

 Translating ANSI C Into Asynchronous Circuits
Async 2004 Tutorial

 April 19, 2004, Hersonissos, Crete, Greece

 Presented by: Mihai Budiu, Girish Venkataramani, Tiberiu
 Chelcea and Seth Goldstein

 Computer Science Department, Carnegie Mellon University

 {mihaib,girish,tibi,seth}@cs.cmu.edu

	
Abstract: In this tutorial we present a compilation framework
for automatically translating ANSI C programs into pipelined
asynchronous circuits. The framework is embodied in the CASH
compiler, a Compiler for Application-Specific Hardware. CASH
generates dataflow machines implemented as asynchronous circuits that
directly implement the source program, without using any
interpretative structures.
	

Contents

	Tutorial structure.

	Invitation for demo examples.

	Tutorial slides in pdf.

	Bibliography.

Tutorial Structure

This tutorial is composed of three parts. The length of the tutorial
is half a day.

1. High-level compilation

The first part describes the compilation methodology and internal
representation of CASH. CASH uses Suif for parsing the C
source files, but uses Pegasus, a custom internal representation that
represents the C program as a dataflow machine; the order of
operations with side effects is ensured using explicit synchronization
handshakes. CASH relies extensively on predication and speculation
for exploiting instruction-level parallelism. CASH performs a wide
range of program optimizations, including traditional scalar
optimizations (common-subexpression elimination, dead code
elimination, strength reduction, etc.), memory optimizations (partial
redundancy elimination for memory, register promotion), low-level
optimizations (Boolean simplification using Espresso, data
width analysis and reduction), and asynchronous circuits optimizations
(pipeline balancing, lenient operation implementation).

2. Asynchronous back-end

The second part describes CAB, the CASH Asynchronous Back-end, which
translates the Pegasus intermediate representation into asynchronous
circuits. CAB's compilation targets medium-grained, non-linear
micropipelined implementations, which communicate using four-phase,
bundled-data handshaking. CAB also performs some peephole
optimizations, builds a memory access network (which arbitrates the
operations on the global program memory), and performs technology
mapping for selected parts of the circuit (such as the control part in
each pipeline stage, and the memory access networks). The output of
CAB is a mixture of gate-level technology-mapped circuits (currently,
targeted only to the ST Micro .18um commercial library), and
behavioral descriptions; the latter are used exclusively for datapath
operations, which are synthesized using Synopsys Design
Compiler (running on Solaris). The circuits are placed and routed
using Cadence Silicon Ensemble Ultra (also running on Solaris).
Low-level Verilog simulations show that circuits synthesized from
Mediabench kernels sustain high performance (up to 1000 millions of
useful (i.e. non-speculative) arithmetic operations per second) with
extremely low power (up to 100 arithmetic operations per nanoJoule).

3. Demo
 The third part of the tutorial is a hands-on
demonstration of the capabilities of CASH. Attendees are shown how to
carry selected C kernels through all compilation steps, and how
compilation options influence the output. Attendees will also compile
and simulate their own C implementation of a DSP application.
Documentation about the intended behavior of the DSP application will
be provided with the tutorial notes, and the presenters will be
available to help the attendees. High-level visual debugging is
facilitated by the graphical CASH back-end and by a series of
trace-processing Perl scripts, which can provide high-level animations
of the resulting circuits. After synthesis, circuit-level simulation
can be performed to estimate speed, using Model Technologies' Verilog
Simulator vsim, and power, using Synopsys' Design Compiler
dc_shell.

4. Hardware and Software Resources
The original tools developed
as part of the CASH project are currently running on Linux PC
workstations. To compile and install these tools on the available
Linux workstations, gcc-2.95 is needed. In addition, for synthesis,
place and route, and Verilog simulation, the CASH design flow uses
Synopsys Design Compiler, Cadence Silicon Ensemble, and Model
Technologies' vsim, all of which run on Solaris SUN Workstations.

Invitation for demo examples

Tutorial participants are invited to submit examples of their own to
be compiled to asynchronous circuits with our tool-chain. The
examples should be submitted at least one week before the tutorial.
Each example should be a complete ANSI C application, with reference
input and output. The participants can indicate one leaf function
which should be translated to hardware (alternatively, we can support
a set of functions that can be inlined to generate a single leaf
function). We are placing the following restrictions on the input:

	The synthesized function should be a single leaf function, i.e.,
containing no other function calls.

	Does not include floating-point computations.

	Does not receive arguments or returns structures by value.
(Structures may be passed or returned by reference.)

	Does not employ signals or trigger exceptions.

	Conforms to strict ANSI C, and is compilable with gcc 2.95.

Send your examples by email to mihaib+async@cs.cmu.edu.

Bibliography

	C to Asynchronous Dataflow Circuits: An End-to-End Toolflow

Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea and Seth Copen Goldstein

IWLS 2004
		A description of the asynchronous circuits compiler back-end
and the synthesis methodology.	

	Spatial Computation
Mihai
Budiu
Ph.D. Thesis
 CMU CS Technical
Report CMU-CS-03-217, December 2003

		A comprehensive description of the high-level part of
the compiler and the intermediate representation.	

	Inter-Iteration Scalar Replacement in the Presence of Conditional Control-Flow

Mihai Budiu and Seth Copen Goldstein

CMU CS Technical Report CMU-CS-04-103

February 1, 2004

		The new scalar replacement algorithm used to eliminate
memory accesses.	

	Programmer Specified Pointer Independence

David Koes, Mihai Budiu, Girish Venkataramani and Seth Copen Goldstein

CMU CS Technical Report CMU-CS-03-123

April 2003

		A methodology to hand-annotate programs to help the
pointer analysis perform better disambiguation.	

	Optimizing Memory Accesses For Spatial Computation

Mihai Budiu and Seth Copen Goldstein

First International ACM/IEEE Symposium on Code Generation and Optimization, pages 216-227
San Francisco, CA, March 2003

		Optimizations removing redundant memory operations and
pipelining memory accesses.	

	Compiling Application-Specific Hardware

Mihai Budiu and Seth Copen Goldstein

Proceedings of the 12th International Conference on Field Programmable Logic and Applications, pages 853-863
Montpellier (La Grande-Motte), France, September 2-4, 2002

		A brief description of the compilation and
intermediate representation.	

	Peer-to-peer Hardware-software Interfaces for Reconfigurable Fabrics

Mihai Budiu, Mahim Mishra, Aswin Bharambe, and Seth Copen Goldstein

Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines, pages 57-66
Napa Valley, CA, April 2002

		Description of the hardware-software partitioning mechanism.	

	Pegasus: An Efficient Intermediate Representation

Mihai Budiu and Seth Copen Goldstein

Technical Report CMU-CS-02-107

May 2002

		An extended version of the FPL 02 paper.	

	BitValue Inference: Detecting and Exploiting Narrow Bitwidth Computations

Mihai Budiu, Majd Sakr, Kip Walker and Seth Copen Goldstein

Proceedings of 6th International EuroPar Conference, Lecture Notes in Computer Science 1900, Springer Verlag, pages 969-979
Münich, Germany, August 2000

Also as Technical Report CMU-CS-00-141

		The high-level algorithm used to discover narrow
bitwidth values in C programs.	

