
Appears in 2002 IEEE Symposium on Field-
Programmable Custom Computing Machines, April
2002.

Peer-to-peer Hardware-software Interfaces for Reconfigurable Fabrics

Mihai Budiu, Mahim Mishra, Ashwin R. Bharambe and Seth Copen Goldstein
fmihaib,mahim,ashu,sethg@cs.cmu.edu

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA-15213

Abstract

In this paper we describe a peer-to-peer interface be-
tween processor cores and reconfigurable fabrics. The main
advantage of the peer-to-peer model is that it greatly ex-
pands the scope of application for reconfigurable comput-
ing and hence its potential benefits. The primary extension
in our model is that “code” on the reconfigurable hardware
unit is allowed to invoke routines both on the reconfigurable
unit itself and on the fixed logic processor. We describe the
software constructs and compilation mechanisms needed
for such an architecture, including a detailed description
of the interface between the two parts of the application.

1 Introduction

Reconfigurable hardware (RH) devices have been re-
ported to provide spectacular computational performance
on a variety of applications [6]. Despite this and a wealth
of other potential advantages, RH devices aren’t used on
a wide scale, especially in general-purpose computing sys-
tems. Several reasons can be cited for the lack of success in
their adoption by the industry. Perhaps the major problem
with RH devices is the difficulty of integrating them into a
system at all levels: for the published and implemented sys-
tems, electrical, physical and software interfaces are gen-
erally ad-hoc and custom-designed. The lack of interface
standardization increases costs, prolongs system develop-
ment and complicates the task of software development.

This paper proposes a partial solution to the interface
problem, addressing the software layer. We argue that RH
devices should be integrated in a computing system not as
subordinates of the processor, but as equal peers. More-
over, we propose a procedural interface between software
on the processor and the RH, in the style of Remote Pro-
cedure Calls [13]. Processor-executed programs should be
able to invoke code on the RH device in the same way they

invoke library functions; RH-based code should also be able
to call code on the processor.

Our proposal is not a panacea for solving the problem
of hardware-software partitioning: we are proposing here
a mechanism and not a policy for how the two sides of an
application should interface. However, we believe that the
choice of a good interface is extremely important for un-
leashing the full potential of a new computing paradigm.
Witness the success of interfaces such as libraries, system
calls, remote procedure calls and sockets.

1.1 Contributions of this work

The following aspects are novel contributions of this pa-
per:

� We describe (Section 2) a hardware-independent,
language-independent hardware-software interface
similar to remote procedure calls, which can be used
between the code executed on a processor and the
code executed on a RH device.

� We propose to treat the processor and RH devices as
equal peers in the process of computation, instead of
treating the RH as a slave to the processor.

� We describe (Section 3) how a compiler can automat-
ically generate the stubs for interfacing the CPU and
the RH device.

� We analyze (Section 4.1) realistic pointer-based high-
level language programs and estimate, as a function of
architectural constraints, how much of the computa-
tion can be assigned to the RH devices when using our
interfacing scheme.

2 A Hardware-Software Interface

The computing system used throughout this paper con-
tains both a conventional processor (CPU) and a recon-

1



figurable hardware (RH) device. The RH device is re-
programmable under software control. This paper describes
a proposal for a high-level interface between the code run-
ning on the processor and on the reconfigurable hardware.

In this paper we mainly focus on single-threaded appli-
cations. We do not study parallel applications, which run
simultaneously on both computation engines. However, our
proposal is not incompatible with multi-threading, and is
easily adapted to handle parallel applications.

The application domain under study consists of integer-
based desktop and media-processing programs written in
high-level languages, containing pointer-intensive code. We
analyze programs from the SpecInt95 [18] and Media-
Bench [10] benchmark suites to determine the effective-
ness of the implementation we describe. While these ap-
plications are implemented in C, the interface we present is
language-independent, and, moreover, can be used even if
the two parts of the application are developed using differ-
ent languages and tools.

Our proposal entails the following aspects:

� The computation is mapped to the CPU or RH at the
procedure granularity.

� Code is invoked from either the CPU or RH by using
regular procedure calls. When a call crosses the CPU-
RH boundary, it is implemented in a way similar to a
remote procedure call.

� The CPU and the RH device should both be able
to request services from the other side. From this
point of view, the two computing devices behave like
peers, without a clear master-slave relationship be-
tween them. In practice, the actual implementation
may have some limitations (for example, the RH de-
vice may not be re-entrant), but the RH is assigned a
more important role than in traditional architectures.

� A call should appear to be invoked in the same way,
independent of where the implementation actually re-
sides; in other words, a software program should in-
voke a computation on the RH in exactly the same
manner it invokes a computation on the CPU.

Figure 1 displays a legal invocation sequence under our
proposal.

In the following section we discuss how remote service
invocation is implemented on the CPU side. Because our
proposal is hardware-independent, we do not describe how
procedure calls (local or remote) are implemented on the
RH side.

2.1 Stubs

The way hardware-independent service invocation is ac-
complished is similar to the technique used in implementing

ImplementationProgram

u() {}

CPU RH
s() { t(); }

t() { u(); }

r
s

u

t

r() { s(); }

Figure 1. Sample program and a legal parti-
tioning.

CPU RH

u’ u

s
s’

t’
t

r

Figure 2. Implementation of the example in
Figure 1. The primed boxes are stubs for the
respective procedures, i.e. s

0 is a stub for s.
Stubs mediate the low-level communication
but otherwise look like ordinary procedures.

remote procedure calls: instead of calling a remote proce-
dure directly, a local stub procedure is called, with the same
arguments, and using the local calling conventions. The
stub procedure implementation is hardware-dependent and
takes care of all low-level communication, by marshaling
the arguments and invoking the remote service.

Stubs mediate calls crossing the CPU-RH boundary orig-
inating from either side. Each procedure residing on the RH
which is invoked from the CPU has a stub, and each proce-
dure on the CPU called from the RH has a stub. Figure 2
shows how the example in Figure 1 is implemented.

A stub requires the existence of several simple, low-
level, hardware-dependent mechanisms to accomplish its
task:

� A mechanism is needed to send data from the CPU
to the RH. This mechanism is used to send procedure
arguments when calling RH functions (e.g., s0 calls s
in Figure 2) and to return values when returning to RH
callers (e.g., t0 returns to s);

� A second mechanism is needed for the CPU to retrieve
data from the RH. This mechanism is used to return
values from RH procedures (e.g., s returns to s

0) and
to receive arguments for procedures invoked from the

2



RH (e.g., s calls t0);

� There must exist a method to select which procedure
to invoke on the RH, because multiple procedures may
reside simultaneously on the RH (e.g., is s or u called
by r?);

� The RH must be able to indicate the identity of a CPU
procedure for implementing calls originating on the
RH (e.g., does s call r or t?);

In Section 3 we describe precisely one prototype stub
implementation in terms of a particular (simulated) archi-
tecture. We quantify the overhead of the stub-based scheme
in Section 4.2.

2.2 Discussion

The proposed interface has several advantages over the
current state-of-the-art approaches:

� The treatment of RH as an equal peer to the CPU
greatly increases the percentage of code which can
be mapped to the RH, as we show in Section 4.1.
The restriction imposed by many approaches, of map-
ping only self-contained code having no external pro-
cedure calls on the RH, severely restricts the hard-
ware/software partitioning choices.

� The interface is simple and clean, having a well-
understood semantics.

� Such an interface decouples the development of the
two parts of the application in a precise way: the code
executed on the processor and the RH configuration
can be independently developed.

� This type of interface offers portability of the software
among various RH architectures. The view provided
by the RH to the software layer is always the same, in-
dependent of the actual details of the hardware imple-
mentation and hardware capabilities. Moreover, de-
velopment of applications is substantially eased: the
initial implementation is customarily done entirely in
software; when migrating to a mixed CPU+RH, the
software side remains completely unchanged, and the
required stubs can be automatically generated by a
compiler.

� The search-space of the program partitioning algo-
rithm (hardware/software partitioning) is dramatically
reduced: procedures are considered as atomic units to
be mapped to RH. If more fine-tuning is desired, the
programmer (or even an automatic compiler) can con-
trol the position of the interface by decomposing the
application into procedures in a suitable way.

� The exact details of the low-level interface between
the CPU and RH are left unspecified. Our interface is

adaptable enough to handle all major paradigms pro-
posed in the literature: memory-based communica-
tion, bus-based, coprocessor-style and even datapath-
integrated reconfigurable functional units.

� The hardware/software interface can even be dynami-
cally changed during program run-time. The caller of
a procedure doesn’t have any knowledge whether the
actual procedure resides in hardware or software; the
calling sequence is always the same. The compiler can
generate more complicated stubs which at run-time de-
cide, based for example on performance monitoring,
whether to steer the actual execution to a software- or
hardware-side implementation of a procedure, if a pro-
cedure has both implementations.

� Finally, a lot of the tedious work for interfacing the
CPU and RH can be automated. As we show in the rest
of this paper, the generation of the low-level stub in-
terfaces can be automatically done by a compiler, once
the program partitioning is known.

However, our solution is not universally applicable: we
can envision situations where an RPC-like interface is un-
suitable, because it is too heavyweight or doesn’t match
the semantics of the underlying computational model. An
important example is the custom-instruction model, which
has been explored in prior work, e.g., [8, 14]: under this
model, a single instruction simultaneously sends the input
data (usually from the CPU registers), starts the compu-
tation and collects the result(s). This invocation model is
orthogonal to the procedure-call model, and the two can co-
exist in a single architecture. The custom-instruction model
however is mostly applicable to relatively small computa-
tions, because the instruction size does not provide enough
room to encode many inputs/outputs.

We believe that our proposal has wide enough applicabil-
ity, and that its usefulness will only increase with time. We
present here a set of assumptions which led us to propose
this interface:

� Moore’s law will hold for at least the next five years,
continuing to grow the amount of available hardware
resources at an exponential pace. As a consequence,
we expect that larger reconfigurable hardware devices
will be built, and that multi-million-gate devices will
be affordable enough to be included in common com-
puter systems. The computing-system model we have
in mind contains one or several general-purpose pro-
cessors and a large (by today’s standards) amount of
reconfigurable hardware. Large devices will provide
enough hardware resources to migrate whole proce-
dures, if not whole applications into RH.

� RH devices are beneficial mostly on compute-intensive
parts of the application. We expect that, with adequate

3



compiler support, most, if not all, of the compute-
intensive kernels of an application will be executed
on the RH. The processor will continue to be the sole
choice for handling “odd jobs”, such as the operating
system, virtual memory, resource management and ar-
bitration, and RH configuration management.

� As a direct consequence of Amdahl’s law, moving just
small pieces of code on the RH enables only mod-
est speed-ups. The much touted high performance of
RH devices is due to the massive parallelism (includ-
ing pipeline parallelism) they provide, and also partly
due to the application-specific customizations they en-
able. To obtain large speed-up, the dynamic coverage
of the code has to be high, and the total overhead of
the CPU-RH invocations has to be low. Mapping only
small code fragments onto the RH implies either low
coverage or very frequent CPU-RH crossings.

� An important consequence of the fact that RH devices
are expected to execute a substantial portion of the ap-
plication is that the RH device must have a way to
access the CPU-side of the application address-space.
Partitioning the code, while a difficult task, is a much
simpler task than partitioning the data of the applica-
tion, especially for pointer-based code. We cannot thus
expect to statically separate perfectly the data accessed
by the RH from the data accessed by the CPU; thus,
run-time mechanisms will be needed to allow the RH
to access data on the CPU side.

� Finally, a very important motivation for our proposal
is the observation that in production-quality software
there are few leaf functions. Most program functions
call library functions, either for basic operations, or,
very commonly, for error handling. If we restrict the
selection for RH to functions doing pure computation
there will be very few choices for what can be placed
on the RH. The RH has to be able to invoke services
from the processor if we want to move large parts of
the computation to the RH.

The importance of these last two observations has been
noticed before by researchers in the Garp project [9, 3];
these constraints have fundamentally affected their archi-
tecture and compiler algorithms. The definition of a formal
interface between the hardware and software layers is how-
ever missing from their proposals.

3 An Example Peer-to-peer CPU-RH Archi-
tecture

One of the merits of the interface we propose is that it
is architecture independent, and thus it can be built on top
of (almost) any low-level hardware-software interface. To
illustrate this, we describe a sample implementation on top

of a simulated computer architecture, comprising a super-
scalar processor and a tightly-coupled reconfigurable hard-
ware unit.

The implementation we describe here is built on top of
an extended SimpleScalar [2] out-of-order simulator, which
simulates a processor and an associated RH fabric. The
CPU is a 4-wide issue superscalar processor using the MIPS
instruction set architecture (ISA). We have extended the
ISA with the following RH-specific instructions:

rh input R1, R2, R3, R4: sends four integer reg-
ister1 values to the RH inputs; if more than 4 values
need to be sent (for instance to invoke a procedure with
more than four scalar arguments), several rh input
instructions are used in sequence. For sending fewer
values, the zero-constant R0 is used. The four values
are deposited in a queue inside the RH, from where
they are extracted by the configuration that will be ex-
ecuted next2.

rh output R1, R2, R3: reads into integer registers
three values from the RH output; the details are the
same as for rh input.

rh start R: starts the execution of the k-th procedure
loaded on the RH, where k is the content of register R.

rh load R: loads the binary configuration describing
the k-th procedure into the RH, where k is the content
of register R.

rh cont: reads one address from the RH and branches to
it. If the RH hasn’t finished execution yet, this instruc-
tion behaves like a no-operation. When the RH termi-
nates execution, it sends to the CPU the address of a
continuation procedure, to which rh cont branches.

The RH can generate virtual addresses in the entire ap-
plication address space (globals, heap, stack) and can access
the corresponding memory locations for reading or writ-
ing. The reads and writes of the RH are sent to the CPU,
which injects them in the load-store queue used to paral-
lelize memory accesses. In this way memory coherence
between CPU and RH is ensured. In our implementation
the load-store queue is the only CPU architectural feature
accessible from the RH (i.e., no registers can be accessed).
Moreover, the above instructions constitute the complete set
of mechanisms which the CPU can use to control the RH.3.

1The current implementation does not support passing floating-point
inputs to a RH procedure.

2An alternative choice would be to encode a procedure identifier in the
rh input instruction.

3We are considering adding a second non-coherent memory interface
to the RH, in the style of Garp [9], which can for instance be used for de-
coupled execution [17], which has been proven to be extremely beneficial
to streaming-data applications (see e.g., [7, 9])

4



o = rh_output;
return o;

done_cont:
return continuation

rh_input(...)

goto repeat;

repeat: call RH proc S
rh_cont;

Targ = rh_output(...);
r = call t(Targ);
rh_input(r);
rh_start(ret_from_CPU);
goto repeat

call_T_cont:

rh_start (s)

call CPU proc T

Figure 3. Implementation of three stubs on
our system: a stub for calling RH procedures
from the CPU, a stub returning control from
the CPU to an RH caller, and a stub calling a
procedure on the CPU from the RH.

The way configurations are encoded and manipulated
is not explicitly represented in our simulator. The RH is
tightly coupled to the CPU in the sense that the rh input,
rh output, and rh start instructions can each be exe-
cuted in a single clock cycle; also, the RH can inject mem-
ory operations into the processor load-store queue in zero
clock cycles. As the size of the RH fabric grows, we should
expect RH–CPU communication to take longer and longer,
so these latency values may have to be revised.

Instructions dealing with the RH are never executed
speculatively by the processor; before issuing such an in-
struction the CPU waits for all preceding branches to be val-
idated. Because the RH instructions depend on each other,
two RH operations cannot be executed in parallel; the RH
invocations are strictly sequential and non-speculative.

Using these building blocks, a pseudo-assembly-
language implementation of sample stub structures is given
in Figure 3.

Figure 4 illustrates our toolflow. The input programs are
un-annotated C programs. Stub generation is straightfor-
ward given information about the function type.

We have used the simulation infrastructure to validate
the correctness of our stub generator. In the next section
we present data about the effectiveness of our approach in
partitioning the application between the CPU and RH. The
results in this paper are based mostly on static information;
in the future we plan to use the described simulation infras-
tructure in order to collect performance numbers.

4 Experimental Results

We present two classes of results in this section:

Functions
on CPU

stubs

gcc

Stub generator

Function Placement Decision

C Program

on CPU
Functions

Hardware

CPU

compiler

on RH
Functions

RH

synthesis
Hardware

simulated

Figure 4. Toolflow for compilation of applica-
tions on mixed hardware/software systems.
The dotted-line components are not imple-
mented. The hardware-compiler is in devel-
opment.

� We evaluate how restrictions on the RH computational
capabilities influence the amount of program compu-
tation which can be mapped to the RH.

� We quantify the overhead introduced by the stubs.

4.1 Program Coverage

Here we examine how the CPU–RH interface impacts
program coverage, that is, the percentage of the application
code that can be placed on the RH. We analyze programs
from the SpecInt 95 [18] and MediaBench [10] benchmark
suites. We obtain the coverage percentage for a procedure
by profiling the program; the coverage of a set of proce-
dures is the sum of their individual running times. Based
on the capabilities of the hardware, the achievable coverage
depends on a number of orthogonal dimensions:

� Implementation of floating point operations: given
their complexity, floating point operations take up a
large amount of RH resources, and mapping them to
the RH could be prohibitively expensive.

� Mapping of non-leaf procedures to the RH: previous
approaches could map only leaves to the RH. In our
proposal, RH procedures may call other RH proce-
dures or even procedures on the CPU.

5



100%

L UR L UR L UR L URL URL UR

L − leaf
R − restricted
U − unrestricted

no stack

no frames

unrestricted

80%

60%

40%

20%

0%

147.vortex 130.li 099.go 129.compress 132.ijpeg 124.m88ksim

Figure 5. Dynamic program coverage as a function of the RH/CPU interface and RH architectural
constraints for SpecInt programs, assuming RH can implement FP operations. Bars marked L are
coverage with only leaf functions on the RH, those marked R are with RH functions that can call other
RH functions, and those marked U are with RH functions that can invoke CPU routines.

� Recursion: if the RH-mapped procedures are recur-
sive, the RH needs to have a stack for local variables;
otherwise the locals can be statically allocated.

� Local variable accessibility: can a procedure on the
RH pass the address of a local variable to other proce-
dures? If not, the RH local variables can all be allo-
cated in registers over their entire lifetime.

� Size of the RH: not enough computational elements
may be available for the whole computation.

To obtain coverage figures by varying parameters along
each of these dimensions, we generated the following infor-
mation for each benchmark:

� Per-procedure execution time, using profiling.

� Information about the presence or absence of floating
point operations in each procedure.

� A statically built, conservatively approximated call-
graph4.

� Per-procedure information about whether it passes
pointers to local variables in function calls.

� Estimated size in bit-operations for each procedure,
when implemented on the RH. The bit-operation count
was generated by counting operations of various types
in each procedure and multiplying the count with the
estimated size for each of these operations. This is a
rough estimate since it does not account for RH inter-
connects, but is useful in approximating how much of
an application can be mapped to RH given size restric-
tions.

4We could not build the call-graph for some benchmarks, which are
thus not reported in this section.

Figures 5, 6 and 7 show the coverage as a function of the
various restrictions. For each bar we have three potential
sections: the bottom part of the bars represents the coverage
when all local variables on RH must allocated to registers,
(i.e. there are no stack frames for RH); the middle bar repre-
sents the case when RH procedures use statically allocated
stack frames (i.e, do not support recursion but can pass ad-
dresses of locals to other procedures), while the top part al-
lows the use of arbitrary stack frames for implementing RH
procedures. The RH size is set to one million bit-operations.
The three bars represent the following:

� L: only leaf procedures can be placed on the RH

� R: RH procedures can call other RH procedures, but
not procedures on the CPU.

� U: any procedure can be mapped to RH.

4.1.1 Discussion

Figure 5 presents the coverage for SpecInt95 programs,
with an unlimited RH size. The rightmost bars do not al-
ways reach 100% because of two reasons:

� We included timing information only for procedures
which took up more than 1% of the program execution
time;

� Some benchmarks had a significant proportion of their
execution time attributable to library routines (e.g.,
20% in mesa). We assume these procedures can never
be placed on the RH.

As mentioned above, we consider three different ways
of implementing local variables in RH procedures, corre-
sponding to the three stacked bars for each coverage value.

6



100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%
L UR L UR L UR L URL UR L UR

L − leaf
R − restricted
U − unrestricted

L UR

L UR L UR L UR L URL URL UR

no stack

no frames

unrestricted

adpcm_e
adpcm_d jpeg_d gsm_d mpeg2_e mpeg2_d g721_d

g721_e

mesa gsm_e pegwit_d jpeg_e epic_d pegwit_e epic_e

Figure 6. Dynamic program coverage as a function of the RH/CPU interface and RH architectural
constraints for MediaBench programs, assuming RH can implement FP operations. The bars have
the same meaning as in Figure 5

The bottom bar shows the coverage attainable when the RH
procedures’ local variables are allocated strictly in registers.
This precludes implementing recursive functions and func-
tions with local variables whose address is taken on the RH.
The middle part of each bar is the difference in coverage
obtained when RH procedures store the local variables in
a statically-allocated memory region, thus allowing proce-
dures with locals whose address is taken to be placed on
the RH, but not recursive procedures. Finally, the top bar
allows RH procedures to use unrestricted, dynamically al-
located stack frames.

These graphs help us make several interesting observa-
tions about the power of our interface, and about the capa-
bilities required in the RH to achieve significant program
coverage.

Less than half the benchmarks (2 out of 6 SPEC pro-
grams and 6 out of 13 MediaBench benchmarks) spend
more than 50% of their execution time in leaf procedures.
We believe this proportion will be even lower for actual

production software, because most important functions will
have calls to error checking and reporting routines. This re-
affirms our belief that, unless RH code is able to call other
procedures, on the RH itself and on the CPU, substantial
speed-ups cannot be obtained. If the RH is allowed to call
other procedures residing on the RH, but not procedures on
the CPU, (second bar), the coverage goes up for 4 SPEC and
4 MediaBench benchmarks, but the coverage is still signif-
icantly less than the case when the RH can call CPU func-
tions. For the remaining benchmarks, there is practically
no difference between bars 1 and 2. When allowing a peer-
to-peer relationship between the CPU and RH, the resulting
coverage is shown by the third bar. The fact that this bar is in
most cases substantially larger than the other ones confirms
the importance of a peer-to-peer relationship as proposed in
this paper.

Limiting the size of the RH to one million bit-operations
does not cause a significant change in the coverage figures;
there were only two benchmarks that exceeded one mil-

7



100%

80%

60%

40%

20%

0%

L − leaf
R − restricted
U − unrestricted

L UR L UR L URL URL UR

epic_d epic_e mesa mpeg2_e129.compress

Figure 7. Dynamic program coverage as a function of constraints for assuming RH cannot implement
FP operations. Only programs with characteristics different from Figures 5 and 6 are shown. The
bars have the same meaning as in Figures 5 and 6.

lion bit-operations in total size (mesa and go), and even for
these, all the compute intensive routines fit within one mil-
lion bit-operations. This is true even for benchmarks which
contain a substantial amount of floating-point operations
(e.g. epic, mesa). Even though we assume a large amount of
real-estate for implementing each floating point operation,
and we assume that there is no sharing of resources between
different operations in the program, a size of one million for
the RH is not a limitation!

The decision whether to implement floating point com-
putations on RH should thus depend not on the real-estate
they require, but rather on the performance achievable by
these operations on the RH versus on the CPU.

Completely disallowing floating point implementation
on the RH significantly reduces the coverage for two bench-
marks (epic e and mesa), and causes moderate changes for
three other. We depict the impact of this restriction in Fig-
ure 7.

4.2 Stub generation and overheads

We have implemented our stub-generating routines as
a set of SUIF passes, and modified the SimpleScalar 3.0
sim-outorder simulator to simulate both CPU and RH com-
ponents [19]: implementations of the new instructions de-
scribed in Section 2 were added to the simulator and gcc
was modified to recognize them.

We estimated the overheads introduced by our stubs on
the CPU-side by counting the instructions that need to be
executed in the process of performing the remote invoca-
tion. The overheads on the RH will depend on the actual
communication primitives that will be synthesized there.

The costs are presented in Figure 8. The cost a proce-
dure call includes constructing the stack frame, transferring

Figure 8. Cost of various control-transfer
methods, as function of number of ar-
guments. In order, from bottom to
top: CPU!CPU call, CPU!RH with inlined
stub, RH!CPU with inlined stub, CPU!RH,
RH!CPU. The cost is measured in instruc-
tions and is only for the CPU side.

control and returning. The cost of a stub includes marshal-
ing the arguments into registers, making the appropriate call
and returning the result (when the stubs are not inlined, they
incur the cost of an additional procedure call). We express
the cost in instructions rather than cycles, because the actual
running time is highly dependent on the state of the proces-
sor pipeline at the time of the call.

� Overheads for CPU to RH calls: a stub executes the
following instructions: instructions to move the proce-

8



dure parameters into appropriate registers, one or more
rh input, one rh start, one rh cont to get the
continuation address (in this case the address of the
code handling the return), and one rh output to get
the return value.

� Overheads for RH to CPU calls: each transfer of con-
trol in this direction requires execution of the follow-
ing sequence: an rh cont to obtain the continuation
address from the RH, a jump to the appropriate stub,
one or more rh output instructions to obtain proce-
dure call parameters, a procedure call, an rh input
to pass the return value to the RH, a jump to the lo-
cation of the rh start and an rh start to re-start
the calling RH procedure.

5 Related Work

Several research projects have attacked the problem of
partitioning programs between a CPU and a reconfigurable
hardware fabric. From the point of view of the interface
between the two, we can distinguish several classes of de-
vices:

� Systems such as PRISC [14], Chimaera [8, 22] and
T1000 [23] use a custom-instruction style of interface
between the CPU and the RFU. A custom instruction is
a RISC-like instruction whose opcode indicates an RH
configuration that carries out the computation. These
very lightweight custom instructions are severely re-
stricted by their small number of inputs and outputs,
and thus can only implement small computations.

� Systems using larger granularity RH include Garp [9,
11], OneChip [8], RaPiD [4], Morphosys [16]. In
these systems the RH can autonomously access the
memory of the system. The invocation of the RH is
coprocessor-style. None of these papers proposes a
consistent high-level interface, and none assigns an
equal status to the RH and CPU (i.e. the RH cannot
invoke the CPU in any of these systems).

The researchers on the Garp project first observed
in [3] the need of RH computation to be able to in-
voke library procedures on the CPU; they dealt with
this problem by creating exceptional exits from the RH
code. In their proposal the computation is mapped on
the RH at the loop granularity; after an exceptional exit
the RH computation is resumed at the loop-entry point.

� A proposal for a procedural interface to an RH sys-
tem is made in Bauer’s Master Thesis [1]. He coins
the name “hardware subroutine” for the code migrated
on the RH, and proposes, like we do, that partitioning
should be done at procedure interfaces. In his proposal
the RH is still relegated to a slave role, as it cannot

invoke services on the CPU, and can implement only
leaf functions of the call graph.

� Another class of coarse-grain reconfigurable systems
consists of NAPA1000 [15], RAW [21], Smart Memo-
ries [12]. All these systems are more related to multi-
processors than to a simple CPU+RH model. In these
systems the interface between the multiple computa-
tional units is highly specialized; it is not clear how
much these systems would benefit from the use of a
procedural interface.

The interface we propose is strongly related to the no-
tion of Remote Procedure Call [13]; the idea of compiler-
generated stubs derives directly from this work. However,
unlike remote procedure calls, the systems that we consider
can also communicate using shared memory. In our set-
ting the procedure calls are used mainly for structuring the
control-flow between multiple computational units, and less
for data transmission.

Finally, let us note strong similarities between our stubs
and the inlets from the Threaded Abstract Machine [5]; the
way the stub dispatches procedure invocations from the RH
is similar to Active Messages [20]. These latter paradigms
were developed for dealing with parallel computations; we
believe that parallelism can naturally be exploited in the
CPU+RH context too, and that our proposed interface natu-
rally extends to handle this case.

6 Conclusions

In this paper we present a proposal for a high-level
hardware-software interface between processors and recon-
figurable hardware devices. The two computational devices
act as equal peers, and can invoke services from one another
by using a procedural interface, similar to remote-procedure
calls. Such an interface enables the migration of large code
fragments to the reconfigurable hardware, simplifies pro-
gram partitioning, ensures program portability and auto-
mates the generation of interface code by using compiler-
generated stubs.

We also evaluate the effectiveness of our interface for
automating the hardware-software partitioning of complex
programs from the MediaBench and SpecInt95 benchmark
suites: considering various constraints for the computa-
tional capabilities of the reconfigurable hardware device,
we estimate how much of the computation can be offloaded
from the processor.

We notice that even the computational resources avail-
able in current-generation devices are sufficient to imple-
ment large portions of each program or even entire appli-
cations. We also note that the ability of the reconfigurable
hardware device to invoke functions on the processor is nec-
essary and most often also sufficient for enabling complete

9



freedom in software-hardware partitioning: if the hardware
cannot invoke processor routines many important functions
are not eligible for mapping on the hardware side.

7 Acknowledgements

We would like to thanks Todd Mowry for his guidance
during the initial phases of this work. We would also like to
thank Suraj Sudhir for his help with the simulator and other
members of the Phoenix group and the reviewers of the pa-
per for their helpful comments. This work was supported in
part by NSF CAREER award CCR-9876248.

References

[1] T. J. Bauer. The design of an efficient hardware subroutine
protocol for FPGAs. Master’s thesis, MIT, 1994.

[2] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. In Computer Architecture News, volume 25 (3),
pages 13–25. ACM SIGARCH, June 1997.

[3] T. J. Callahan and J. Wawrzynek. Instruction level paral-
lelism for reconfigurable computing. In Hartenstein and
Keevallik, editors, FPL’98, Field-Programmable Logic and
Applications, 8th International Workshop, Tallinin, Esto-
nia, volume 1482 of Lecture Notes in Computer Science.
Springer-Verlag, September 1998.

[4] D. Cronquist, P. Franklin, S. Berg, and C. Ebeling. Spec-
ifying and compiling applications for RaPiD. In K. Pocek
and J. Arnold, editors, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pages 116–127,
Napa, CA, Apr. 1998. IEEE Computer Society, IEEE Com-
puter Society Press.

[5] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. TAM — a compiler controlled threaded abstract
machine. Journal of Parallel and Distributed Computing,
July 1993.

[6] A. DeHon. The density advantage of configurable comput-
ing. Computer, 33(4):41–49, Apr. 2000.

[7] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R. R. Taylor, and R. Laufer. PipeRench: a coprocessor for
streaming multimedia acceleration. In Published in proceed-
ings of the 26th International Symposium on Computer Ar-
chitecture ISCA 99, 1999.

[8] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chi-
maera reconfigurable functional unit. In IEEE Symposium
on FPGAs for Custom Computing Machines, pages 87–96,
1997.

[9] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor
with a reconfigurable coprocessor. In J. Arnold and K. L.
Pocek, editors, Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, pages 12–21, Napa, CA,
Apr. 1997.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Me-
diaBench: a tool for evaluating and synthesizing multime-
dia and communications systems. In Micro-30, 30th annual
ACM/IEEE international symposium on Microarchitecture,
pages 330–335, 1997.

[11] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and
J. Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. In DAC 2000, 2000.

[12] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart memories: A modular reconfigurable
architecture. In Proceeding of the International Conference
on Computer Architecture 2000, June 2000.

[13] B. J. Nelson. Remote procedure call. Technical Report CSL-
81-9, Xerox Palo Alto Research Center, Palo Alto, Califor-
nia, 1981.

[14] R. Razdan and M. D. Smith. A high-performance microar-
chitecture with hardware-programmed functional units. In
Proceedings of 27th Annual IEEE/ACM Symposium on Mi-
croarchitecture (MICRO-27), pages 172–180, Nov. 1994.

[15] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt,
J. Arnold, and M. Gokhale. The NAPA adaptive process-
ing architecture. In IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM ’98), April 1998.

[16] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,
and T. Lang. MorphoSys: An integrated re-configurable ar-
chitecture. In Proceedings of the NATO Symposium on Sys-
tem Concepts and Integration, Monterey, CA, April, April
1998.

[17] J. E. Smith, S. Weiss, and N. Pang. A simulation study of de-
coupled architecture computers. In IEEE Computer, volume
35 (8), pages 692–702, August 1986.

[18] Standard Performance Evaluation Corp. SPEC CPU95
Benchmark Suite, 1995.

[19] S. Sudhir. Simulating processors with reconfigurable func-
tion units. Master’s thesis, Carnegie Mellon University, May
2002.

[20] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A mechanism for integrated
communication and computation. In 19th International
Symposium on Computer Architecture, pages 256–266, Gold
Coast, Australia, 1992.

[21] E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, S. Devabhaktuni, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. Baring it all to software:
The Raw machine. Technical Report TR-709, MIT/LCS,
March 1997.

[22] A. Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHI-
MAERA: A high-performance architecture with a tightly-
coupled reconfigurable unit. In Proceedings of the 27th
Annual International Symposium on Computer Architec-
ture (ISCA-00), ACM Computer Architecture News. ACM
PRess, 2000.

[23] X. Zhou and M. Martonosi. Augmenting modern super-
scalar architectures with configurable extended instructions.
In Proceedings of the Reconfigurable Architectures Work-
shop RAW, 2000.

10


