
Efficient Place and Route for Pipeline Reconfigurable Architectures

Srihari Cadambi*and Seth Copen Goldsteint
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 1521 3.

Abstract

In this paper, we present a fast and eficient compi-
lation methodology for pipeline reconfigurable architec-
tures. Our compiler back-end is much faster than con-
ventional CAD tools, and fairly eficient. W e repre-
sent pipeline reconfigurable architectures by a general-
ized VLI W-like model. The complex architectural con-
straints are effectively expressed in terms of a single
graph parameter: the routing path length (RPL) . Com-
piling to our model using R P L , we demonstrate fast
compilation times and show speedups of between lox
and 200x on a pipeline reconfigurable architecture when
compared to an UltraSparc-II.

1. Introduction

Current workloads for computing devices are rapidly
changing to include real-time media processing and
compute-intensive programs. These new workloads are
dataflow-dominated and characterized by regular com-
putations on large sets of small data elements, limited
1/0 and lots of computation. As a result, many of them
seriously underutilize the large datapaths and instruc-
tion bandwidths of conventional processors.

These problems are being addressed through pro-
cessor changes [la, 6 , 181. However, reconfigurable
computing offers a fundamentally different way to
solve these issues. Reconfigurable architectures have
the capability to configure connections between pro-
grammable logic elements, registers and memory in or-
der to construct a highly-parallel implementation of the
processing kernel at run-time. This feature makes them
very attractive, since a specific high-speed circuit for a
given instance of an application can be generated at
compile- or even run-time.

In this paper, we present a generalized compilation

*cadambi@ece.cmu.edu
tseth0cs . cmu. edu

0-7695-0801-4/00 $10.00 0 2000 IEEE

scheme for a class of reconfigurable architectures that
exhibit pipeline reconfiguration. The target pipeline
reconfigurable architecture is represented by a sim-
ple VLIW-style model with a list of architectural con-
straints. We heuristically represent all constraints by a
single graph parameter, the routing path length (RPL)
of the graph, which we then attempt to minimize. Our
compilation scheme is a combination of high-level syn-
thesis heuristics and a fast, deterministic place-and-
route algorithm made possible by a compiler-friendly
architecture. The scheme may be used to design a
compiler for any pipeline reconfigurable architecture,
as well as any architecture that may be represented by
our model. It is very fast and fairly efficient.

The remainder of the paper is organized as follows:
Section 2 describes the concept of pipeline reconfigura-
tion and its benefits. We briefly describe PipeRench,
an instance of pipeline reconfigurable architectures,
a,nd the VLIW-style architectural model for the com-
piler. Section 3 describes the compiler along with our
place-and-route algorithm. Section 4 presents results
that establish correlation between the RPL and our
objective function. We also show the effects of differ-
ent priority function parameters on our results, and re-
port speedup numbers over an UltraSparc-I1 obtained
by using our compiler on the PipeRench reconfigurable
architecture. Section 5 discusses some related work and
we conclude in Section 6.

2. Pipeline Reconfigurable Architectures

In this section, we review pipeline reconfigura-
tion [14], a technique in which a large physical design is
implemented on smaller sized hardware through rapid
reconfiguration. This technique allows the compiler to
target an unbounded amount of hardware. In addition,
the performance of a design improves in proportion to
the amount of hardware allocated to that design. Thus,
as more transistors available, the same hardware de-
signs achieve higher levels of performance.

423

mailto:cadambi@ece.cmu.edu

Figure 1. PipeRench architecture showing the N
PES in each stripe and their register files. The in-
terconnect switches B-bit values. Unless overwritten
by their PE, the register files constitute a pipelined
bus.

Pipeline reconfiguration is a method of virtualiz-
ing pipelined hardware applications by breaking the
configuration into pieces that correspond to pipeline
stages in the application. These configurations are
then loaded, one per cycle, onto the interconnected
network of programmable processing elements (PES)
collectively known as the fabric [5].

Since the configuration of stages happens concur-
rently with the execution of other stages, there is no
loss in performance due to reconfiguration. As the
pipeline is filling with data, stages of the computation
are configured one step ahead of the data [5].

We now present the main characteristics of
PipeRench, an instance of the class of pipeline reconfig-
urable architectures. We then present our architectural
model that describes this class of architectures for the
compiler.

2.1. PipeRench: an instance of Pipeline Reconfig-
urable Architectures

PipeRench is composed of pipeline stages called
stripes. The pipeline stages available in the hardware
are referred to as physical stripes while the pipeline
stages that the application is compiled to are referred
to as virtual stripes. The compiler-generated virtual
stripes are mapped to the physical stripes a t run-time.
Each physical stripe is composed of N processing el-
ements (PES). In turn, each P E is composed of B
identically configured look-up tables (LUTs), P B-bit
registers in a register file, and some control logic. The
PES have 2 data inputs. Each stripe has an associated
inter-strive interconnect used to route values to the

file interconnect, allows the values of all the registers
to be transferred to the registers of the PE in the same
column of the next stripe. Figure 1 shows the PES,
their register files and the interconnection network in
PipeRench.

2.2. VLIW-style Architectural Model

Despite hardware virtualization, three important
constraints are still imposed by such a pipeline reconfig-
urable architecture on the compiler: (i) a limited num-
ber of PES per stripe, (ii) a limited number of registers
per P E and (iii) a limited number of read and write
ports in each register file. These restrict the number of
values that may overlap (i.e., live ranges of variables)
on the register file of a single PE, make routing diffi-
cult, and impose a constraint on operator placement.

We can model this as a distributed register file
VLIW-like architecture with N B-bit wide functional
units (FUs, or PES in our case). The configuration for
each stripe is analogous to a VLIW-instruction. Each
instruction is comprised of N sub-instructions, one for
each FU. A sub-instruction determines the operation
of the FU, the sources of its inputs, and the register
allocated for its outputs. Each FU has one register file
with P registers, R read ports and W write ports. The
inputs to a FU may come from other functional units
depending on the interconnect. Thus, by generalizing
this model and varying the parameters N , B, P, R and
LV, our work may be extended to compilers that ma.p
dataflow graphs to other similar architectures.

2.3. Definitions

Before we present the problem and our solution, we
define a few terms. A dataflow graph is used to rep-
resent the input program. It consists of nodes which
represent operations’. Nodes are interconnected by di-
rected edges, referred to as wires. A wire has a single
source node but can have multiple destination nodes
(fanout) . Each wire carries a value, represented by
multiple bits.

Nodes may be routing nodes or non-routing nodes.
A routing node does not consume any functional re-
sources, while a non-routing node has to be allocated
PES. An example of a routing-node is a “bit-select”
(marked [1,1] in Figure 2) .

The routing path length of a single bit in a given
wire w is the total number of time-steps between w and
its nearest non-routing source node. The routing path

next stripe and also to route values to other PES in the
same stripe. An additional interconnect, the register-

We use the the terms “Node” and “Operation” interchange-
ably in this paper.

424

Input Schedule 1 Schedule 2

TIME 1

Target Arch
TIME 2

Total RPL = 4 Total RPL = 6
N=l . P=4, Registers needed = 2 Registers needed = 4 its bit wire sources

= 2 + 3 = 5 R=l, W=l

Figure 2. Illustration of RPL. The right source bitwire
of the - operator has its nearest non-routing source
node in time-step 0, resulting in a RPL of 3. The lefi
source bit of the - time-step 1, resulting in an RPL
of 2. Each arc represents one bit of a wire.

Figure 3. Effect of minimizing routing path length
(RPL) on the maximum number of registers needed.
The target architecture has 1 PE per stripe. Schedule
1 prefers to place the high fan-in node A first, while
schedule 2 postpones A. The total RPL and maxi-
mum number of registers in Schedule 1 is lower.

length of a node is the sum of the routing path lengths
of all of the bits of its source wires. (See Figure 2 .)

register usage is shown in Figure 3. We now present
the following solution:

2.4. The Problem and Solution

The probleni that we solve is to map a given
dataflow graph to a pipeline reconfigurable architecture
defined by the model in Section 2.2. Specifically, for
each operation we have to first assign a stripe. Within
that stripe, we have to allocate P E resources to per-
form the operation, interconnect resources to route its
inputs and outputs and a register from the register file
for storing its live outputs. The objective is twofold:
(i) minimize the number of virtual stripes while ad-
hering to the resource constraints and (ii) obtain fast
compilation speeds.

Our solution is based on minimizing RPL. We qual-
itatively explain the effect of RPL on our objective
function, and substantiate this empirically in Section 4.
The RPL of a node is related to the lifetime of its input
wires. As long as a wire is live, it is allocated a register
on a pipeline reconfigurable architecture. Minimizing
the overall RPL of a netlist thus leads to lower register
pressure. Further, if a new virtual stripe S is added to
the schedule, there is a t least one extra wire crossing
the boundary of S, leading to an increase in the overall
RPL. Thus, lowering the RPL not only has an effect on
lowering the number of virtual stripes, but also tends
to reduce the number of wires crossing the boundary
between any two virtual stripes, reducing interconnect
demand. A simple example of the effect of RPL on

0 We take advantage of hardware virtualization and
assume an infinite amount of hardware in one di-
mension, that is, unlimited stripes. This allows us
to gainfully adopt a greedy, deterministic, linear
time place-and-route algorithm in order to get a
lot of speed. The algorithm never backtracks or
removes an operation that was already placed.

0 In order to adhere to the constraints and minimize
the number of virtual stripes while still maintain-
ing the speed of the algorithm, we determine an
order for the operations to be placed which aims
at minimizing the overall RPL.

We thus adopt a three-step strategy for place-and-
route (See Figure 4). The algorithm takes as input
a topologically sorted dataflow graph. The first step,
graph preprocessing, annotates each operator with pos-
sible placement locations (See Section 3.2.1). In the
second step, the algorithm uses list seheduling[9] based
on RPL. The nodes selected are placed on the architec-
ture while satisfying functional, register and routability
resource constraints. Nodes which cannot be placed
owing to routability constraints are handled in the
third step. The output is a dataflow graph that is
placed on the pipeline reconfigurable architecture. Us-
ing this method, a compiler back-end for any pipeline
reconfigurable architecture may be designed.

425

Graph I
PRIORITY

HEURISTICS

Graph

Figure 4. Place and route for pipeline reconfig-
urable architectures.

3. The Place-and-Route Phase and the
C o m p i 1 er

We describe our place-and-route algorithm in terms
of the DIL compiler for PipeRench.

3.1. The DIL Compiler

The DIL compiler compiles a high-level, architecture
independent Dataflow Intermediate Language (DIL)
and produces configurations. DIL targets pipeline re-
configurable architectures. It is intended to be used
both by programmers and as an intermediate language
for a high-level language compiler.

The compiler first reads in architectural details like
the number of PES, bit-widths of each PE, number of
registers, as well as the target clock-cycle. It then reads
in an input design described in DIL and converts it into
a dataflow graph consisting of nodes and wires.

The main stages of the compiler are shown in Fig-
ure 5. Each operation in the dataflow graph is syn-
thesized in terms of canonical operations that may be
mapped to a processing element on the target archi-
tecture. For instance, if the target architecture is fine-
grained and has only ALUs, multiplications are de-
composed into a series of shifts and adds. Following
this, the graph is subjected to a decomposition pass
where operations too wide to fit in a clock-cycle are bro-
ken up and pipelined into smaller operations. It then
goes through a series of optimizations such as common
subexpression elimination and constant folding. The
rest of this paper focuses on the main part of the back-
end, place-and-route. Details of the DIL language and
the compiler front-end may be found in [a] .

3.2. Place and Route

As mentioned in Section 2.4 and depicted in Fig-
ure 4, we propose a graph pre-processing step followed
by a placement scheme based on list-scheduling.

Y-Hd-j-qT, canonical wide Route

operations operatmu

Clack Cyclc,

N. P. B
Generation - - - Arch parameters -

Figure 5. The main stages of the DIL compiler.

3.2.1 Pre-processing

This pass imposes constraints on nodes and reduces
placement possibilities. These constraints are place-
ment directives which heuristically tag certain place-
ment locations on the chip as unfavorable. They are
determined in advance by examining the architectural
constraints. Figure 6 shows one example of these con-
straints for PipeRench.

3.2.2 The RPL-based Priority Function

Prioritizing the nodes well is very important since the
subsequent place-and-route algorithm does not back-
track. We propose a heuristic that attempts to mini-
mize the RPL at every step in the place-and-route pro-
cess. First, the following four sets of nodes are identi-
fied:

0 The set of scheduled nodes, S = (11: n is placed}
0 The set of ready nodes, R = {n: all predecessors

0 The set of “almost” ready nodes, A = {n: exactly
one predecessor of n E R, all other predecessors

0 The set of nodes with at least one predecessor in
S or R, B = {n: all predecessors of n E { S U R } }

Note that A g B and that S n R n B = 0. Results with
each of these RPL-based priority functions are given in
t,he next section.

At each step of the placement algorithm, we consider
t,he nodes in R for allocation in a partially occupied
stripe P . For each node n in R, the cost C is based on
the estimated increase in the RPL if n were not placed
in P . We define three methods to compute the cost:

0 No Prediction: C = increase in the RPL of n alone
0 Single-Level Prediction: C = increase in the RPL

of n and all children m of n such that m E A.
0 Two-level Prediction: C = increase in the RPL of

n and all children m of n such that m E B.

of n E S}

E SI

3.2.3 Handling Unroutable Nodes

Owing to our greedy approach, occasional situations
do arise when the inputs of a ready node cannot be
routed to, and no further ready nodes are available to

426

If B avoids A's column,
C can get both inputs
from the interconnect

Figure 6. If B avoids the column in which A is
placed, C can get its inputs on the interconnect
since the inputs are in distinct register files, each
with a single read port.

place. Under such circumstances, a NOOP is inserted
at one input in order to ensure routability [a] .

Place-and-route results with RPL as well as the fi-
nal speedups obtained by running our compiled appli-
cations on PipeRench are presented in Section 4.

4. Results

In this section, we present the results of our com-
piler design for pipeline reconfigurable architectures.
There are three parts to our results. First we empiri-
cally demonstrate a close correlation between the over-
all RPL of a circuit and the number of virtual stripes
it is compiled to. Next, we show improvements in the
number of virtual stripes using our RPL-based method.
Finally, speed-ups seen over a 300 MHz SparcII micro-
processor are presented.

All the data presented here was gathered for imple-
mentations of various kernels on the PipeRench archi-
tecture. The kernels were chosen based on demand for
the applications in the present and near future, their
recognition as industry performance benchmarks, and
their ability to fit into our computational model.

ATR implements the shapesum kernel of the Sandia
algorithm for automatic target recognition [17].
This algorithm is used to find an instance of a tem-
plate image in a larger image, and to distinguish
between images that contain different templates.

Cordic is a 12 stage implementation of the Honeywell
timing benchmark for Cordic vector rotations [7].
Given a vector in rectangular coordinates and a
rotation angle in degrees, the algorithm finds a
close approximation to the resultant rotation.

DCT is a one-dimensional, eight-point discrete cosine
transform [8] . DCT-ZD, a two-dimensional DCT,
is an important algorithm in digital signal process-
ing and is the core of JPEG image compression.

1200 m w

250000 loo0 ,
x k I

Experiment

Figure 7. Correlation between RPL and stripes.

1 ow
@ 800
(D r 600

400

200

0

Figure 8. Place and route improvements seen with
the RPL-based method.

FIR implements a FIR filter with 20 taps and $-bit
coefficients.

IDEA implements a complete eight-round Interna-
tional Data Encryption Algorithm with the key
compiled into the configuration [15]. IDEA is the
heart of Phil Zinimerman's Pretty Good Privacy
(PGP) data encryption.

Over implements the Porter-Duff over operator [l].
This is a method of joining two images based on a
mask of transparency values for each pixel.

PopCount return the number of 1's in a binary word.

Correlation between RPL and Virtual Stripes
We conducted several experiments with the above
benchmarks in order to establish t,he relationship be-
tween RPL and virtual stripes. The results are shown
in Figure 7.

Improvements seen with RPL Here we present
improvements seen with the compiler having a priority
function based on RPL-minimization (Section 3.2.2).

These results are shown in Figure 8. For each appli-
cation, there are 4 bars, showing the number of stripes
with a random priority heuristic, RPL-based heuristic
with no prediction, single-level prediction and two-level
prediction. It is seen that on the average, RPL-based
heuristics with no prediction are worse than a random

427

El Random
RPLO

0 RPL2

IJltraSparc-I1 running at 300 MHz. Figure 10 shows
the raw speedup for all kernels. Although the perfor-
mance may not be same after considering memory and
1 / 0 bottlenecks, a large fraction of the raw speedup is
achievable [5].

In addition, our place-and-route is also orders of
rnagnitude faster than commercial CAD tools. For in-
stance, we can compile the DCT in less than 10 sec-
onds, while Xilinx Design Manager targeting a Xilinx
4K series FPGA takes over 1 hour for the same appli-
cation.

Figure 9. Compiler running times with RPL-based

5 . Related Work
1000 -

237

gj '00
x

10

1

Figure 10. PipeRench's simulated performance
vs. a 300 MHz UltraSparc-ll. Raw speedups
achieved using our compiler for a 100 MHz
PipeRench, with parameters { N , B , P, W, R} =
{16,8,8,1,1}.

heuristic. However, prediction improves their perfor-
mance of RPL-based heuristics, with single and two-
level predictions being 15.2% and 20.6% better than
the random case respectively. Figure 9 shows the com-
piler running times with the random and RPL-based
methods. It may be observed that on the average, the
second-level prediction is actually a little faster than
the other cases. This is because RPL-based predic-
tion leads to better placement, and thus fewer failures.
Fewer failures means that nodes have to be postponed
fewer times, which decreases overall place-and-route
time.

Speedups Obtained over a Microprocessor We
compiled to a PipeRench architecture with 8-bits per
PE, 8 PES per stripe, 8 registers in the register file of
each PE, a single write port from each P E to its regis-
ter file and a single read port from each register file to a
complete crossbar interconnect. The simulated perfor-
mance of PipeRench based on a 100 MHz clock speed
and the number of virtual stripes is compared to a Sun

A wealth of related work exists in the realm of high-
level synthesis for FPGA-based systems [11, 131. [I31
surveys various logic synthesis methods targeted at
FPGA architectures. The emphasis there was on de-
veloping tools that minimize the combinational part of
design, and not on pipeline optimization, performance
or routability, which is the case with our work. Force-
directed scheduling (FDS) [11] provides a methodology
to schedule nodes in time-slots such that the resource
usage in each time-slot is balanced. However, we found
that it is difficult to formulate an FDS approach for our
architecture, given the register-file and register port
constraints.

[1G] describes a fast router for island-style FPGAs
while [lo] describes a performance-driven simultane-
ous place-and-route methodology. The similarity here
is that our place-and-route algorithm also performs si-
multaneous place-and-route: placement is completed
only if routing is possible. [lo] describes a set of new
techniques for row-based and island-style FPGAs. The
techniques rely on iterative improvement augmented
with fast complete timing heuristics. Earlier work on
PipeRench [a] describes the DIL language and front-
end phases of the hardware compiler. [3] describes fast,
module mapping and placement for datapath slices in
FPGAs, where the modules are placed simultaneously
with the mapping.

[4] describes a hypergraph coloring algorithm to al-
locate variables to a distributed register-file VLIW ar-
chitecture. Our method accomplishes much the same
thing using RPL, but is faster.

6. Conclusions

In this paper, we present a hardware compiler for
pipeline reconfigurable architectures. Such architec-
tures are compiler-friendly and provide an infinite
amount of hardware in one dimension. However, they

428

still have constraints like the width of the pipeline
stage, the interconnect, limited registers and limited
register file ports.

We present a compilation scheme based on three-
steps: graph pre-processing, prioritizing of the nodes
followed by a greedy, linear, deterministic place-and-
route. We also present a VLIW-like model that cap-
tures the architectural constraints inherent in such ar-
chitectures, effectively describing the architecture to
the compiler. Instead of attempting to solve for all the
architectural constraints, we forniulate an approach to
simply minimize the overall routing path length (RPL)
in the graph that represents the netlist. The RPL for-
mulation effectively captures architectural constraints
like limited registers and limited register ports. Mini-
mizing the overall RPL tends to lower the number of
virtual stripes quickly, which is the final objective.

With our compiler targeting a 100 MHz PipeRench
reconfigurable architecture, we measure and compare
the estimated performance against a Sun UltraSparc-
I1 microprocessor running at 300 MHz. We obtain im-
pressive speedups across a suite of representative ker-
nels, with very fast compilation speeds.

Acknowledgements

The authors would like to thank the members of the
CMU PipeRench group for their contributions to this
work. This research is supported by DARPA contract
DABT63-96-(3-0083.

References

[l] Jim Blinn. Fugue for MMX. IEEE Computer Graphics
and Applications, pages 88-93, March-April 1997.

[2] M. Budiu and S.C. Goldstein. Fast compilation for
pipelined reconfigurable fabrics. In Proceedings of
the 1999 ACM/SIGDA Seventh International Sympo-
sium on Field Programmable Gate Arrays (FPGA '99),
Monterey, CA, Feb. 1999.

[3] T. J. Callahan, P. Chong, A. DeHon, and
J. Wawrzynek. Fast module mapping and placement
for datapaths in FPGAs. In Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field
Programmable Gate Arrays, pages 123-132, Feb 1998.

[4] Andrea Capitano, Nikil Dutt, and Alexandru Nicolau.
Partitioning of variables for multiple-register-file vliw
architectures. In International Conference on Parallel
Computing, pages 298-301, 1994.

[5] Seth C. Goldstein, Herman Schmit, Matt Moe, Mihai
Budiu, Srihari Cadambi, R. Reed Taylor, and Ronald
Laufer. Piperench: A coprocessor for streaming mul-
timedia acceleration. In The 26th Annual Internation
Symposium on Computer Architecture, pages 28-39,
May 1999.

[6] C. Kozyrakis, S. Perissakis, D. Patterson, T. Ander-
son, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus,
B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and
E<. Yelick. Scalable processors in the billion-transistor
era: IRAM. IEEE Computer, pages 75-78, September
1997.

[7] Sanjaya Kumar and et al. Timimg sensi-
tivity stressmark. Technical Report CDRL
A001, Honeywell, Inc., January 1997.
http://UUU.htc.honeyvell.com/projects/acsbench/.

[8] C. Loeffler, A. Ligtenberg, and G. Moschytz. Practical
fast 1-d dct algorithms with 11 multiplications. In
Proc. International Conference on Acoustics Speech,
and Signal Processing 1989 (ICASSP '89), pages 9880-
991, 1989.

[9] Giovanni De Micheli. Synthesis and Optimization of

Performance-
driven simultaneous place and route for fpgas. In IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 17, No. 6, pages 499-518,
June 1998.

Digital Circuits. McGraw-Hill, Inc, 1994.
[lo] Sudip K. Nag and Rob A. Rutenbar.

[Ill Pierre G. Paulin and John P. Knight. Force-directed
scheduling for behavioral synthesis of asics. In IEEE
Transactions on Computer-Aided Design, Vol. 8, No.
9, June 1989.

[12] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for mul-
timedia PCs. Communications of the AGM, 40(1):34-
38, 1997.

[13] Albert0 Sangiovanno-Vincentelli and Jonathan Rose.
Synthesis methods for field-programmable gate arrays.
In Proceedings of the IEEE, Vol. 81, No. 7, pages

[14] Herman Schmit. Incremental reconfiguration for
pipelined applications. In Proceedings of the IEEE
Symposium for FPGAs for Custom Computing Ma-
chines, pages 47-55, April 1997.

[15] Bruce Schneier. The IDEA encryption algorithm. Dr.
Dobb's Journal, 18(13):50, 52, 54, 56, December 1993.

[16] J.S. Swartz, V. Betz, and J . Rose. A fast routability-
driven router for FPGAs. In Proceedings o j the 1998
ACM/SIGDA Sixth International Symposium on Field
Programmable Gate Arrays, pages 140-149, Feb 1998.

[17] J. Villasenor, B. Schoner, K. Chia, and C. Zapata.
Configurable computing solutions for automatic target
recognition. In J. Arnold and K. 'L. Pocek, editors,
Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, pages 70-79, Napa, CA, April
1996.

[18] J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck,
D. Johnson, and N. Morgan. Spert-11: A vector mi-
croprocessor system. IEEE Computer, 29(3):79-86,
March 1996.

1057-83, July 1993.

429

http://UUU.htc.honeyvell.com/projects/acsbench

