

Tunable Fault Tolerance via Test and Reconfiguration

R. D. (Shawn) Blanton*, Seth Copen Goldstein

†

, Herman Schmit

*

Dept. of Electrical and Computer Engineering

†

Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

{blanton,seth,herman}@ece.cmu.edu

1.0 Introduction

The advent of reconfigurable hardware as a comput-
ing medium creates a multi-dimensional design space
where trade-offs between power, speed, cost, and reliabil-
ity are now possible. Dynamic reconfiguration allows
these trade-offs to be made on-line to adapt to various
environmental changes. Furthermore, the cost of designing
reliable circuits is greatly reduced since varying levels of
reliability can be added to any circuit, even if it was not
originally designed to run reliably, either at the time of
application start-up or during application execution.

This paper briefly discusses two ways that reconfigu-
ration and hardware virtualization [1,2] can be used to pro-
duce or modify the level of circuit reliability. The first
method addresses Single-Event-Upset (SEU) faults by
allowing the level of redundancy in the circuit to be
dynamically varied. Detection and retry mechanisms pro-
vide a level of reliability similar to that of triple modular
redundancy, at a cost of only two times (instead of the tra-
ditional three times) the original hardware or 50% perfor-
mance. The second technique described provides
reliability in the presence of local hardware faults. This
technique works by rotating a built-in self-test (BIST)
operation around the reconfigurable hardware periodically,
while continuing to execute the application.

Both methods may be used to modulate the amount of
reliability provided on an application-by-application basis
or during application execution. The former case is used
when a single field programmable gate array (FPGA) is
used for many different applications and applies to both
current commercial FPGAs as well as more modern archi-
tectures. When an application is loaded on the reconfig-
urable hardware, a level of reliability is specified. The
latter case, which is more powerful, is suited only to newer
architectures which support high-speed reconfiguration
such as PipeRench [1,2].

2.0 Variable Fault Tolerance

Figure 1 illustrates our approach to addressing SEU
failures through varying levels of redundancy. In this sce-
nario, applications that require high performance and/or
low power and no fault tolerance are represented by the
single module of Figure 1a. Here, the original design is
configured by the fabric controller and compiler for opti-
mal performance. Applications that require some degree of
fault tolerance can be implemented as shown in Figure 1b.

This mode of operation (termed error-detect mode)
requires that the original module be duplicated and oper-
ated in parallel with the original. A comparison module is
also added to detect any discrepancies between the two
module outputs. The duplication of the module and the
addition of the comparator can take place at configuration
time using the original circuit (from Figure 1a). For the
highest level of fault-tolerant operation the circuit can be
configured to use N-way modular redundancy (NMR) as
shown in Figure 1d. Any of these three modes can be spec-
ified at application load time.

Figure 1c shows a more dynamic method of providing
N-way modular redundancy without requiring N copies of
the module to be present at all times. The circuit is origi-
nally configured in error-detect mode (Figure 1b). If an
error is detected in the circuit, the fabric is reconfigured to
operate in NMR mode and the failed computation is
retried, as illustrated in Figure 1c. After all N circuits
agree on the result for some time, the circuit is reconfig-
ured back to error-detect mode. We call this method error-
detect, rol lback, and N-way modular redundancy
(EDRNMR).

EDRNMR requires a reconfiguration time that is less
than the maximum latency allowed by the system. This
will preclude the use of commercial FPGAs, which have
typical reconfiguration times in the range of 1 to 100 milli-
seconds. Newer architectures such as PipeRench [1,2] can
completely reconfigure in less than a half a microsecond,
making this technique feasible for many real-time sys-
tems. This technique will allow for reliability that
approaches NMR, while usually requiring only the hard-
ware associated with error-detect mode.

Hardware virtualization enables the execution of
hardware designs that exceed the capacity of the device by
time multiplexing the design. In PipeRench, hardware vir-
tualization is made possible by reconfiguring a pipeline
stage of an application in a single clock cycle. This allows
a pipeline of any depth to execute on any size PipeRench.
Thus, a given fabric of fixed size will support larger
designs, but at lower performance.

Without hardware virtualization, all of the actual
hardware is required to meet the performance require-
ments at the highest level of fault tolerance. Moreover,
when lower levels of reliability are acceptable, it is diffi-
cult to take advantage of the extra hardware. With virtual-
ized hardware, the performance of a smaller hardware

design, as in Figure 1b, will have higher throughput at the
same clock cycle as the design in Figure 1d. A quadratic
reduction in power can therefore be obtained by lowering
the operating voltage of the device to the point at which its
throughput requirement is met.

3.0 FEBIST

We also envision new and highly cost-effective meth-
ods for tolerating local hardware faults through frequently
executed built-in self test (FEBIST). Reconfigurable hard-
ware is inherently regular in nature. Both the logic (LUTs,
CLBs, etc.) and the interconnect are highly uniform. This
regular structure combined with the reconfigurability
aspects of the fabric make the BIST and diagnosis of the
fabric both quick and efficient [3,4]. Some applications
may have sufficient time slack that allows the fabric’s test
aspects to be exploited to achieve fault tolerance. In this
scheme, alternating portions of the fabric are frequently
reconfigured for a BIST session which: (1) Ensures the
tested fabric is free of hard failures. (2) In the presence of
failures, identifies the smallest diagnosable piece of the
faulty fabric (CLB or interconnect segment). The diagnos-
tic results of the BIST session can then be used to config-
ure around the faulty fabric. Note that both application
modules and circuitry dedicated to fault tolerance (voter,
comparator, etc.) can have faulty fabric switched out. This
switching out of faulty fabric restores the reliability of the
application once a failure has been discovered, hence
increasing the overall reliability.

The frequency of the FEBIST determines the level of
fault tolerance achieved. If FEBIST sessions are executed
often, than the likelihood of a hard failure going undiscov-
ered and causing a system error is less probable. Less fre-
quent FEBIST establishes lower levels of fault tolerance
but increases performance. Once again, hardware virtual-
ization achieves additional levels of reliability with either
additional hardware, less performance, more power, or
some combination of these three attributes.

4.0 Conclusions

In this paper, we have briefly outlined the benefits of
using dynamically reconfigurable virtualized hardware to
implement fault tolerant systems. We believe this technol-
ogy allows for new trade-offs between hardware cost,
power, performance and reliability. Because reconfig-
urable hardware can be modified dynamically to provide
various levels of reliability, it is possible to obtain levels of
reliability associated with NMR operation with only
slightly more than twice the minimal hardware. Since the
duplication of hardware and addition of comparison and
voting hardware can take place at configuration time, the
cost of designing hardware-based fault tolerance is signifi-
cantly reduced. Because the level of fault-tolerance can be
determined after the design is complete, designers need
not calculate the required redundancy a priori. Finally,
varying levels of FEBIST can be used to assure that a
hardware failure does not lurk deep inside a design, pro-
ducing erroneous results over long periods of time.

While the benefits of EDRNMR and to some extent
FEBIST rely on fast reconfiguration and hardware virtual-
ization, the ability to dynamically change the reliability of
a circuit after it has been designed and in response to the
environment can be applied to many commercial FPGAs.

5.0 References

[1] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, D. E.
Thomas, “Managing Pipeline-Reconfigurable FPGAs,”

Proc. ACM/SIGDA Sixth International Symposium on Field
Programmable Gate Arrays

, 1998.
[2] H. Schmit, “Incremental Reconfiguration for Pipelined

Applications,”

Proc. of the IEEE Symposium on FPGAs for
Custom Computing Machines

, pp. 47-55, 1997.
[3] C. S. Stroud, E. Lee, M. Abramovici, “BIST-Diagnostics of

FPGA Logic Blocks,”

Proc. of the 1997 IEEE Interna-
tional Test Conference

, pp. 539-547, 1997.
[4] C. S. Stroud, E. Lee, M. Abramovici, “Using ILA Testing

for BIST in FPGAs,”

Proc. of the 1996 IEEE Interana-
tional Test Conference

, pp. 68-75, 1996.

Figure 1: Reconfigurable hardware enables a dynamic environment for choosing various operation points that optimize
some combination of power, speed, and fault tolerance.

Module

Module 1

Module 2

Module N

Voter

Module 1

Module 2

Comparison
module

(a) (b) (c)

Power & Speed & Reliability

Module 1

Module 2

Comparison
module

Module 1

Module 2

Module N

Voter

(d)

Reconfiguration

