scan
and coalesce. In the scan phase, a scan addition is performed
across all processors for each bucket; this involves nearest-neighbor
communication. The most notable feature of this is that the overall
communication phase runs faster if delays are inserted between

238

Without Delay With Delay

Full CM-5 StrlFwrd
Fat-Tree Fat-Tree Fat-Tree

Full CM-5 StdFwrd
Fat-Tree Fat-Tree Fat-Tree

Figure 9: Cycles for one scan phase ofradix sort. "With De1ay"in-
dicates that artificial delays are inserted between consecutive sends
to the same destination.

successive sends. Without delays, the sends from one processor
cause the next processor in the pipeline to continually receive with
no chance to send, serializing the entire scan. We studied versions
both with and without the delay. In the coalesceoperation, the keys
are sent to the appropriate destination using one message for each
key; assuming a random initial key distribution, the one-packet
messages are sent to a random sequence of destination processors.

Figure 9 shows results for the scan phase using an 8-bit radix
on 64 processors. While adding delays between successive sends
helped in all cases, it was more critical when NIFDY was not in-
cluded. When NIFDY is included, its protocol causes the sender to
slow down; this allows all the processors to continue to send as
well as receive. Networks with higher latencies, e.g., the store and
forward fat tree, get a bigger gain from NIFDY, than those with lower
latencies, like the full fat tree. This exemplifies what we found in
many cases: the locally restrictive NIFDY protocol actually results
in more global throughput.

Results for the coalesce phase (not shown) were virtually iden-
tical with and without NIFDY. There was not enough congestion
for NIFDY'S flow control to help, and with this algorithm in-order
delivery is not beneficial. On the other hand, NIFDY'S restrictiveness
did not hurt performance.

4.6 Discussion
NIFDY performs well for three real communication patterns which
form the basis for many parallel programs. The NIFDY protocol may
seem restrictive, but NIFDY'S admission control reduces congestion
in the network. Our results show that it delivers more packets than
the same network without NIFDY, and roughly the same as when
NIFDY'S buffering is used without the protocol. When NIFDY'S in-
order delivery is taken into account, NIFDY is seen to give a clear
benefit for all shallow networks.

NIFDY helps different networks in different ways. For networks
with a single path between each sender and receiver, packets are
already delivered in-order, so NIFDY gives no additional benefit
in that respect; however, such networks degrade rapidly in the
presence of congestion, which NIFDY helps avoid. For networks
with multiple routes between each sender and receiver, performance
does not degrade as rapidly because packets can travel altemate
routes around hot spots. In such cases, NIFDY'S main benefit is

reordering the packets that otherwise would arrive out of order.
Finally, we saw that on most networks many of the communi-

cation patterns can be sped up by carefully crafted software tech-
niques. Without either the techniques or NIFDY, many of these
patterns ran poorly. With NIFDY, intelligent software techniques
were useful, but they were not as important. In general, NIFDY pro-
vides a safety net when software network management techniques
are not or cannot be applied.

5 Related Work
Flow control (FC) and congestion control (CC) have received much
attention in LAN and WAN research. The larger packets and longer
latencies in these types of network make software implementa-
tion of FC and CC protocols practical. Our method, being simple
enough to implement in hardware, provides FC and CC for the type
of low-latency, high-bandwidth networks where software protocols
are not practical. Specifically, NIFDY does not require any intelli-
gence within the network switches and it does not require nodes to
keep per-receiver connection or credit state.

In multiprocessor networks, the need to reduce software com-
munication overhead while making good use of network band-
width has inspired many attempts to "raise the functionality of the
network"-usually by reducing congestion or providing in-order
packet delivery. Most of these projects have taken a different ap-
proach from NIFDY'S: they have added functionality to the .network
routers rather than just to the network interfaces.

The METRO router [DCBS 941 provides in-order delivery while
taking advantage of random wiring in expansion networks. The
router is a dilated crossbar and is used as a building block for
indirect expander networks such as multibutterflies and metabutter-
flies [CBLK94]. A sender attempts to make a connection randomly
through successive dilated crossbars; if a connection attempt is
blocked, the path is torn down, and the connection is retried later.
Once a connection is established, it remains fixed, and thus trans-
fers are in order. The cost of blocked connection attempts means
that METRO must make sure that most connection attempts suc-
ceed; thus it is important to have large bandwidth throughout the
network, probably much more than is needed to carry the average
load. NIFDY allows network utilization closer to its theoretical max-
imum, while preventing the user from pushing the network out of
its operating range. While METRO requires nontrivial intelligence
at the transfer endpoints, its key characteristics arise from its router
design. NIFDY, in contrast, can be used with a variety of networks.

Compressionless Routing (CR) [KLC94] also provides in-order
delivery. CR, which relies on wormhole routing, pads packets
with enough space to ensure that pushing the entire packet onto
the network implies that the head of the packet has already en-
tered the destination, at which point the packet is guaranteed to be
completely consumed. If the packet cannot be pushed out within
a preset amount of time, the transmission is aborted and the flits
already in the network are killed. Abstractly, there are some sim-
ilarities between CR and the basic NIFDY protocol. With both
there can be at most one unreceived packet in the network between
any source/destination pair. In addition, CR also uses an ack, al-
beit an implicit one-lack of backpressure-which travels from
the destination to the source on the switch-level ack control wires.
However, our implementation differs markedly. The explicit acks
in NIFDY consume some bandwidth, but there is no need to add
wasteful padding to short packets. The tearing down of packets due
to blockage causes instability at high network load: the average
amount of bandwidth consumed per successful transfer increases,

2 39

making the congestion worse. In contrast, our method performs
best under high load and prevents the network from being pushed
into a regime of declining throughput. NIFDY is fairly insensitive
to our preset parameters; with CR, a poorly chosen timeout pe-
riod may drastically affect performance (although our extension to
NIFDY lor handling dropped packets will have the same sensitivity
in this respect). NIFDY is very general since it is logically separate
from the network; i t can be used with wormhole, cut-through, or
store-and-forward routing, and can be added to an existing network
with no change to the network itself. In contrast, CR can be used
only with wormhole routing, and i t requires the network routers and
interfaces to support the killing of packets. However, CR, unlike
NIFDY, can be used with networks that are not deadlock-free.

Finally, there are many software techniques that can be used
to reduce network congestion [BK94]. These techniques, such as
structuring communication as series of permutations allowing one-
on-one transfers, are beneficial even with NIFDY. However, NIFDY
will add robustness to the system and be especially effective with
traffic pattems that are difficult for software to manage, in particular
those with no global structure. In some cases the behavior of
NlFDY with irregular traffic will mimic the software techniques used
with regular communication. For example, NIFDY automatically
interleaves packets to different destinations. And NIFDY effectively
implements bandwidth matching-injecting packets at the rate at
which i t receives acks, which is the rate at which the receiving
processor is pulling packets out of the network. NIFDY also handles
the more general case with multiple nodes sending to one receiver,
retuming acks only at the rate at which the receiver accepts packets.
This throttles the combinedinjection rate of all the senders to a level
that the receiver can handle. It would be difficult and expensive to
implement such dynamic bandwidth matching in software.

6 Future Work

6.1 Changes to ack strategy
There are two changes to the current protocol that we would like to
study: allowing acks to be combined with reply messages, which
should reduce network traffic; and allowing packets that don’t re-
quire acks.

In the protocols described in this paper, the ack packets are
always generated by NIFDY. In many situations the user code will
also send a reply message to the source processor. Instead of
sending both a NIFDY-generated ack and a user reply we could
piggyback the ack in the reply. This seems to be a good idea, since
if the sender is waiting for a reply it probably won’t have any other
packets for the destination processor until the reply is received.
Adding this protocol requires only an additional bit in the header
and a comparator in the “to processor” block in Figure 1.

NlFDY could be configured so that the processor indicates when
it wants to bypass the NIFDY protocol. This could be done when
the processor does not care about in-order delivery and knows the

the risk). Such packets would be eligible to be sent immediately,
and would be handled just like scalar packets at the receiver except
that no acknowledgements would be sent. This type of traffic could
co-exist with traffic obeying the NIFDY protocol.

that packets will not contribute to congestion (or is willing to take

6.2 Networks of Workstations
We have shown how NIFDY increases performance of reliable net-
works for MPPs. For shallower networks scalar packets combined

with a medium-sized OPT were shown to be sufficient due to the
small round-trip latency. For deeper networks, we added bulk di-
alogs to overcome this latency. Here we extend NIFDY for networks
of workstations which may drop packets. Our goal is to make the
network transparent to the application and for it to be scalable.

To handle networks that drop packets the sender must be able
to retransmit packets. In addition, the receiver must be able to
distinguish and eliminate duplicate packets. To accomplish re-
transmission we add one timer and one message buffer per entry
in the OFT and per outgoing bulk packet. The outgoing packet is
copied into the buffer and the timer is set when the packet is sent.
If an ack is received before the timer expires, the timer is reset and
the buffer is freed for future use. If no ack is received before the
timer goes off, the packet is retransmitted. To distinguish duplicate
packets, one additional bit in the header is enough for both scalar
and bulk packets.

This simple extension-a bit in each header and some additional
state and buffering on each NI-allows NIFDY to hide the imple-
mentation details of the network from system software and user
applications alike. We have used simple hardware to mask an ex-
ceptional condition (viz., the dropping of a packet), which should
reduce software overhead at both the sender and the receiver. Ac-
cording to [KC94], this should reduce the cost of sending and
receiving messages by 30% to 50%.

6.3 Further Experiments
In addition to the extensions proposed above, we believe that we
have just begun to understand how the network parameters affect
the throughput and latency of messages on the network. While we
have a good understanding of the 0 and P parameters and how they
interact with traffic pattems, we have yet to study the interaction
among transfer lengths, W , and the optimal point for requesting a
bulk dialog.

We also plan to extend the simulator to study how NIFDY interacts
with adaptive routing on a mesh, which in the past has not performed
well enough to justify its expense. Adding the admission control
and in-order delivery of NIFDY may help adaptive routing reach its
potential.

7 Summary and Conclusion
In this paper we have proposed a network interface, NIFDY, which
increases network performance and decreases software overhead
without restricting routing choices in the network. We have shown
that i t is possible to achieve these goals simultaneously by adding
modest resources only at the network interface and without having
to push any functionality throughout the network.

In essence, the basic NIFDY protocol is an optimized credit-
based scheme where every sender implicitly has one credit for
each receiver. Because senders record only receivers with zero
credits rather than maintaining state for all receivers, the resources
consumed at each sender scale with the number of outstanding
packets rather than the total number of nodes. Because credits are
good only for a particular processor, the protocol can easily adapt
to bimodal MPP traffic.

We built a general-purpose simulator to test these ideas. We
verified the simulator against a real machine, the CM-5, and then
used the simulator to evaluate the performance advantageof a NIFDY
network interface attached to a variety of network fabrics, including
meshes, tori, butterflies, and fat trees. We showed that on every
network, and all synthetic and real traffic pattems, NIFDY increased

240

packet throughput to a level comparable to that of having added
more buffers. In addition, since NIFDY delivers packets in order, it
increased total payload delivered on all networks. For real traffic
patterns we saw increases from 10% (under light loads presented
in EM3D) to as much as 100% (under all-to-all transfers) over just
having added more buffers.

Using the simulator we also showed that the resources needed
by NIFDY are constant (or decreasing) with respect to the number
of nodes in the network. In particular, for all the networks studied,
an outstanding packet table of size 8 combined with a packet pool
of 16 and a single bulk dialog with a window of 8 were more
than enough resources for even large machines. In fact, on most
networks fewer resources than these gave better results. Thus, given
the performance advantages of NIFDY, the small additional chip area
needed over plain network interfaces is a worthwhile investment.

Acknowledgments
We are grateful to the anonymous referees for their valuable
comments. We would also like to thank Krste AsanoviC, Eric
Brewer, David Culler, Andrea Dusseau, Steve Lumetta, Klaus Erik
Schauser, Nathan Tawil, and John Wawrzynek for their comments
on earlier versions of this paper, and Su-Lin Wu for her contri-
butions to early stages of this work. Computational support at
Berkeley was provided by the NSF Infrastructure Grant number
CDA-8722788. Seth Copen Goldstein is supported by an AT&T
Graduate Fellowship. Timothy Callahan received support from
an NSF Graduate Fellowship and ONR Grant N00014-92-5-1617.
This work also received support through NSF Presidential Faculty
Fcllowship CCR-92-53705 and LLNL Grant LLL-B283537-Culler.

References
[Aga91] A. Agarwal. Limits on interconnectionnetworkperfor-

mance. IEEE Transactions on Parallel and Distributed
Systems, vo1.2(no.4):398-412, Oct. 1991.
E.A. Brewer and B.C. Kuszmaul. How to get good per-
formance from the CM-5 data network. In Proceedings
Eighth International Parallel Processing Symposium,
pages 858-67. IEEE Comput. Soc. Press, 1994.
R.G. Bubenik and J.S. Tumer. Performance of a broad-
cast packet switch. IEEE Transactions on Communi-
cations, vo1.37(no.l):60-9, Jan. 1989.

[CBLK94] ET. Chong, E.A. Brewer, ET. Leighton, and T.F.
Knight, Jr. Building a better butterfly: The Multi-
plexed Multibutterfly. In Proc. International Sympo-
sium on Parallel Architectures, Algorithms, and Net-
works, Kanazawa, Japan, December 1994.

[CDGt93] David E. Culler, Andrea Dusseau, Seth Copen
Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Paral-
lel programming in Split-C. In Proc. Supercomputing
'93, Portland, Oregon, November 1993.
David E. Culler. Multithreading: Fundamental limits,
potential gains, and alternatives. In R.A. Iannuci, G.R.
Gao, Jr. Halstead, R.H., and B. Smith, editors, Multi-
threaded Computer Architecture, chapter 6, pages 97-
138. Kluwer Academic Publishers, 1994.
W.J. Dally. Virtual-channel flow control. In Proceed-
ings. The 17th Annual International Symposium on
Computer Architecture, pages 60-8. IEEE Comput.
Soc. Press, 1990.

[BK94]

[BT89]

[Cu194]

[Dal90]

[Da191] W.J. Dally. Express cubes: improving the perfiormance
ofk-ary n-cube interconnection networks. IEEE Trans-
actions on Computers, vo1.40(no.9): 101 6-23, Sept.
1991.

[DCB'94] A. DeHon, F. Chong, M. Becker, E. Egozy, H. Minsky,
S. Peretz, and Jr. Knight, T.F. Metro: a router archi-

[Dus94]

[Jac88]

[Jai90]

[KC941

KLC941

tecture for high-performance, short-haul rouling net-
works. In Proceedings the 21st Annual International
Symposium on Computer Architecture, pages 266-77.
IEEE Comput. Soc. Press, 1994.
Andrea Carol Dusseau. Modeling parallel sorts with
LogP on the CM-5. Technical Report UCB//CSD-94-
829, University of California at Berkeley, May 1994.
V. Jacobson. Congestion avoidance and control.
In Computer Communication Review, pages 3 14-29,
Aug. 1988.
R. Jain. Congestion control in computer networks:
issues and trends. IEEE Network, vo1.4(no.3):24-30,
May 1990.
Vijay Karamcheti and Andrew A. Chien. Software
overhead in messaging layers: Where does iihe time
go? In Proc. of 6th Int. Conj on Architectural Support
for Programming Languages and Operating Systems,
San Jose, CA, October 1994.
J.H. Kim, Ziqiang Liu, and A.A. Chien. Compres-
sionless routing: a framework for adaptive and fault-
tolerant routing. In Proceedings the 21st Annual Inter-
national Symposium on Computer Architecture, pages
289-300. IEEE Comput. Soc. Press, 1994.

KMCL931 H.T. Kung, Robert Morris, Thomas Chaaruhas, and
Dong Lin. Use oflink-by-link flow control in maximiz-
ing atm networks performance: Simulation results. In
Proceedings IEEE Hot Interconnects Sympos,ium '93,
August 1993.

[KS91] S. Konstantinidou and L. Snyder. Chaos router: ar-
chitecture and performance. In Computer Arcliitecture
News, pages 212-21,May 1991.

[LADS 921 C.E. Leiserson, Z.S. Abuhamdeh, D.C. Douglas, C.R.
Feynmann, M.N. Ganmukhi, J.V. Hill, W.D. Hillis,
B.C. Kuszmaul, M.A. St. Pierre, D.S. Wells, M.C.
Wong, Shaw-Wen Yang, and R. Zak. The network ar-
chitecture of the connection machine CM-5. In SPAA
'92. 4th Annual ACM Symposium on Paralkl Algo-
rithms and Architectures, pages 272-85. ACM, 1992.

[Mar] Richard Martin. Personal Communication.
[RJ90] K.K. Ramakrishnan and R. Jain. A binary feed-

back scheme for congestion avoidance in clomputer
networks. ACM Transactions on Computer Systems,
vo1.8(no.2):158-81, May 1990.

[SBBS91] M.D. Schroeder, A.D. Birrell, M. Burrows, 'H. Mur-
ray, R.M. Needham, T.L. Rodeheffer, E.H. Satterth-
waite, and C.P. Thacker. Autonet: a high-speed, self-
configuring local area network using point-to-point
links. IEEE Journal on Selected Areas in Commu-
nications, vo1.9(no.8):13 18-35, Oct. 1991.
S.L. Scott and G.S. Sohi. Using feedback to control
tree saturation in multistage interconnection networks.
In 16thAnnual International Symposium on Computer
Architecture, pages 167-76. IEEE Comput. Soc. Press,
1989.

[vE93] Thorsten von Eicken. Active Messages: an E@-
cient Communication Architecture for Mull'iproces-
sors. PhD thesis, University of Califomia at Berkeley,
December 1993.

[SS891

241

