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Abstract 

In this paper, we present a fast  and eficient compi- 
lation methodology for pipeline reconfigurable architec- 
tures. Our compiler back-end is much faster than con- 
ventional CAD tools, and fairly eficient.  W e  repre- 
sent pipeline reconfigurable architectures by a general- 
ized VLI  W-like model. The complex architectural con- 
straints are effectively expressed in  terms of a single 
graph parameter: the routing path length (RPL) .  Com- 
piling to our model using R P L ,  we demonstrate fast  
compilation times and show speedups of between lox  
and 200x on a pipeline reconfigurable architecture when 
compared to  an UltraSparc-II. 

1. Introduction 

Current workloads for computing devices are rapidly 
changing to include real-time media processing and 
compute-intensive programs. These new workloads are 
dataflow-dominated and characterized by regular com- 
putations on large sets of small data  elements, limited 
1/0 and lots of computation. As a result, many of them 
seriously underutilize the large datapaths and instruc- 
tion bandwidths of conventional processors. 

These problems are being addressed through pro- 
cessor changes [la,  6 ,  181. However, reconfigurable 
computing offers a fundamentally different way to  
solve these issues. Reconfigurable architectures have 
the capability to  configure connections between pro- 
grammable logic elements, registers and memory in or- 
der to  construct a highly-parallel implementation of the 
processing kernel at  run-time. This feature makes them 
very attractive, since a specific high-speed circuit for a 
given instance of an application can be generated at  
compile- or even run-time. 

In this paper, we present a generalized compilation 
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scheme for a class of reconfigurable architectures that 
exhibit pipeline reconfiguration. The target pipeline 
reconfigurable architecture is represented by a sim- 
ple VLIW-style model with a list of architectural con- 
straints. We heuristically represent all constraints by a 
single graph parameter, the routing path length (RPL) 
of the graph, which we then attempt to  minimize. Our 
compilation scheme is a combination of high-level syn- 
thesis heuristics and a fast, deterministic place-and- 
route algorithm made possible by a compiler-friendly 
architecture. The scheme may be used to  design a 
compiler for any pipeline reconfigurable architecture, 
as well as any architecture that may be represented by 
our model. It is very fast and fairly efficient. 

The remainder of the paper is organized as follows: 
Section 2 describes the concept of pipeline reconfigura- 
tion and its benefits. We briefly describe PipeRench, 
an instance of pipeline reconfigurable architectures, 
a,nd the VLIW-style architectural model for the com- 
piler. Section 3 describes the compiler along with our 
place-and-route algorithm. Section 4 presents results 
that establish correlation between the RPL and our 
objective function. We also show the effects of differ- 
ent priority function parameters on our results, and re- 
port speedup numbers over an UltraSparc-I1 obtained 
by using our compiler on the PipeRench reconfigurable 
architecture. Section 5 discusses some related work and 
we conclude in Section 6. 

2. Pipeline Reconfigurable Architectures 

In this section, we review pipeline reconfigura- 
tion [14], a technique in which a large physical design is 
implemented on smaller sized hardware through rapid 
reconfiguration. This technique allows the compiler to 
target an unbounded amount of hardware. In addition, 
the performance of a design improves in proportion to 
the amount of hardware allocated to that design. Thus, 
as more transistors available, the same hardware de- 
signs achieve higher levels of performance. 
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Figure 1. PipeRench architecture showing the N 
PES in each stripe and their register files. The in- 
terconnect switches B-bit values. Unless overwritten 
by their PE, the register files constitute a pipelined 
bus. 

Pipeline reconfiguration is a method of virtualiz- 
ing pipelined hardware applications by breaking the 
configuration into pieces that correspond to pipeline 
stages in the application. These configurations are 
then loaded, one per cycle, onto the interconnected 
network of programmable processing elements (PES) 
collectively known as the fabric [5]. 

Since the configuration of stages happens concur- 
rently with the execution of other stages, there is no 
loss in performance due to reconfiguration. As the 
pipeline is filling with data, stages of the computation 
are configured one step ahead of the data  [5]. 

We now present the main characteristics of 
PipeRench, an instance of the class of pipeline reconfig- 
urable architectures. We then present our architectural 
model that describes this class of architectures for the 
compiler. 

2.1. PipeRench: an instance of Pipeline Reconfig- 
urable Architectures 

PipeRench is composed of pipeline stages called 
stripes. The pipeline stages available in the hardware 
are referred to  as physical stripes while the pipeline 
stages that the application is compiled to  are referred 
to  as virtual stripes. The compiler-generated virtual 
stripes are mapped to the physical stripes a t  run-time. 
Each physical stripe is composed of N processing el- 
ements (PES). In turn, each P E  is composed of B 
identically configured look-up tables (LUTs), P B-bit 
registers in a register file, and some control logic. The 
PES have 2 data  inputs. Each stripe has an associated 
inter-strive interconnect used to  route values to  the 

file interconnect, allows the values of all the registers 
to  be transferred to  the registers of the PE in the same 
column of the next stripe. Figure 1 shows the PES, 
their register files and the interconnection network in 
PipeRench. 

2.2. VLIW-style Architectural Model 

Despite hardware virtualization, three important 
constraints are still imposed by such a pipeline reconfig- 
urable architecture on the compiler: (i) a limited num- 
ber of PES per stripe, (ii) a limited number of registers 
per P E  and (iii) a limited number of read and write 
ports in each register file. These restrict the number of 
values that may overlap (i.e., live ranges of variables) 
on the register file of a single PE,  make routing diffi- 
cult, and impose a constraint on operator placement. 

We can model this as a distributed register file 
VLIW-like architecture with N B-bit wide functional 
units (FUs, or PES in our case). The configuration for 
each stripe is analogous to a VLIW-instruction. Each 
instruction is comprised of N sub-instructions, one for 
each FU. A sub-instruction determines the operation 
of the FU, the sources of its inputs, and the register 
allocated for its outputs. Each FU has one register file 
with P registers, R read ports and W write ports. The 
inputs to a FU may come from other functional units 
depending on the interconnect. Thus, by generalizing 
this model and varying the parameters N ,  B, P, R and 
LV, our work may be extended to compilers that ma.p 
dataflow graphs to  other similar architectures. 

2.3. Definitions 

Before we present the problem and our solution, we 
define a few terms. A dataflow graph is used to rep- 
resent the input program. It consists of nodes which 
represent operations’. Nodes are interconnected by di- 
rected edges, referred to  as wires. A wire has a single 
source node but can have multiple destination nodes 
( fanout ) .  Each wire carries a value, represented by 
multiple bits. 

Nodes may be routing nodes or non-routing nodes. 
A routing node does not consume any functional re- 
sources, while a non-routing node has to be allocated 
PES. An example of a routing-node is a “bit-select” 
(marked [1,1] in Figure 2) .  

The routing path length of a single bit in a given 
wire w is the total number of time-steps between w and 
its nearest non-routing source node. The routing path 

next stripe and also to route values to other PES in the 
same stripe. An additional interconnect, the register- 

We use the the terms “Node” and “Operation” interchange- 
ably in this paper. 
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Input Schedule 1 Schedule 2 

TIME 1 

Target Arch 
TIME 2 

Total RPL = 4 Total RPL = 6 
N=l .  P=4, Registers needed = 2 Registers needed = 4 its bit wire sources 

= 2 + 3 = 5  R=l,  W=l 

Figure 2. Illustration of RPL. The right source bitwire 
of the - operator has its nearest non-routing source 
node in time-step 0, resulting in a RPL of 3. The lefi 
source bit of the - time-step 1, resulting in an RPL 
of 2. Each arc represents one bit of a wire. 

Figure 3. Effect of minimizing routing path length 
(RPL) on the maximum number of registers needed. 
The target architecture has 1 PE per stripe. Schedule 
1 prefers to place the high fan-in node A first, while 
schedule 2 postpones A. The total RPL and maxi- 
mum number of registers in Schedule 1 is lower. 

length of a node is the sum of the routing path lengths 
of all of the bits of its source wires. (See Figure 2 . )  

register usage is shown in Figure 3. We now present 
the following solution: 

2.4. The Problem and Solution 

The probleni that we solve is to map a given 
dataflow graph to  a pipeline reconfigurable architecture 
defined by the model in Section 2.2. Specifically, for 
each operation we have to  first assign a stripe. Within 
that stripe, we have to  allocate P E  resources to  per- 
form the operation, interconnect resources to  route its 
inputs and outputs and a register from the register file 
for storing its live outputs. The objective is twofold: 
(i) minimize the number of virtual stripes while ad- 
hering to  the resource constraints and (ii) obtain fast 
compilation speeds. 

Our solution is based on minimizing RPL. We qual- 
itatively explain the effect of RPL on our objective 
function, and substantiate this empirically in Section 4. 
The RPL of a node is related to the lifetime of its input 
wires. As long as a wire is live, it is allocated a register 
on a pipeline reconfigurable architecture. Minimizing 
the overall RPL of a netlist thus leads to lower register 
pressure. Further, if a new virtual stripe S is added to 
the schedule, there is a t  least one extra wire crossing 
the boundary of S, leading to an increase in the overall 
RPL. Thus, lowering the RPL not only has an effect on 
lowering the number of virtual stripes, but also tends 
to reduce the number of wires crossing the boundary 
between any two virtual stripes, reducing interconnect 
demand. A simple example of the effect of RPL on 

0 We take advantage of hardware virtualization and 
assume an infinite amount of hardware in one di- 
mension, that is, unlimited stripes. This allows us 
to gainfully adopt a greedy, deterministic, linear 
time place-and-route algorithm in order to get a 
lot of speed. The algorithm never backtracks or 
removes an operation that was already placed. 

0 In order to adhere to the constraints and minimize 
the number of virtual stripes while still maintain- 
ing the speed of the algorithm, we determine an 
order for the operations to be placed which aims 
at minimizing the overall RPL. 

We thus adopt a three-step strategy for place-and- 
route (See Figure 4). The algorithm takes as input 
a topologically sorted dataflow graph. The first step, 
graph preprocessing, annotates each operator with pos- 
sible placement locations (See Section 3.2.1). In the 
second step, the algorithm uses list seheduling[9] based 
on RPL. The nodes selected are placed on the architec- 
ture while satisfying functional, register and routability 
resource constraints. Nodes which cannot be placed 
owing to routability constraints are handled in the 
third step. The output is a dataflow graph that is 
placed on the pipeline reconfigurable architecture. Us- 
ing this method, a compiler back-end for any pipeline 
reconfigurable architecture may be designed. 
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Figure 4. Place and route for pipeline reconfig- 
urable architectures. 

3. The Place-and-Route Phase and the 
C o m p i 1 er 

We describe our place-and-route algorithm in terms 
of the DIL compiler for PipeRench. 

3.1. The DIL Compiler 

The DIL compiler compiles a high-level, architecture 
independent Dataflow Intermediate Language (DIL) 
and produces configurations. DIL targets pipeline re- 
configurable architectures. It is intended to be used 
both by programmers and as an intermediate language 
for a high-level language compiler. 

The compiler first reads in architectural details like 
the number of PES, bit-widths of each PE, number of 
registers, as well as the target clock-cycle. It then reads 
in an input design described in DIL and converts it into 
a dataflow graph consisting of nodes and wires. 

The main stages of the compiler are shown in Fig- 
ure 5. Each operation in the dataflow graph is syn- 
thesized in terms of canonical operations that may be 
mapped to a processing element on the target archi- 
tecture. For instance, if the target architecture is fine- 
grained and has only ALUs, multiplications are de- 
composed into a series of shifts and adds. Following 
this, the graph is subjected to a decomposition pass 
where operations too wide to  fit in a clock-cycle are bro- 
ken up and pipelined into smaller operations. It then 
goes through a series of optimizations such as common 
subexpression elimination and constant folding. The 
rest of this paper focuses on the main part of the back- 
end, place-and-route. Details of the DIL language and 
the compiler front-end may be found in [a ] .  

3.2. Place and Route 

As mentioned in Section 2.4 and depicted in Fig- 
ure 4, we propose a graph pre-processing step followed 
by a placement scheme based on list-scheduling. 

Y-Hd-j-qT, canonical wide Route 

operations operatmu 

Clack Cyclc, 

N. P. B 
Generation - - - Arch parameters - 

Figure 5. The main stages of the DIL compiler. 

3.2.1 Pre-processing 

This pass imposes constraints on nodes and reduces 
placement possibilities. These constraints are place- 
ment directives which heuristically tag certain place- 
ment locations on the chip as unfavorable. They are 
determined in advance by examining the architectural 
constraints. Figure 6 shows one example of these con- 
straints for PipeRench. 

3.2.2 The RPL-based Priority Function 

Prioritizing the nodes well is very important since the 
subsequent place-and-route algorithm does not back- 
track. We propose a heuristic that attempts to mini- 
mize the RPL at  every step in the place-and-route pro- 
cess. First, the following four sets of nodes are identi- 
fied: 

0 The set of scheduled nodes, S = (11: n is placed} 
0 The set of ready nodes, R = {n: all predecessors 

0 The set of “almost” ready nodes, A = {n: exactly 
one predecessor of n E R, all other predecessors 

0 The set of nodes with at  least one predecessor in 
S or R,  B = {n: all predecessors of n E { S U R } }  

Note that A g B and that S n R n B  = 0. Results with 
each of these RPL-based priority functions are given in  
t,he next section. 

At each step of the placement algorithm, we consider 
t,he nodes in R for allocation in a partially occupied 
stripe P .  For each node n in R, the cost C is based on 
the estimated increase in the RPL if n were not placed 
in P .  We define three methods to  compute the cost: 

0 No Prediction: C = increase in the RPL of n alone 
0 Single-Level Prediction: C = increase in the RPL 

of n and all children m of n such that m E A. 
0 Two-level Prediction: C = increase in the RPL of 

n and all children m of n such that m E B. 

of n E S} 

E SI 

3.2.3 Handling Unroutable Nodes 

Owing to  our greedy approach, occasional situations 
do arise when the inputs of a ready node cannot be 
routed to, and no further ready nodes are available to 
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If B avoids A's column, 
C can get both inputs 
from the interconnect 

Figure 6. If B avoids the column in which A is 
placed, C can get its inputs on the interconnect 
since the inputs are in distinct register files, each 
with a single read port. 

place. Under such circumstances, a NOOP is inserted 
at  one input in order to ensure routability [a] .  

Place-and-route results with RPL as well as the fi- 
nal speedups obtained by running our compiled appli- 
cations on PipeRench are presented in Section 4. 

4. Results 

In this section, we present the results of our  com- 
piler design for pipeline reconfigurable architectures. 
There are three parts to our results. First we empiri- 
cally demonstrate a close correlation between the over- 
all RPL of a circuit and the number of virtual stripes 
it is compiled to. Next, we show improvements in the 
number of virtual stripes using our RPL-based method. 
Finally, speed-ups seen over a 300 MHz SparcII micro- 
processor are presented. 

All the data presented here was gathered for imple- 
mentations of various kernels on the PipeRench archi- 
tecture. The kernels were chosen based on demand for 
the applications in the present and near future, their 
recognition as industry performance benchmarks, and 
their ability to fit into our computational model. 

ATR implements the shapesum kernel of the Sandia 
algorithm for automatic target recognition [17]. 
This algorithm is used to find an instance of a tem- 
plate image in a larger image, and to distinguish 
between images that contain different templates. 

Cordic is a 12 stage implementation of the Honeywell 
timing benchmark for Cordic vector rotations [7]. 
Given a vector in rectangular coordinates and a 
rotation angle in degrees, the algorithm finds a 
close approximation to the resultant rotation. 

DCT is a one-dimensional, eight-point discrete cosine 
transform [ 8 ] .  DCT-ZD, a two-dimensional DCT, 
is an important algorithm in digital signal process- 
ing and is the core of JPEG image compression. 

1200 m w  

250000 loo0 , 
x k  I 

Experiment 

Figure 7. Correlation between RPL and stripes. 

1 ow 
@ 800 
(D r 600 

400 

200 

0 

Figure 8. Place and route improvements seen with 
the RPL-based method. 

FIR implements a FIR filter with 20 taps and $-bit 
coefficients. 

IDEA implements a complete eight-round Interna- 
tional Data Encryption Algorithm with the key 
compiled into the configuration [15]. IDEA is the 
heart of Phil Zinimerman's Pretty Good Privacy 
(PGP) data encryption. 

Over implements the Porter-Duff over operator [l]. 
This is a method of joining two images based on a 
mask of transparency values for each pixel. 

PopCount return the number of 1's in a binary word. 

Correlation between RPL and Virtual Stripes 
We conducted several experiments with the above 
benchmarks in order to establish t,he relationship be- 
tween RPL and virtual stripes. The results are shown 
in Figure 7. 

Improvements seen with RPL Here we present 
improvements seen with the compiler having a priority 
function based on RPL-minimization (Section 3.2.2). 

These results are shown in Figure 8. For each appli- 
cation, there are 4 bars, showing the number of stripes 
with a random priority heuristic, RPL-based heuristic 
with no prediction, single-level prediction and two-level 
prediction. It is seen that on the average, RPL-based 
heuristics with no prediction are worse than a random 
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IJltraSparc-I1 running at  300 MHz. Figure 10 shows 
the raw speedup for all kernels. Although the perfor- 
mance may not be same after considering memory and 
1 / 0  bottlenecks, a large fraction of the raw speedup is 
achievable [5]. 

In addition, our place-and-route is also orders of 
rnagnitude faster than commercial CAD tools. For in- 
stance, we can compile the DCT in less than 10 sec- 
onds, while Xilinx Design Manager targeting a Xilinx 
4K series FPGA takes over 1 hour for the same appli- 
cation. 

Figure 9. Compiler running times with RPL-based 

5 .  Related Work 
1000 - 

237 

gj '00 
x 

10 

1 

Figure 10. PipeRench's simulated performance 
vs. a 300 MHz UltraSparc-ll. Raw speedups 
achieved using our compiler for a 100 MHz 
PipeRench, with parameters { N ,  B ,  P, W, R}  = 
{16,8,8,1,1}. 

heuristic. However, prediction improves their perfor- 
mance of RPL-based heuristics, with single and two- 
level predictions being 15.2% and 20.6% better than 
the random case respectively. Figure 9 shows the com- 
piler running times with the random and RPL-based 
methods. It may be observed that on the average, the 
second-level prediction is actually a little faster than 
the other cases. This is because RPL-based predic- 
tion leads to better placement, and thus fewer failures. 
Fewer failures means that nodes have to be postponed 
fewer times, which decreases overall place-and-route 
time. 

Speedups Obtained over a Microprocessor We 
compiled to a PipeRench architecture with 8-bits per 
PE,  8 PES per stripe, 8 registers in the register file of 
each PE,  a single write port from each P E  to its regis- 
ter file and a single read port from each register file to  a 
complete crossbar interconnect. The simulated perfor- 
mance of PipeRench based on a 100 MHz clock speed 
and the number of virtual stripes is compared to a Sun 

A wealth of related work exists in the realm of high- 
level synthesis for FPGA-based systems [11, 131. [I31 
surveys various logic synthesis methods targeted at  
FPGA architectures. The emphasis there was on de- 
veloping tools that minimize the combinational part of 
design, and not on pipeline optimization, performance 
or routability, which is the case with our work. Force- 
directed scheduling (FDS) [11] provides a methodology 
to schedule nodes in time-slots such that the resource 
usage in each time-slot is balanced. However, we found 
that it is difficult to  formulate an FDS approach for our 
architecture, given the register-file and register port 
constraints. 

[1G] describes a fast router for island-style FPGAs 
while [lo] describes a performance-driven simultane- 
ous place-and-route methodology. The similarity here 
is that our place-and-route algorithm also performs si- 
multaneous place-and-route: placement is completed 
only if routing is possible. [lo] describes a set of new 
techniques for row-based and island-style FPGAs. The 
techniques rely on iterative improvement augmented 
with fast complete timing heuristics. Earlier work on 
PipeRench [a] describes the DIL language and front- 
end phases of the hardware compiler. [3] describes fast, 
module mapping and placement for datapath slices in 
FPGAs, where the modules are placed simultaneously 
with the mapping. 

[4] describes a hypergraph coloring algorithm to al- 
locate variables to  a distributed register-file VLIW ar- 
chitecture. Our method accomplishes much the same 
thing using RPL, but is faster. 

6. Conclusions 

In this paper, we present a hardware compiler for 
pipeline reconfigurable architectures. Such architec- 
tures are compiler-friendly and provide an infinite 
amount of hardware in one dimension. However, they 
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still have constraints like the width of the pipeline 
stage, the interconnect, limited registers and limited 
register file ports. 

We present a compilation scheme based on three- 
steps: graph pre-processing, prioritizing of the nodes 
followed by a greedy, linear, deterministic place-and- 
route. We also present a VLIW-like model that  cap- 
tures the architectural constraints inherent in such ar- 
chitectures, effectively describing the architecture to 
the compiler. Instead of attempting to solve for all the 
architectural constraints, we forniulate an approach to 
simply minimize the overall routing path length (RPL) 
in the graph that represents the netlist. The RPL for- 
mulation effectively captures architectural constraints 
like limited registers and limited register ports. Mini- 
mizing the overall RPL tends to lower the number of 
virtual stripes quickly, which is the final objective. 

With our compiler targeting a 100 MHz PipeRench 
reconfigurable architecture, we measure and compare 
the estimated performance against a Sun UltraSparc- 
I1 microprocessor running at 300 MHz. We obtain im- 
pressive speedups across a suite of representative ker- 
nels, with very fast compilation speeds. 
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