CPR: A Configuration Profiling Tool

Srihari Cadambi*and Seth Copen Goldstein®

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

In this paper we describe a Configuration PRofiling
tool (CPR) and show how it can be used to aid
compiler designers, FPGA architects and in the con-
struction of a macro-generator libraries. CPR uses
subgraph matching to identify the parts of an ap-
plication which are most important to achieve high
performance. Using CPR as a guide we implemented
a few macros for a macro-generator library, which
yielded significant improvement in both the quality
of configurations and speed of compilation.

1 Introduction

In this paper we describe a Configuration PRofiling
tool (CPR) and show how it can be used to aid
compiler designers, FPGA architects and in the con-
struction of a macro-generator library, an important
component of an efficient portable compiler. CPR
uses a restricted form of subgraph isomorphism to
identify the parts of a configuration which are most
important to achieve high performance and utiliza-
tion.

CPR provides usage information about applica-
tions for compiler writers, FPGA architects, and
power users. By analyzing the data flow graphs of
different programs, CPR can indicate which kinds of
operations are the most important to optimize. This
information will guide compiler writers in choosing
what optimizations to implement. For FPGA ar-
chitects it indicates what kinds of logic and routing
structures are most important. For power users who
need to increase the speed of a configuration it can

*cadambi@ece.cmu.edu

fseth@cs.cmu.edu

point out specific areas where hand optimization will
be most beneficial.

The original motivation for CPR was to aid in
the development of an Architecture Specific Macro
(ASM) Library. An ASM library contains pre-placed
and routed parameterized macros which can replace
a group of nodes in a netlist or dataflow graph. The
power of the ASM library is that it allows config-
uration to use specific features of a target FPGA
without having to incorporate such features in the
compiler proper. Instead, when patterns in the input
graph match macros in the library, the patterns are
replaced with a module generated from the macro.
Effective use of an ASM library can improve uti-
lization and efficiency of the implementation, while
simultaneously reducing compilation time.

The impact of identifying and generating modules
in configurations is analogous to the 90:10 rule in
standard code profiling [10], which states that 90%
of the execution time is spent in 10% of the code. In
our case this is reflected in the fact that a configura-
tion has few unique static patterns of nodes. Thus,
if the patterns that occur most often are identified
and hand-optimized, the overall application will be
accelerated.

Identifying frequently occurring patterns in hard-
ware designs assists in determining the proper focus
of effort for FPGA architects and compiler design-
ers. As a result, common and useful optimizations
will be implemented first, and infrequently occurring
optimizations will not slow the design cycle of a new
FPGA architecture or compiler.

In addition, configuration profiling finds the draw-
backs and inadequacies of the compiler optimization
passes. In order to optimize compilation time and ef-
ficiency, some optimizations may be turned on or off

depending on a characterization of the subgraphs in
the configuration. Obviously, turning off optimiza-
tions enhances the speed, while having more of them
trades off speed for efficiency.

CPR employs an algorithm for finding all single
sink DAGs in a dataflow graph. The graph cannot
have control in it, but CPR may be applied to the
dataflow parts of a control-flow graph.

The large number of generated patterns are
pruned and sorted according to architecture-specific
heuristics to emphasize the most important and
frequently-occurring patterns. CPR is part of DIL,
a data-flow intermediate compiler for pipelined-
reconfigurable architectures being developed at
Carnegie Mellon [2]. While the algorithm is de-
scribed in the context of DIL and dataflow graphs,
it is equally applicable to traditional CAD tools and
netlists.

In the next section we describe the context within
which CPR is based and present some example
graphs. In Section 3 we describe our algorithm and
its implementation. Section 4 takes a look at some of
the important patterns generated by CPR and shows
how these patterns have influenced our compiler and
the ASM library. We go over some related work in
Section 5 and conclude in Section 6.

2 An Architecture Specific Macro
Library

One of the primary goals motivating CPR is to pro-
vide information to the designer of an Architecture
Specific Macro library (ASM library). An ASM Li-
brary is a key enabler for retargetability of the DIL
compiler. The ASM library contains macros which
can generate pre-placed and routed modules for a
particular FPGA architecture. Each macro is asso-
ciated with a fragment of a data flow graph. For
example, Figure 1 shows the graph for the add-
with-carry-in macro. Associated with this graph is
a macro generator which will generate a pre-placed
and routed configuration for add-with-carry-in. In-
stead of including code in the compiler specific to a
particular architecture, the compiler can use graph
matching to take advantage of architecture specific
features of the FPGA. When a macro in the library
matches a portion of the data flow graph, the nodes

a[15:8] b[15:8] &7:0]

b[7:0]

a[15:8] b[15:8] g 7:0] b[7:0]

Figure 1: An instance of the add-with-carry-in
macro is identified in the left hand graph and re-
placed by the single node, M, on the right.

in the data flow graph are replaced with the macro
node. This macro node is handled specially in the
place and route portion of the compiler to create the
proper configuration.

CPR is used to determine the set of macros which
should be included in the ASM library. CPR ana-
lyzes a program and yields patterns of varying sizes
and their frequencies. By analyzing these patterns
the designer of the ASM library can determine which
ones should be included as macros in the ASM li-
brary. In the rest of this section we give two ex-
amples of how macros can increase the effective uti-
lization of an FGPA. In the first example, we show
how the macro add-with-carry-in can increase the
utilization of configurations targeted to PipeRench,
a pipelined reconfigurable FPGA being designed at
CMU 3, 6]. In the second example, we show how the
macro conditional-add can increase the utilization on
the Xilinx 4000 series FPGAs. Before describing the
macros we describe the compilation process.

2.1 The DIL Compiler

The DIL compiler compiles a high-level, architec-
ture independent Dataflow Intermediate Language
(DIL) and produces configuration for FPGAs. Cur-
rently DIL targets PipeRench, but is being extended
to produce configurations for other FPGAs. DIL is
intended to be used both by programmers and as an
intermediate language for a high-level language com-
piler. Details of DIL and its compiler are described
in [2]. Here we focus on the two passes most impor-
tant to the ASM library: Operator Decomposition
and Place-and-Route.

2.1.1 Operator Decomposition

Operator decomposition is a pass of the compiler
with two goals. First, it is used to reduce complex
operations, e.g., multiplication, to primitives, e.g.,
shifts and adds, which can be mapped directly to the
functional resource on the FPGA. Second, it decom-
poses primitive operators of large bit-widths, e.g.,
addition of 128-bit numbers, which are too large or
too slow to execute within a particular time bound.

The decomposition is aided by a technology-
independent library which stores the decomposition
rules written in DIL. DIL supports operations which
can determine the size of the operands and opera-
tors. The decomposition phase is parameter-driven
so that, for example, the library writer is shielded
from the underlying timing details of the target
FPGA. The fact that all the decompositions are
written in DIL has both advantages and disadvan-
tages. The main advantages are that the library is
portable across different architectures and that it is
easy to write. The disadvantage is that the library
writer is unable to directly take advantage of the de-
tails of the underlying architecture. This results in
potentially suboptimal usage of the fabric. As we
will show, the ASM library compensates for the po-
tential suboptimal results of the decomposition pass
by grouping nodes together into macro nodes which
can take advantage of the specific features of the ar-
chitecture.

2.1.2 Place and Route

The place and route algorithm in DIL [2] is a greedy,
deterministic algorithm best suited for primitive op-
erations that have a small number of inputs and
outputs. The place and route happens in two main
phases. The graph is first transformed so that it is
guaranteed to be placeable and routable. This trans-
formation involves reducing the complexity of rout-
ing operators and inserting lazy noops in the graph.
Then, the nodes of the graph are actually placed and
routed. Each node is tested to determine if it can
be placed and routed. This feasibility test is based
on the sources of the node that have already been
placed. If the node is unplaceable, the lazy noops
are turned into real noops, which improves routabil-
ity, and the lazy noop is placed on the ready list.
In order to both reduce the complexity and in-

a15:0] b[15:0]

Figure 2: Example of a decomposition of an 16-bit
add into pipelined 8-bit adds with carry.

a[15:8] a[7:Q]

ff |buaa 00 b[7:0]
+H+F |[+H+P°

|0 |0

<<7

+ 1 + fshifta

[
Z[16] Z[15:8] Z[7:0]

Figure 3: Mapping the decomposed addition onto
PipeRench without using the ASM library.

crease the portability of the place and route, the
DIL compiler does not include any information
about specialized routing resources. For example,
on PipeRench there are one-bit wires which can be
routed between processing elements. A processing
element (PE) is essentially a group of identically con-
figured 3-LUTSs, some registers, carry chain logic,
and zero-detect logic. These one-bit wires can be
used to construct carry chains and control logic, and
are not part of the more abstract architecture the
main compiler targets.

The primary impact on the ASM library is that
the algorithm works best when there are few inputs,
i.e., three or fewer, to each node. For, as the number
of inputs to a node grows, the choices of where to
place it are more limited. Additionally, the ASM is
the only way in which specialized wires, e.g., carry
chains, can be directly utilized.

a[7:0]

(l)o b[7:0]
15:8] H 4+ 20
00 b[15:8]
” | [<<7
/'— + PshiftA
7[16] Z[15:8] Z[7:0]

Figure 4: Using the ASM library to map the decom-
posed addition.

2.2 Add-With-Carryin

In general, to increase the clock speed of an FPGA
design the user may want to constrain the total
width of any operation which uses the carry chain.
For example, on PipeRench, to sustain a 100Mhz
clock the maximum width of an addition is 16 bits.
To add numbers that are wider than 16 bits requires
breaking up the addition and pipelining it. The DIL
compiler will decompose large additions into graphs
such as the one shown in Figure 2. Since DIL does
not allow the expression of architectural details, the
carry signals between pipelined additions are treated
as regular data values. Without the ASM library,
these data values would be routed on the regular
interconnect and would require 7 PEs as shown in
Figure 3. However, as show in in Figure 4, using the
special interconnect we can reduce this to 5 PEs.

2.3 Conditional-Add

A common structure in many data paths is the con-
ditional addition, illustrated in Figure 5(a). The
conditional addition is the basic building block used
to construct both serial and array multipliers. This
structure cannot be implemented in a straightfor-
ward way on a single row of Xilinx 4000 series CLBs
using the fast carry logic. The problem is that the
inputs to the carry logic must be primary inputs to
the CLB, and this is impossible due to the AND
gate.

This structure can be implemented on a single row
of CLBs using the carry logic if it is transformed to
the equivalent structure shown in Figure 5(b), as

S=(A&2)+B S=Z?(A+B):B
Z
- A
S
S
B B

(@) (b)

Figure 5: Two logical structures for implementing
conditional addition. The structure in (a) cannot
easily be implemented in a single row of CLBs using
the fast carry logic. The transformed structure in
(b) can be implemented in a single row of CLBs.

described in [7]. In this implementation, the carry
inputs are primary inputs, and the multiplexor logic
can be subsumed into the lookup table that imple-
ments the XOR function for the addition.
Surprisingly, the commercial synthesis and phys-
ical design tools that we have used are incapable
of employing this optimization, and generate CLB
mappings that are 100% larger than necessary. A
configuration profiling tool such as CPR would de-
tect the importance of this structure in almost any
arithmetic datapath. Once aware of this structure,
an FPGA CAD tool could directly map it to the op-
timal solution. An FPGA architect could use a tool
like CPR and modify the CLB design to implement
this structure in a more straightforward manner.

3 The Pattern Generation Algo-
rithm

In this section we describe our pattern matching and
ranking algorithm, the key component of CPR, and
analyze its time complexity and memory require-
ments. The algorithm reports the frequency of oc-
currence of all possible single-sink DAGs (up to a
given size) found in the input graph. The DAGs
(also referred to as patterns) are then analyzed and
ranked according to a heuristic which aims to present
to the user of CPR the most important patterns.
While the discussion in this section focuses on data
flow graphs, the algorithm is equally applicable to
traditional CAD tool graphs, e.g. netlists. It does

DAG
with
single
sink

Figure 6: An example single sink DAG, with an in-
ternal output.

not report patterns with more than one sink, but
such patterns by definition have multiple outputs
and are seldom of interest in macro construction.
Furthermore, our current compiler framework does
not support operators with more that one output. It
may be noted however, that if nodes in a single-sink
DAG contain internal output wires, they will be re-
ported. Figure 6 shows an example single-sink DAG
and what constitutes an internal output.

3.1 The Algorithm

The algorithm central to CPR constructs all possi-
ble single-sink DAGs of size up to [in the graph
and then compares these patterns to detect the fre-
quencies of each pattern. The algorithm proceeds
constructively, building up at each node N patterns
of size [from previously constructed patterns of sizes
up to ! — 1 as shown in Figure 7. Figure 8 pictori-
ally depicts the algorithm and some data structures
used. The algorithm is based on the following ob-
servation: Each pattern of size [ending at node N
is composed of N with various DAGs ending at NV,
such that the total number of nodes including N is
[. The only caveat to this is when there is recon-
vergent fan-in, which can be detected by taking the
intersection of the nodes in the source patterns to
node N. In this case, the pattern is ignored, since
it is already accounted for as a pattern of size [— 1
ending at node V.

Each constructed pattern is checked against a
global hash table of patterns. If the new pattern
is already in the table, the frequency count of that
pattern is increased, otherwise the pattern is inserted

Inputs: Graph G, Size |
Outputs: Table T which contains patterns of all sizes
and annotations on the graph

genAllPatterns(Graph G, int size)

{
for (int 1 = 1; 1 <= size; 1++)
foreach node n in G
genPattern(n, 1)
}

// genPattern for 2 input nodes. 3 input nodes
// proceed similarly but cover all permutations
// summing to "len" across all three inputs.
genPattern(Node n, int size)
{

for (int a=0; a<size; a++) {

foreach pattern left in n.left.patterns[a] {

foreach pattern right in n.right.patterns[size-a-1] {

if ((nodes in left N nodes in right) # () skip
Graph g = newgraph(n, left, right)

add g to n.patterns[size];

if g € T increment frequency

else insert g into T

Figure 7: Pattern construction algo-
rithm. newgraph(n,l,r) creates a new graph with
edges | —+ n and r — n. T represents the global
pattern hash table.

Figure 8: The CPR pattern search algorithm and
data structures. While searching for patterns of size
4 ending at node N, we look for patterns of sizes 0, 1,
2 and 3 ending at each of N’s sources, each of which
would have been computed earlier. FEach entry in
the array representing the patterns is a list of node
pointers.

into the table. Two DAGs have the same pattern if
the nodes are of the same type and the wires connect-
ing them are similar. We distinguish three kinds of
wires, single bit wires, unsigned wires of any width,
and signed wires of any width. The wires do not have
to be identical widths since CPR aims at finding pat-
terns that may be turned into macros. Each macro
is parameterized so that it can generate modules for
various wire widths.

3.2 Time Complexity

To construct all patterns of up to size [, each node in
the entire graph, G = (V, E), must be scanned. As-
suming at most ¢ inputs per node, there are at most
;(0-1)
O(]
Thus the worst case time to construct all the new
DAGs of size [for all nodes in the graph, where 7 < 3
is O(|V|3(l_1)l). Thus, to find all patterns of size [
in G, the algorithm takes time 22:10(|V|3(k_1)k).
In practice, most nodes in a graph have only 1
and 2 sources. Furthermore, graphs have a reason-
able amount of reconvergence which reduces the time
complexity substantially. However, it can still take
many hours to look at all patterns of large sizes. To
reduce the running time we allow users to limit the
patterns created as discussed in Section 3.4.

) = O(i(l_l)l) trees ending at node N.

3.3 Memory Requirements

In order to reduce memory requirements we do not
actually create graphs for the new patterns. Instead,
a pattern of size [ending at node N is represented by
a list of the nodes that comprise that pattern. This
list uniquely identifies the pattern. Furthermore, in
the global hash table we are able to identify a pattern
by a triple consisting of the sink node of the pattern,
the size of pattern, and the position in the nodes list
of patterns of that size.

3.4 Pattern search pruning heuristic

CPR may be used to find every possible single-sink
DAG. However, the exponential search time limits
the size of the largest practical pattern which can be
generated. But it is possible to reasonably prune the
pattern search space. The idea is to ignore those pat-
terns which will not yield useful architectural specific

macros or insight into the architecture or compila-
tion process. The heuristic we use is based on the
fact that patterns with a large number of inputs and
outputs will never yield useful architectural specific
macros.

Since patterns with lots of I/O are difficult to
route, such patterns are ignored during a restricted
search. This characteristic of patterns is applica-
ble to a large number of architectures, since a large
number of inputs and outputs make routing difficult.
Also, outputs from internal nodes will require those
nodes to be replicated if this pattern is made into a
module, thereby incurring losses. This substantially
reduces the time complexity. However, it might miss
large patterns which have a lot of reconvergence.

Our general pruning heuristic was to ignore all
patterns that satisfied three constraints: (nodes >
N), (inputs > I) and (outputs > O), with N, I and
O being variable parameters. Based on how many
good patterns were retained!, we assigned values of
7, 5 and 1 to N, I and O respectively. Figure 9
shows the number of patterns pruned away by this
heuristic, a measure also indicative of the amount of
time saved. It may be noticed that even when the
size limit of the patterns was 9, about 70-80% of the
patterns were eliminated using the heuristic.

In order to validate this pruning methodology, we
manually examined the top 20 patterns of the unre-
stricted output and compared it to the top 20 pat-
terns of the output using the heuristic. The top pat-
terns were chosen by the ranking scheme described in
Section 3.5. Table 1 shows this for different kernels.
It may be seen that in all cases except the DCT, at
least 90% of the good patterns are retained. How-
ever, if the heuristic is slightly modified for the DCT
we see improvements, shown in Figure 10. Specifi-
cally, it may be seen that as the parameter I is varied,
the percentage of good patterns retained increases
from 60% for I = 0 to 85% for I = 5 (the current
heuristic) and reaches 100% for I = 7. Alongside in
the figure is shown the CPU time required to profile
the dataflow graph of the DCT using the heuristic
with the corresponding value of I. As I increases, the
time goes up showing a sharp increase at I = 7. The
time is directly indicative of the number of patterns

'the number of good patterns was determined by our rank-
ing scheme, described in Section 3.5

©
o

_|{ONo Pruning
| |mWith Pruning

o)
o
l

~
o

a o
o O
I I

N
o
|

patterns (in 10,000s)

=N W
o O O o
I I I I

il

A

S
Q 00

2 L K
NS
Figure 9: The number of patterns pruned away by
the pruning heuristic above. The pattern size limit

here was 9.

120 2500
©
<1‘:)100
§ -+ 2000
280+ @)
» + 1500 ©
€ 60 1<% Patterns Retained §
]
= + 1000 ;
© 40 + o o
o Execution Time O
'8 20 | - 500
>
L 0 0

0123456782910
#inputs (1)

Figure 10: The percentage of good patterns retained
and the corresponding execution time when I is var-

ied with N =7 and O = 1.

pruned away by the heuristic; that is, as I increases,
more patterns with large IO will be admitted.

‘ Kernel ‘ good patterns retained

IDEA 95%
Over 95%
ATR 100%

Varpoly 100%
FIR 90%
DCT 85%

Table 1: The percentage of good patterns retained
when the pruning heuristic above was applied.

3.5 Pattern Ranking

Once the patterns are identified, we use a second se-
ries of heuristics which attempt to rank the patterns
according to their utility to the ASM library. Of
course, when CPR is used as tool for architectural
or compiler evaluation different rankings will be use-
ful. The benefit of a macro comes from a confluence
of several factors:

1. The synthesis time saved by grouping nodes to-
gether into a single preplaced macro.

2. The ease of placing and routing the macro-
operation on the target architecture which is in-
fluenced by the number of inputs and outputs
of the module. The routing difficulty increases
as the number of I/O of a pattern increases.

3. The frequency of the pattern: the more often
the pattern occurs, the more PEs may be saved.

4. The number of PEs saved by grouping the pat-
tern into a single macro-operator as opposed
to allocating resources for each operation sep-
arately.

We currently assign the rank, r = [* f%2/(i. *
(0e + 0;))3, where [is the size of the pattern, f the
frequency, i, and o, the number of external input
and output wires respectively, and o; is the number
of internal output wires. In addition, we also weight
the pattern according to its utility on the target ar-
chitecture. In the case of PipeRench, we weight pat-
terns with 1-bit wires highly owing to its control in-
terconnect described in [6]. Also, since PipeRench is
LUT-based, we also assign more importance to pat-
terns with logical operators. Other ranking schemes
are currently being investigated.

4 Results

In this section we evaluate CPR. We begin by pre-
senting a number of interesting patterns that CPR
found in several kernels written in DIL. We then
show the effect of incorporating some of these pat-
terns into an ASM library.

4.1 Kernels employed

ATR implements the shapesum kernel of the San-
dia algorithm for automatic target recogni-

Figure 11: An add with car-
ryin that does not utilize the
control interconnects.

Figure 14: A power-user pat-
terns. The NOTs may be op-
timized away, and the entire
pattern concisely mapped to
2 PEs on PipeRench using its
control interconnect lines|[6].

tion [11].

Cordic is a 12 stage implementation of the Cordic
vector rotation benchmark [5].

CSD implements a 16-bit canonical signed digit
multiplier with the constant 123.

DCT is a one-dimensional, 8-point discrete cosine

transform.

FIR is a FIR filter with 20 taps and 8-bit coeffi-

cients.

Figure 12: A conditional add.
This may be transformed as
explained in Section 2.3 and
mapped to a single PE on
PipeRench

Figure 13: A “<” operation
with 1-bit operands which may
be cast as a logical operator
and merged with the logical op
(OR) following it.

Figure 15: A comparison feed-
ing a mux. The 1-bit wire be-
tween the == and 7 : may be
allocated to a control intercon-
nect line.

IDEA implements a complete 8 round Interna-
tional Data Encryption Algorithm with the key

Figure 16: Room for compiler
optimization. A “< 0” may
be implemented by passing the
sign bit.

compiled into the configuration.

Nqueens is an evaluator for the Nqueens problem
on an 8x8 board.

Over implements the Porter-Duff over operator

used to joins images [1].

PopCount counts the number of 1’s in a stream.

Square simply squares a 16-bit signed number.

Varpoly evaluates a polynomial of degree three in
x. The coefficients and z are supplied.

4.2 Patterns Observed

Figures 11-16 are examples of high ranking patterns
found in the kernels described above. The graphs
are generated automatically by CPR. Figure 11 is
the add-with-carryin described in Section 2.3. This
pattern occurs frequently and having few inputs is
highly ranked. It is the most important of the pat-
terns found as evidenced by the frequency numbers
shown in Table 2. Figure 12 is the conditional add
operation also described earlier. Figure 13 shows a
subgraph which indicate that technology mapping
using the third input to the LUT would improve
performance. Figure 14 shows a power-user pattern
that may be heavily optimized using Boolean opti-
mization techniques.

Figure 15 is an example of a pattern which, though
it occurs often in FIR, causes FIR to increase in size
when included in the ASM library. This is due to the
fact that the extra inputs constrain place and route
reducing overall utilization. This pattern is ranked
very low by CPR and was added to the ASM library
before CPR was available.

Finally, Figure 16 shows an example of a graph
which could be optimized by a better strength re-
duction pass in the compiler. CPR found several
patterns which expose compiler inadequacies and ar-
eas for future optimization.

Table 2 shows the frequency of occurrence of each
of these subgraphs in all the kernels.

4.3 Improved Results

We have implemented a few of the modules sug-
gested by CPR, and show the results for all of the
kernels when mapped to PipeRench in Table 3. Each
PE is 8-bits wide and there are 16 PEs per stripe,
where each stripe is a pipeline stage in the appli-
cation. Thus, the performance of a kernel is deter-
mined by the number of stripes. The data shows
that a very few macros, if properly chosen, can yield
significant improvements in both configuration qual-
ity and compilation speed. However, in the case of
Square although the ASM library reduces the num-
ber of PEs, the number of stripes actually goes up.
This is the result of interactions between the ASM

| Kernel | Fig. 11 | Fig. 15 | Fig. 12 | Fig. 14 |
DCT 71 0 0 0
IDEA 43 0 0 0
FIR 22 18 0 0
ATR 2 0 0 0
Nqueens 0 0 0 4
Over 4 0 28 0
Cordic 29 0 0 0
CSDMult 5 0 0 0
PopCount 0 0 0 0
Quantize 88 0 0 0
Square 18 0 0 0
Varpoly 0 35 0

Table 2: The frequency of occurrence of various sub-
graphs seen across our benchmark suite.

|| Kernel ||| Stripes ||| PEs ||| Time(s) ||
DCT 220 | 190 || 2586 | 2398 || 41.5 | 35.8
FIR 78 | 78 || 1090 | 996 9.7 | 94
ATR 18 | 17 154 | 150 35 | 35
Over 26 24 294 292 3.8 3.6
Cordic 175 | 163 || 2107 | 1886 || 20.7 | 19.5
CSDMult 19 17 184 174 2.2 2.0
PopCount 5 5 39 39 0.3 | 0.3
Quantize || 255 | 223 || 2872 | 2588 || 54.4 | 42.8
Square 42 | 48 501 | 480 6.2 | 5.6
Varpoly 27 27 242 242 24 2.4

Table 3: Synthesis results on PipeRench using

macros suggested by CPR. Two of the above macros
were used: the PlusWithCarryin and the Condi-
tional Add. For each metric, the first column on
the left shows the results without using CPR recom-
mended macros, while the column on the right shows
the result after macro generation.

library and DIL’s place and route algorithm. We are
currently adjusting the place and route algorithm to
handle ASM library modules.

5 Related Work

There have been many related research efforts in the
areas of high-level synthesis and FPGA logic synthe-
sis. These include the use of behavioral templates [8]
and performance-driven template mapping for high-
level synthesis [9]. The Garp architecture employs a

compiler tree-parsing tool for datapath module map-
ping [4]. FPGA logic minimization and technology
mapping have been tightly-coupled in a scheme in-
troduced in [12]. A common observation is that most
technology mapping and module generation efforts
in the past focus on graph matching using pre-built
templates. As far as we know, this is the first tool
that actually generates the templates constructively
by searching the graph.

6 Conclusions

In this paper we have described a configuration pro-
filing tool which identifies the most important parts
of an application. The central algorithm for CPR
is based on an efficient way to generate and count
all subgraphs of the configuration graph. This al-
gorithm is applicable both to dataflow graphs and
general netlists. We have also shown that we can re-
duce the running time of CPR without missing any
of the important patterns. To our knowledge CPR
is the first tool of its kind.

Using the patterns found by CPR we construct
an application specific macro library which improves
both the running time and the overall quality for the
final configuration. By focusing on only the key pat-
terns we were able to decrease the overall configura-
tion size by approximately 10% over a broad range
of kernels with only a few macros. CPR was also
helpful in highlighting areas of further work in our
compiler.

Acknowledgements

The authors would like to thank Herman Schmit,
Mihai-Dan Budiu, Matt Moe, Ron Laufer and Reed
Taylor of the CMU PipeRench group for their help.
Special thanks to Herman for his advice and sugges-
tions and to Mihai for his work on the DIL compiler.

This work was supported by DARPA contract
DABT63-96-C-0083 and Altera Corporation. The
authors also wish to acknowledge the reviewers for
their helpful comments.

References

[1] Jim Blinn. Fugue for MMX. IEEE Computer Graphics
and Applications, pages 88-93, March-April 1997.

10

[10]

[11]

[12]

Mihai-Dan Budiu and Seth Copen Goldstein. Fast
compilation for pipelined reconfigurable fabrics. In
ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, Monterey, CA, February 1999.
to be published.

Srihari Cadambi, Jeffrey Weener, Seth Copen Gold-
stein, Herman Schmit, and Don Thomas. Managing
pipeline-reconfigurable fpgas. In ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays,
pages 55-64, Monterey, CA, February 1998.

Timothy J. Callahan, Philip Chong, Andre DeHon, and
John Wawrzynek. Fast module mapping and placement
for datapaths in fpgas. In ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages
123-132, Monterey, CA, February 1998.

Sanjaya Kumar et.al. Timimg sensitivity stressmark.
Technical Report CDRL A001, Honeywell, Inc., January
1997. http://www.htcQhoneywell.com/projects/.

S.C. Goldstein, H. Schmit, M. Bidui, M. Moe,
S. Cadambi, R. Taylor, and R. Laufer. Piperench: A
coprocessor for streaming multimedia acceleration. In
International Symposium for Computer Architecture, At-
lanta, GA, June 1999. to be published.

Xilinx Inc. Advanced carry logic techniques. XCELL,
pages 42-44, Second Quarter 1996.
http://www.xilinx.com/xcell/xcell2l.htm.

Tai Ly, Knapp D., Miller R., and MacMillen D. Schedul-
ing using behavioral templates. In Proceedings of the
32nd Design Automation Conference, San Francisco, CA,
June 1995.

Corazao M.R., Khalaf M.A., Guerra L.M., Potkonjak M.,
and Rabaey J.M. Performance optimization using tem-
plate mapping for datapath intensive high-level synthe-
sis. In IEEE Transactions on Computer-Aided Design of
Integrated Clircuits and Systems, Vol. 15, No. 8, pages
877-888, August 1996.

David A. Patterson and John L. Hennessy. Computer
Architecture A Quantitative Approach, Second Edition.
Morgan Kaufmann Publishers, San Francisco, CA 94104,
1996.

J. Villasenor, B. Schoner, K. Chia, and C. Zapata. Con-
figurable computing solutions for automatic target recog-
nition. In J. Arnold and K. L. Pocek, editors, Proceedings
of IEEE Workshop on FPGAs for Customm Computing
Machines, pages 70-79, Napa, CA, April 1996.

Kang Yi, Seong Yong Ohm, and Chu Shik Jhon. An effi-
cient fpga technology mapping tightly coupled with logic
minimization. In IEICE Transactions on Fundamentals

of Electronics, Communications and Computer Sciences,
Vol.E80-A, No.10, October 1997.

