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Abstract

While reconfigurable computing promises to deliver incom-
parable performance, it is still a marginal technology due
to the high cost of developing and upgrading applications.
Hardware virtualization can be used to significantly reduce
both these costs. In this paper we describe the benefits of
hardware virtualization, and show how it can be acheived us-
ing a combination of pipeline reconfiguration and run-time
scheduling of both configuration streams and data streams.
The result is PipeRench, an architecture that supports ro-
bust compilation and provides forward compatibility. Our
preliminary performance analysis predicts that PipeRench
will outperform commercial FPGAs and DSPs in both over-
all performance and in performance per mm?.

1 Introduction

The cost of generating and maintaining software for recon-
figurable computers is significantly higher than for general
purpose computers. Unless there is a way to ease the process
of developing applications for FPGAs and ways to allow the
performance of applications to scale with improved silicon
technology without redesign, reconfigurable computing will
remain a marginal technology. In this paper, we propose
hardware virtualization as the solution to this problem. We
present an FPGA architecture that is capable of hardware
virtualization for pipelined applications. The management
of the virtualization is performed in hardware at run time,
and is completely invisible to the application designer and
the compiler.

Virtual memory systems use a small physical memory to
emulate a large logical memory by moving infrequently ac-
cessed memory into slower cheaper storage media. This has
numerous advantages for the process of software develop-
ment. First, neither programmers nor compilers need know
exactly how much physical memory is present in the system,
which speeds development time. Second, different systems,
with different amounts of physical memory can all run the
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same programs, despite different memory requirements. A
small physical memory will limit the performance of the sys-
tem, but if this performance is unacceptable, the user can
always buy more memory. Furthermore, since the price of
memory is ever decreasing, newer systems will have more
memory and therefore the memory performance of legacy
software will improve until these programs fit entirely into
the physical memory in the system.

By analogy, an ideal virtualized FPGA would be capable
of executing any hardware design, regardless of the size of
that design. The execution speed would be proportional to
the physical capacity of FPGA, and inversely-proportional
to the size of the hardware design. Because the virtual hard-
ware design is not constrained by the FPGA’s capacity or
I/0 limitations, generation of a functional design from an
algorithmic specification would be much easier than for a
non-virtual FPGA and could be guaranteed from any legal
input specification. Optimizing the virtual hardware design
would result in faster execution, but would not be required
to get an application running initially. Thus, hardware vir-
tualization enables FPGA compilers to more closely resem-
ble software compilers, where unoptimized code generation
is extremely fast, and where more compiler-time can be ded-
icated to performance optimization when necessary. This
accompanying benefit to hardware virtualization is called
robust compilation.

A set of virtualized FPGAs could be constructed that all
share the ability to emulate the same virtual hardware de-
signs, but that differ in physical size. The members of this
FPGA family with larger capacity will exhibit higher per-
formance because they emulate more of the virtual design at
any one time. Future members of this family, built in newer
generations of silicon, could emulate virtual hardware de-
signs at higher levels of performance without redesign, much
like the way microprocessor families run binaries from previ-
ous generations without re-compilation. This benefit, which
we call forward-compatibility, allows the expense of generat-
ing (or purchasing) virtual hardware designs to be amortized
over multiple generations of silicon.

The technique of pipelined reconfiguration [10, 7], has
been proposed as a technique to provide hardware virtual-
ization for pipelined applications. Configurations for each
pipeline stage are created at compile-time. During execu-
tion, the configuration for each pipeline stage is brought into
the executing FPGA fabric, one stage every cycle. When the
FPGA fabric is fully populated by active pipeline stages,
older pipeline stages are replaced by newer pipeline stages.
Figure 1 shows an example of this procedure for a five stage
pipeline running on an FPGA with a capacity of two pipeline
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Figure 1: Pipelined reconfiguration. An example of mapping a five stage pipeline onto a FPGA with the ability to hold two

stages.

stages. In this example, there are two results produced ev-
ery five cycles. The FPGA “scrolls” through the pipelined
application, and each run through the application takes five
cycles and produces two results.

Future FPGAs in this family, which will utilize denser
silicon to provide higher capacity, will be able to hold more
virtual pipeline stages, and thereby provide higher through-
put. Furthermore, a compiler for these devices does not have
to know about the size (in terms of pipeline stages) of the
physical hardware in order to generate a functional design.

Pipelined reconfiguration creates three significant prob-
lems for FPGA architectures. First, to perform as illustrated
in Figure 1, an FPGA must be able to configure a compu-
tationally significant pipeline stage in one cycle. Second,
because there may or may not be enough FPGA capacity
to hold the entire pipeline, the movement of configuration
data between storage and active FPGA fabric must be con-
trolled. Third, the schedule of data memory accesses, the
inputs and output to the pipeline, must be determined at
run-time. This paper focuses on our solution to the latter
two problems in the context of PipeRench, a co-processor
we are developing at Carnegie Mellon.

The technique of pipelined reconfiguration works only on
pipelined applications. However, computing workloads are
becoming dominated by pipelineable algorithms in the do-
mains of three-dimensional rendering, signal and image pro-
cessing, and cryptography. Extremely fine-grained pipelin-
ing is the most important technique used by reconfigurable
systems to obtain high throughput [4]. We believe that if
reconfigurable systems ever become widely practical, they
will be predominately applied to pipelineable applications.

1.1 Previous Work

PipeRench provides robust compilation by allowing an ap-
plication to transparently exceed the logical capacity of the
physical FPGA at runtime. The Virtual Wire “softwire”
compiler [1] provided a degree of robustness by virtualizing
the I/Os between FPGAs in a multi-FPGA logic emulation
system at compile time. The challenge faced by most FPGA-
based logic emulators is that the input netlist is usually too
large to fit into one FPGA. The netlist must be partitioned
across multiple devices and meet FPGA I/O constraints.

When I/O constraints are violated, the “softwire” compiler
time-multiplexes different logical I/Os on a single physical
I/O. The I/O constraint violation is fixed by reducing per-
formance. PipeRench is a single-chip FPGA computing de-
vices, not a logic emulator. Our objective is to deal with
large logical netlists, not by overflowing into other devices
and dealing with I/O constraints, but by time-multiplexing
the on-chip logic to emulate the desired design at a degraded
level of performance.

Multiple context FPGAs [2, 3, 12], have been proposed
as a way to create logically larger devices through rapid re-
configuration. These architectures do allow idle logic to be
stored outside of the active FPGA fabric. These devices,
however, do not meet our criteria for being virtualized FP-
GAs, because there is no way to create designs indepen-
dently of the number of contexts. Therefore, there is no way
to obtain forward-compatibility with them. Furthermore,
the task of compilation for these architectures is more com-
plex than it is for a flat, single context FPGA, because the
compiler needs to place and route multiple, interdependent
contexts simultaneously. PipeRench provides true hardware
virtualization by allowing a design of any size to be run on
the fabric.

Xilinx [11] developed and patented mechanisms to allow
legacy bitstreams to be used in newer FPGAs without re-
design. This type of compatibility allows the FPGA vendor
to update an FPGA’s architecture without making all old
configuration bitstreams obsolete. Users can expect older
designs to run slightly faster on new devices because in a
newer process, the transistors will be faster and the inter-
connects will be shorter. This type of compatibility does
not, however, allow exploitation of the additional numbers
of transistors and interconnects present on the newer device.
Using pipelined reconfiguration, a user can expect a perfor-
mance increase due to both faster transistors and higher
parallelism.

Pipelined reconfiguration for commercial FPGAs, such
as the XC6200, has been described [7]. They do not, how-
ever, present any mechanism for control of the configuration
stream and data stream with respect to the virtualization.
The techniques described in this paper to control the con-
figuration stream and data accesses apply to all devices that
use pipeline reconfiguration.
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Figure 2: Generalized stripe functionality.

1.2 Overview

In Section 2, we discuss the architecture of PipeRench, and
focus on how it allows for execution and concurrent recon-
figuration. In Section 3, we discuss the requirements and
design of a configuration controller, which takes care of the
movement of configuration streams within the FPGA. Sec-
tion 4 describes a data controller, which manages the input
and output behavior of PipeRench. The performance of
PipeRench for a set of FIR filters is characterized in Sec-
tion 5 and compared to commercial FPGAs and DSPs.

2 PipeRench Architecture

In order to achieve high-performance and forward-compati-
bility, a pipeline reconfigurable device must have two ar-
chitectural features. First, the architecture must support
the configuration of a computationally significant pipeline
stage every cycle, while concurrently executing all other
other pipeline stages in the FPGA. Second, the architecture
must allow different pipeline stages to be placed in different
absolute locations in the physical device at different times.
Only relative placement constraints are observed, so that
a pipeline stage can get its inputs from the previous stage
and send its outputs to the subsequent stage. No existing
FPGA has these features. This section describes how these
features are provided in PipeRench, and how other compo-
nents of the PipeRench design connect to the active FPGA
fabric in order to manage the configuration and data flows.

As described in [10], a pipeline-reconfigurable architec-
ture requires a very high-throughput connection to the con-
figuration memory that stores the virtual hardware design.
Configuration storage in PipeRench is on-chip and connected
to the FPGA fabric with a wide data bus, so that one mem-
ory read will configure one pipeline stage in the fabric. This
wide configuration word is written into one of many physical
blocks in the FPGA fabric. We call these blocks stripes, and
they define the basic unit of reconfiguration in the architec-
ture. We use the word stripe to describe both the physical
structures to implement the functionality of a pipeline stage
(a physical stripe), and the configuration word itself (a wvir-
tual stripe), which may or may not be resident in a physical
stripe. Since a virtual stripe can be written into any physical
stripe, all physical stripes must have identical functionality
and interconnect.

Designing the stripe to provide adequate functionality for
a wide range of applications with a limited number of con-
figuration bits is a critical and complex task, the description
of which is beyond the scope of this paper. In general, the
functionality within a stripe can be described as a combi-
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Figure 3: Architecture Overview. Sold lines are data paths,
Dashed lines are address and control paths.

national function of three inputs: the registers within that
stripe, the registers from the previous stripe, and a set of
global interconnects, as shown in Figure 2. The combina-
tional function f() is defined by the configuration bits in the
virtual stripe.

PipeRench is currently envisioned as a coprocessor in a
general-purpose computer (see Figure 3). It is a memory
mapped device, and has access to the same memory space
as the primary processor. All the virtual stripes for all the
applications that are to run on PipeRench are stored in main
memory. A PipeRench “executable” cousists of configuration
words, which control the fabric, and data controller param-
eters, which determine the application’s memory read/write
access pattern. The processes of loading the configuration
memory and data controllers from off-chip, and configuring
the fabric from the configuration memory, are the responsi-
bilities of the configuration controller, described in Section 3.

Figure 4 illustrates two possible physical floorplans for
physical stripes. In Figure 4(a), the virtual stripes move
every cycle into a different physical stripe. This has two ad-
vantages: the interconnect between adjacent virtual stages
is very short, and new virtual stripes are written into only
one physical stripe (on the bottom). The chief disadvantage
with this layout is that all the configuration data must move
every cycle. This is a tremendous power sink, and it reduces
performance because now the clock cycle must include the
time it takes for the configuration data to move and settle.

An alternative layout is illustrated in Figure 4(b), which
shows the physical stripes arranged in a ring, allowing the
configuration to remain stationary. The three disadvan-
tages to this approach. First, it requires configuration data
to be loaded anywhere in the fabric. Second, there is a
longer worst-case interconnect between adjacent stripes (at
the bottom and the top). Third, one stripe in the fabric is
always configuring instead of computing resulting in a small
reduction in throughput. In this example, it seems like we
logically have five stripes, when in fact there are six in the
fabric. At this point we believe that the disadvantages of
this approach are outweighed by the power and performance
advantages.

There are three types of interconnect necessary for a
stripe: intra-stripe, local inter-stripe and global inter-stripe.
Intra-stripe routing is used to interconnect the elements of
a stripe to create the functionality of the pipeline stage.

Local inter-stripe interconnect receives inputs from the
previous stripe and sends outputs to the next stripe in the
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pipeline. Since this is a pipelined application, and each
stripe contains a pipeline stage, there is no need for non-
registered interconnect between non-adjacent stripes. It is
essential that all local inter-stripe interconnects be regis-
tered, and that the configuration bits from one stripe cannot
change anything in the path between that stripe’s registers
and its interconnection to the following stripe. For exam-
ple, in Figure 4, the computation in stage 2 at cycle ¢t + 1
requires the result of the computation in stage 1 at cycle
t. But in cycle ¢t + 1 the configuration for stage 1 is being
removed from the fabric or overwritten. If a change to the
configuration effects the ability of stage 2 to see stage 1’s
last computation, the results can not be guaranteed.

Global inter-stripe interconnect is used to get operands
(and results) to (and from) any input (and output) stripes
in the pipeline, to support broadcast of operands to mul-
tiple stripes, or to save and restore the state contained in
a stripe’s registers when it is removed or inserted from the
FPGA fabric. The state in a stripe may also be initialized
using the restore functionality.

At the end of each global data bus is a data controller,
which handles processing of the inputs and outputs from the
application. Because the sequence of data writes and reads
from the fabric depends upon the number of physical stripes
in the FPGA and the number or virtual stripes in the appli-
cation, the data controller must do run-time scheduling of
memory accesses. In order to provide the necessary mem-
ory bandwidth, the data controllers may contain memory
caches to take advantage of data locality, or FIFOs to deal
with “bursty” memory traffic. All the data controllers ac-
cess off-chip memory through a shared memory bus control
unit. This unit arbitrates access to a single memory bus.
The memory bus control unit is also the path used to load
the configuration memory.

Two of the data controllers have additional functional-
ity that allow them to deal with the problem of saving and
restoring a pipeline stage’s state when it is removed and
later returned to the FPGA fabric. The physical stripes in
PipeRench are constructed to have a special path from a
global bus into and out of the state registers. This path is

enabled when the stripe contains state that would be lost if
that stripe was removed from the fabric. The state infor-
mation for each stripe is stored in an on-chip state memory.
This memory has one location for each location in the con-
figuration memory, and can therefore hold the state for any
application that can fit into the configuration memory. In
order to keep track of which virtual stripe is placed in each
physical stripe, there is an Address Translation table (ATT
in Figure 3) with one entry per physical stripe.

We have created an initial prototype of the PipeRench
architecture. The stripe in our prototype consists of a set of
4-bit ALUs and registers connected with hierarchical cross-
bar interconnect. Based on the data gathered from this
design, we believe that it is possible to build, in 50 mm? of
0.35 micron silicon, a PipeRench that includes 28 physical
stripes, each consisting of 32 4-bit ALUs. Another 50 mm?
of silicon could be used to create a configuration memory ca-
pable of storing 512 virtual stripes. Our simulations indicate
that this chip could run at 100 MHz.

3 Configuration Management

In this section we describe how the virtual stripes of an
application are mapped to the physical stripes of the hard-
ware fabric. Since pipelined reconfigurable architectures can
map an application of any size to a given physical fabric,
the configuration controller must handle the time-multiplex-
ing of the application’s stripes onto the physical fabric, the
scheduling of the stripes, and the management of the on-
chip configuration memory. Additionally, the controller is
the interface between the host, the configuration memory,
the fabric, and the data controllers.

After a general description applicable to all pipelined
reconfigurable architectures, we present the controller used
by PipeRench. The interaction between the configuration
controller and the data controller is discussed in Section 4.
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Figure 5: Variation of the active cycles with time for (a) the
non-virtualized and (b) the virtualized case. (a) shows the
case for 8 virtual stripes on 8 physical stripes while (b) shows
the case for 8 virtual stripes on 5 physical stripes. The two
curves represent the first and the last virtual stripes (VS0
and VST7).

3.1 Characteristics of a configuration controller

We break down the tasks of managing the configurations
into four sub-tasks: interfacing (between the host and the
fabric), mapping (the configuration words to the hardware),
scheduling (time-multiplexing and managing virtualization),
and managing the on-chip configuration memory.

A controller manages the interface between the host and
the fabric. At the very least the interface must allow the
host to initiate execution on the co-processor, and allow the
co-processor to indicate that it has completed execution. In
PipeRench, the host initiates a new application by specifying
the main-memory address of the first configuration word of
an application, the number of iterations to be performed,
and the main-memory addresses for data input and output.
Additionally, the host can specify the addresses of the data
input and output buffers. PipeRench contains a register
that indicates whether it is working or idle; this register can
be periodically polled by the host.

The mapping task involves loading the virtual stripes
into the on-chip configuration memory and the fabric itself.
If the application fits in the fabric, the task is greatly simpli-
fied. If, however, the application is larger than the available
hardware, stripes need to be swapped out during execution.
Therefore, given an application, the controller must detect
the case when virtualization is required and time-multiplex
the application appropriately.

The controller schedules individual stripes of an applica-
tion to ensure that each virtual stripe is present in the fabric
long enough to process all the data: if a virtual stripe needs
to be swapped out prematurely, it is reloaded later. Fig-
ure 5 shows the extent of time that the first and last virtual
stripe spend in the fabric for the virtualized and the non-
virtualized case. In the virtualized case, i.e., v > p where
v is the number of virtual stripes and p is the number of
physical stripes, the number of active cycles for each stripe
has a plateau of length (v — p + 1) which occurs when the
stripe is swapped out of the physical fabric. Each time a
virtual stripe is loaded into the fabric it remains there for
at most p — 1 active cycles. The controller thus has to swap
stripes in and out at regular intervals. Points FO and F1,
and LO and L1 in Figure 5 indicate the initial loading and
completion points of the two stripes; the stripes are swapped
out at the points F2 and L2, and swapped back in at F3 and
L3 respectively.

Finally, the controller must use the on-chip configuration
memory efficiently, since going off-chip to fetch a configura-
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tion word is time-consuming, and may lead to pipeline bub-
bles. If an application or multiple applications have common
configuration words, these may be shared; shared configu-
ration words need appear only once in the on-chip memory.
Thus space utilization is enhanced as are the chances of fit-
ting an application in the on-chip memory.

3.2 PipeRench’s Configuration Controller

Here we present our implementation of a configuration con-
troller for PipeRench. For the sake of simplicity, we omit
discussion of pipeline stalls and present a controller that
loads the entire application into the on-chip memory before
beginning execution.

In PipeRench, an “executable” is composed of a series
of configuration words' each of which includes three fields:
fabric configuration bits, a next-address field, and a set of
flags used by the configuration and data controllers (see Fig-
ure 6). The flags relevant to the the configuration controller
are the first- and the last-virtual-stripe flags. The controller
uses these to determine the iteration count and the number
of stripes in the application.

The general architecture of the controller is shown in Fig-
ure 7. When the done line is enabled, the host can start a
new application by specifying a start address and the num-
ber of iterations. The controller then lowers the done line
until the application has completed the number of iterations
specified. The (slightly simplified) algorithm in Figure 8 is
used.

Mapping the configuration

Each virtual stripe in an application includes a next-address
field which is used by the controller to find and then load the
next stripe in the application. When the stripe is placed in
the on-chip configuration memory, the next-address field is
translated to an address in the on-chip memory. A record of
this translation is maintained in a fully-associative on-chip
Stripe Address Translation Table (SATT) (see Figure 7) 2

A counter is used to maintain the number of virtual
stripes in the application. If the number of virtual stripes
is larger than the number of physical stripes in the fabric,
the controller will time-multiplex the application onto the
fabric.

1An “executable” also contains the parameters that control data
accesses as discussed in the next section.

2The number of entries in the SATT is small compared to the size
of the application: it will not be on the critical path.
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Given: Number of physical stripes

while (!'IDLE) {
get starting pointer and iterations from host
load config words from main memory
into on-chip memory
load first virtual stripe
during each configuration cycle {
while (requested iterations not IDLE) {
if (not last virtual stripe)
increment physical stripe address
load next virtual stripe
else {
if (# virtual stripes > # physical stripes)
increment physical stripe address
restart loading from first virtual stripe

}

decrement iterations

}

assert IDLE signal

}

Figure 8: Algorithm for configuration management.

Configuring physical stripes

On every cycle the controller enables a specific physical
stripe to be reconfigured. PipeRench uses a counter mod-
ulo the number of physical stripes to sequentially generate
physical stripe addresses. This simple method automatically
ensures that if the application is too big to fit in the fab-
ric, configured stripes are overwritten and the hardware is
virtualized over the entire physical fabric.

Virtualized execution: keeping track of iterations

Once stripes are overwritten, they may need to be reloaded
since all the requested iterations may not have been per-
formed (i.e., each stripe may not have processed all the data
required). In order to do this and execute an application for
a certain number of iterations, we use two of the flag bits:
the first-virtual-stripe flag and the last-virtual-stripe flag.

When the first virtual stripe is loaded into the fabric,
the controller updates a record: it notes the address of the
physical stripe where it was loaded. By monitoring this
record during loading and swapping stripes, it can ascertain
the number of cycles the first virtual stripe has spent in the
fabric (i.e., the number of iterations it has executed). In
addition to monitoring the first stripe, the controller also
monitors when the last virtual stripe is swapped into the
fabric.

Using the first and the last stripe, the iteration count
may be managed in the following manner: when the first
virtual stripe completes its required number of iterations, it
does not need to be reloaded ever again. Hence the loading
of the application can now stop (and a new application may
be started) after loading the last virtual stripe.

3.3 Summary

In this section, we analyzed and described the four main sub-
tasks of configuration management for pipelined reconfig-
urable architectures: interfacing, mapping, scheduling and
memory utilization. In our implementation of the configu-
ration controller for PipeRench, we use a next-address field
to access configuration words from memory, use a counter
(modulo the number of physical stripes) to generate the
physical stripe addresses, and identify the first and last
stripes by flags in order to keep track of iterations. This
simple configuration controller can map an application with
any number of virtual stripes onto a fabric with a given
physical size.

4 Data Management

Managing the flow of data for virtualized applications is
one of the main challenges in designing a pipelined recon-
figurable architecture. Virtualization can cause disruptions
in the flow of data, requiring the explicit management of
execution state. The key to a successful pipelined reconfig-
urable architecture is to make these disruptions transparent
to the application designer. This section presents our data
controller architecture and shows how it manages the virtu-
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Figure 10: Restoring (a) and storing (b) state between fabric, configuration memory, state memory and ATT.

alization of two implementations of a convolution applica-
tion.

‘When there is no virtualization, there is no need to store
and restore state or change input/output timing. Figure 9(a)
shows the execution of a simple application with no virtu-
alization. Though PEs may contain functions of their own
registered outputs, there is no need to save state because
all the configurations remain in the fabric. Also, input and
output are needed every cycle since the stripes that need
input and output remain in the fabric.

However, when applications are virtualized, the stripe
state may need to be remembered and the input/output
timing changed. Figure 9(b) shows the execution of the same
application, which now requires virtualization since there
are only three physical stripes for the four virtual stripes.
When stripes are functions of their own registered outputs,
the state of that stripe must be stored while its configuration
is not in a physical stripe and restored when it is returned to
the fabric. Furthermore, input and output are only needed
when the stripes that consume or produce data are in the
fabric. In the example in Figure 9, input (output) is only
needed when the first (last) stripe is in the fabric.

4.1 Data controller Architecture

The data controller architecture consists of four separate
data controllers (see Figure 3). Each controller manages one
global bus which is dedicated to either state storing, state
restoring, data input or data output per application. When
a controller is dedicated to storing or restoring state, the
data controller interfaces between the fabric and the state
memory. When a controller is dedicated to inputting or

outputting data, the controller interfaces between the fabric
and the memory bus controller. To determine which task
each data controller performs, controllers contain control
registers which describe functionality. The control registers
specify the beginning data address, stride, and whether that
bus is used for input, output, store, or restore.

Managing Stripe State

When needed, a stripe’s state is kept in the state memory
(see Figure 11), which is addressed differently for stores and
restores. During a restore, which takes place in the configu-
ration cycle, the state memory address is the same address
as that used to access the configuration memory. As Fig-
ure 10(a) shows, when a stripe’s configuration is written
into the fabric, that stripe’s state and flags are also writ-
ten. In order to remember the address in the state memory
for that stripe’s state, the configuration memory address is
written into the Address Translation Table (ATT). When
storing state, the ATT supplies the state memory address,
as shown in Figure 10(b).

Managing Data Input/Output

When managing Input/Output, configured stripes commu-
nicate with the input and output controllers through flags,
and these controllers communicate via address and control
logic with the memory bus controller. Each controller re-
ceives the flag bits that show the read and write data re-
quests for its corresponding bus (Read Flags and Write Flags
in Figure 6). The flag bits are part of each stripe’s control
word and specify if that stripe reads or writes to each of the
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and dashed lines are address or control.

four buses. The data controllers receive these flag bits from
the fabric and generate the necessary address and control
lines for the memory bus controller (see Figure 11). There-
fore, when a stripe is configured to produce data on a bus,
the controller generates the appropriate signals to write the
data (likewise for a read).

The data controller is also responsible for generating the
addresses for both the input and output data streams. We
currently can generate addresses that are affine functions
of the loop index. The starting address is supplied by the
host when the application starts and the stride is specified
as part of the application. When the fabric performs a read
or write, the next address is in the sequence is generated
by incrementing the current address by the stride. We are
examining ways of generating addresses for a richer set of
applications.

4.2 Example convolution data flow

To make the function of the data controllers more concrete,
we now present two different implementations of the con-
volution shown in Figure 12. Using the terminology pre-
sented in Kung [6], we present a systolic example where the
data flow is well-suited to PipeRench and easily managed by
our controller architecture, and as an example of a mapping
less-suited to our architecture, a semi-systolic implementa-
tion. The weights in both these examples are stationary
in the stages. This leads to savings in hardware since the
constant weights may be propagated through the multiplier
and therefore configured into the hardware. The following
examples all assume that the functionality for one tap of
this convolution can be supplied by one stripe. In reality, a
multiply-by-constant operation may require several stripes
(< n/2 for an n-bit multiplicand), depending on the func-
tionality of the stripe and the value of the constant. These
techniques can be easily generalized to deal with multiple
stripe taps.

Double Pipelined X convolution

Figure 13 shows a fully systolic implementation that con-
tains a single pipelined output Y, a double pipelined input
X, and stationary weight W. The X’s enter the pipeline from
the first stage. Every cycle a new X with a higher index is

for i=1 to NumberOfInputs {
Y[i] = 0
for j=1 to NumberOfTaps {
Y[i] = Y[i] + X[i+j1*w[j]
}
}

Figure 12: Convolution algorithm.

inserted. The data controller for this bus addresses the data
memory from the beginning address supplied in its control
registers. The data is driven on the bus and is read by the
first stripe. When the first stripe asserts the corresponding
read flag, the data controller increments the memory address
by the contents in the stride register (in this case, 1) and
readies the next piece of data on the bus. A controller for
the pipelined Y output is similar, with the exception that
it monitors the write flags and writes the data into memory
instead.

In this example, some of the data in a stripe needs its
state stored or restored. The double pipelined X contains
state that needs to be stored and restored; the registered
feedback is from the first register delay to the second register
delay in the same stripe. The single pipelined Y value does
not require storing or restoring since the stripe’s functions
do not contain registered feedback.

Broadcast X convolution

Figure 14 shows a semi-systolic implementation. This im-
plementation broadcasts the X values to all stages at one
time. The Y values are single pipelined through the array
of stages, and the weights are stationary. Since all stages
are single pipelined there is no state to store or restore, and
therefore this implementation does not need buses for store
or restore. However, it is difficult to implement because not
all stripes expecting data will be in the fabric at the time
the data is broadcast.

Two possible solutions are to either use two input buses
and broadcast the data multiple times, or have the config-
uration controller insert stalls in the configuration stream
until the bus is available. The first solution is not trans-
parent to the application. It requires double the number of
virtual stripes since one set of stripes reads from one bus
and a second set reads from another bus. The second and
preferable solution is transparent, but reduces throughput
and requires the configuration controller to stall between
configuring the last virtual stripe (the end of one iteration
through the virtual stripes) and the first virtual stripe (the
beginning of the next iteration through the virtual stripes).
Figure 15 shows how the stalls could be used to keep the
semi-systolic implementation possible.

5 Performance

In this section we compare the expected performance of our
architecture against commercial FPGAs with similar pro-
cessing technology and area, and against commercial DSP
processors on FIR filters of varying sizes.

Based on our design of the PipeRench prototype in 0.5
micron silicon, we believe that in 50 mm? of 0.35 micron
silicon it is possible to have 28 stripes, each with a 128-bit
wide datapath. Expected cycle time for this datapath is
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Figure 13: Systolic Convolution. (a) Each stage’s function contains a double pipelined X input, single pipelined Y output, and
stationary weight W, (b) Example of the data flow for this implementation. The dashed lines indicate how Y is accumulated
as time progresses. The dashed arcs indicate state store and restore.

Input X[n] Input X[n+2]
and X[n+2]  Input X[n+1] Input X[n+2] Input X[n+3]  and X[n+4]

) 4 v v
virtual Stripe 1:(__ X[n] ) ( X[n+1] ) ((Cached ) (Configure) (_ x[n+2] )

<_

Virtual Stripe 2: ((Configure) ( x[n+1]) ( Xin+2] ) ((Cached) ((Configure)

<

virtual Stripe 3: ((Cached ) ((Configure) ( Xin+2] ) (_xn+3] ) ((Cached)

<_

Xout Yout A
virtual Stripe 4:(_X[n+2] ) ((Cached ) ((Configure) ( xin+3] ) ( Xin+4] )
Yout =Yin+ W * Xin + + +
Output Y[n-1] Output Y[n]  Output Y[n+1]
() (b)

Figure 14: Semi-Systolic convolution. (a) Each stripe’s function contains a broadcast X, single pipelined Y, and stationary
W, (b) Example of the data flow for the broadcast convolution. The dashed lines indicate how Y|n| is accumulated as time
progresses. Notice that at some time steps multiple inputs must be supplied to the fabric.
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Figure 15: Example of the data flow for the broadcast convolution. The configuration controller inserts stalls to reduce bus
contention(which cause the virtual stripes to remain cached longer). The dashed lines indicate how Y[n] is accumulated as
time progresses.
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Figure 16: Performance on 8-bit FIR filters: PipeRench,
Xilinx FPGA using parallel and serial arithmetic and Texas
Instruments DSP.

100 MHz. An SRAM for configuration memory will con-
sume another 50 mm? of area, and will store 256 configu-
ration words of 1024 bits each. One 128-bit wide stripe is
capable of holding one tap of a 8-bit FIR filter with 12-bit
coefficients. As shown in Figure 16 this enables an FIR fil-
ter with less than 29 taps to run at the full clock rate of
100 MHz. Larger filters demonstrate a graceful degradation
of performance out to around 256 taps, at which point the
on-chip configuration storage is full. For larger filters, smart
cache management techniques can be used to continue the
degradation, albeit at a steeper rate due to the need to fetch
some configuration data from off-chip.

Based on measurements of Xilinx FPGAs built in 0.35 mi-
cron technology [9], we believe that 100 mm? of area repre-
sents about 1750 CLBs. Given this amount of logic, and us-
ing parallel distributed arithmetic (shown as Xilinx PDA in
Figure 16), it is possible to create filters that run at around
60 MHz and have up to 48 taps [8]. More than 48 taps
will not fit, which effectively causes performance to fall to
zero. Using double-rate distributed arithmetic (shown as
Xilinx DDA), it is possible to construct extremely large fil-
ters given this amount of silicon [8]. Due to the bit serial na-
ture of these implementations however, the maximum sam-
pling rate of these filters is 14 MHz.

The Texas Instruments TMS320C6201 [5] is a commer-
cial DSP which runs at 200 MHz and contains two 16- by 16-
bit integer multipliers. For filters with small numbers of
taps, the high clock speed of this device yields extremely
high performance. This performance decays rapidly with an
increasing number of taps due to the presence of only two
multipliers. PipeRench exhibits higher performance than
the DSP. With respect to performance, PipeRench is more
like an FPGA. But with respect to performance degrada-
tion as the size of the filter grows, PipeRench is more like
an instruction set processor such as this DSP.

6 Conclusions

Pipeline-reconfigurable FPGAs provides several benefits for
reconfigurable computing, including forward-compatibility
and more robust compilation. We believe these benefits en-
able the development of FPGAs that have the performance
advantages for DSP applications associated with current
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FPGAs, and the ease and economy of development asso-
ciated with microprocessors. Managing the configuration
and data flows is a significant issue in the design of these
devices. PipeRench’s configuration controller performs run-
time mapping and scheduling of configuration transfers, in-
terfaces to the host processor, and manages the configura-
tion storage. The data controllers provide mechanisms for
storing and restoring of state, as well as access to operand
data for a variety of systolic and semi-systolic pipeline im-
plementations. A prototype of the PipeRench architecture
has been fabricated and is currently being tested.
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