
Evaluation of Mechanisms for Fine-Grained Parallel Programs
in the J-Machine and the CM-5

Ellen Spertusy, Seth Copen Goldsteinz, Klaus Erik Schauserz, Thorsten von Eickenz,
David E. Cullerz, William J. DallyyyMIT Artifical Intelligence Laboratory zComputer Science Division — EECS

545 Technology Square University of California
Cambridge, MA 02139 Berkeley, CA 94720fellens,billdg@ai.mit.edu tam@cs.berkeley.edu

Abstract
This paper uses an abstract machine approach to

compare the mechanisms of two parallel machines: the
J-Machine and the CM-5. High-level parallel programs
are translated by a single optimizing compiler to a fine-
grained abstract parallel machine, TAM. A final compi-
lation step is unique to each machine and optimizes for
specifics of the architecture. By determining the cost of the
primitives and weighting them by their dynamic frequency
in parallel programs, we quantify the effectiveness of the
followingmechanisms individuallyand in combination. Ef-
ficient processor/network coupling proves valuable. Mes-
sage dispatch is found to be less valuable without atomic
operations that allow the scheduling levels to cooperate.
Multiple hardware contexts are of small value when the
contexts cooperate and the compiler can partition the reg-
ister set. Tagged memory provides little gain. Finally, the
performance of the overall system is strongly influenced by
the performance of the memory system and the frequency
of control operations.

Keywords: Parallel Processing, Performance Analysis,
Compilation.

1 Introduction
Several experimental parallel architectures have been

developed in recent years to demonstrate novel hardware
mechanisms that may enhance the performance of pro-
grams written in emerging parallel languages. For example,
Monsoon focuses on Id90, the J-Machine on CST, Alewife
on Mul-T, the CM-5 on Fortran90, and Dash and KSR-1 on
extensions to C and Fortran. All of these architectures pro-
vide a family of mechanisms that collectively support the
requirements of the parallel language, are universal enough
to support any of the other language paradigms, and are
real enough to be constrained by the traditional technology

forces. Thus, it would seem that the time has come for
parallel architecture research to begin the shift from “big
new ideas” to careful quantitative analysis of the effective-
ness of various mechanisms. In this paper, we seek to
evaluate the set of mechanisms in the MIT J-Machine with
respect to the implicitly parallel language Id90 and draw a
quantitative comparison with the CM-5.

At the current state of parallel computing, a completely
satisfactory quantitative analysis of mechanisms is diffi-
cult to achieve because there is no well-established body of
machine-independent software reflected in a standard set
of benchmarks. There is not even a consensus on the pro-
gramming languages of choice. Where benchmarks exist,
they have been developed specifically for the machine that
they are intended to evaluate [14, 9] or specifically avoid
emerging languages and the novel mechanisms which could
bring them within practical reach [3]. It is also difficult to
obtain high-quality compilers for such new languages on
more than one machine, yet it is well understood that the
architectural support can only be evaluated in the context
of sophisticated compilation, rather than direct execution
of high-level constructs. Finally, the machines reflect sub-
stantially varying engineering budgets and designer capa-
bilities, which should be factored out of the evaluation of
the architectural contribution. Simply comparing execu-
tion times gives only a crude and noisy calibration, failing
to isolate the reasons for the differences.

The method of analysis employed in this paper is as
follows. We consider two recent parallel machines: the
J-Machine, developed at MIT as a study in universal mech-
anisms for fine-grained parallelism, and the CM-5, devel-
oped at Thinking Machines Corp. as a commercial product
supporting data-parallel programs. We take as a basis for
comparison a powerful machine-independent parallel lan-
guage, Id90, which was not the primary target for either
architecture, but for which a high-quality compilation sys-



tem exists. The compiler performs a variety of high-level
optimizations in translating the language down to code for
a simple abstract machine, TAM [6, 13]. The TAM code
is identical for the two machines, controlling for effects of
high-level optimizations. The translator from TAM code to
machine language, however, employs a variety of machine-
specific optimizations reflecting the most advantageous use
of the available mechanisms. The performance of isolated
mechanisms is reflected in the cost of the individual TAM
primitives on the machine. The overall effectiveness of the
family of mechanisms is determined by weighting each of
the primitives by its frequency in a suite of programs. The
J-Machine essentially provides direct hardware support for
every aspect of TAM; however, TAM does not use all the
mechanisms in the machine. The CM-5 provides a variety
of mechanisms for data-parallel programming, which are
not useful to TAM. What remains is a very reasonable base-
line machine, essentially a collection of workstation-class
processors on a dedicated network. Thus, we can compare
a sophisticated set of mechanisms against a familiar base-
line architecture with respect to the dynamic load presented
by Id90 programs compiled to TAM.

Section 2 describes the two architectures under study
and explains the salient aspects of TAM. TAM-level dy-
namic instruction frequencies are produced for a variety of
programs to serve as a basis for comparison. Section 3
corrects for a set of architectural and engineering factors
that have a significant impact on execution time for the
two machines, but for which conventional wisdom (and
hindsight) applies. The remaining sections deal with ar-
chitectural aspects that are unique to parallel computing.
Section 4 examines the impact of the processor/network
coupling on message-passing cost. Section 5 looks at three
mechanisms related to asynchronous message arrival that
interact with dynamic scheduling. Section 6 considers the
utility of tagged memory words and Section 7 ties together
our observations. Two important lessons arise from the
study. First, novel mechanisms do not substitute for solid
engineering of the processor pipeline and storage hierarchy.
Second, mechanisms should not be evaluated in isolation,
but in how they work together in the compilation framework
for the programming language.

2 Background
2.1 CM-5

The CM-5 [16] is a massively-parallel MIMD computer
based on the Sparc processor, interconnected in two iden-
tical disjoint “hypertree” networks. Each node consists of
a 33 MHz Sparc RISC processor chip-set (including FPU,
MMU and 64 KByte cache), 8 MBytes of local DRAM
memory and a network interface to the hypertrees and
broadcast/scan/prefix control networks. (The node may

also contain vector units with additional memory, but we
will not address the vector capability.) The network inter-
face consists of a pair of memory-mapped FIFO queues for
each of the two data networks. Messages are limited to a
maximum of five 32-bit words in length. Message delivery
is reliable, but no guarantee is made on ordering. The study
uses a 128-node CM-5, although machines of 1024 nodes
are currently in the field.

2.2 J-Machine

The J-Machine is a massively-parallel MIMD computer
based on the Message-Driven Processor (MDP) intercon-
nected by a 3-D mesh network. The MDP is a single-chip
processing node composed of a 16 MHz 32-bit integer unit,
a 4K by 36-bit static memory, a closely integrated network
interface, a packet router, and an ECC DRAM controller.
The on-chip memory is augmented with a 256K by 36-
bit off-chip memory. The 36-bit words include 4-bit tags,
which indicate data types such as booleans, integers, and
user-defined types. Two special tag values future and cfu-
ture cause a trap when accessed. The MDP has three sep-
arate priority levels: background, 0, and 1, each of which
has a complete context, consisting of an instruction pointer,
four address registers, four general-purpose registers, and
other special-purpose registers. A 512-node J-Machine has
been built, and a 1024-node machine is planned.

The MDP implements a prioritized scheduler in hard-
ware. When a message arrives at its destination node, it is
automatically written into a message queue, consisting of a
fixed-size ring buffer in on-chip memory. Background exe-
cution is interrupted by priority0 message reception, which
in turn may be interrupted by priority 1 message reception.

2.3 TAM

TAM defines a fine-grained parallel execution model
used as a compilation target for Id90. Although it grew
out of work on dataflow, it defines a simple model of self-
scheduling threads that can be implemented on any ma-
chine. The key ways in which TAM differs from “thread
packages” are that TAM threads are even lighter weight, the
scheduling is integrated with aspects of compilation, such
as register allocation, and there is no external scheduler.

A TAM program consists of a collection of code-blocks,
which typically represent functions or loops in the source
program. Each code-block consists of a collection of
threads, which correspond roughly to basic blocks. Two
instructions appear in the same thread only if they can be
statically ordered and if no operation whose latency is un-
bounded occurs between them.

The TAM execution model centers on the activation
frame, which is the analog of a stack frame for parallel
calls. To invoke a code-block, a frame is allocated on a
processor and initialized, and arguments are sent to the



frame. Initialization consists of setting the values of syn-
chronization counters stored within the frame. A thread
is allowed to run only when all its antecedents have been
executed. To detect the completion of antecedents, a syn-
chronization counter is associated with each thread. The
counter is omitted for threads that have only one antecedent,
i.e., unsynchronizing threads. For each frame, a stack of
instruction pointers, called the continuation vector (CV),
holds the list of threads that are ready to run. The argu-
ments to the code-block, results from subordinate calls, and
responses to global heap accesses are received by inlets. In-
lets are compiler-generated message handlers that copy the
arguments into the frame and enable computation depen-
dent on the message. In order to process requests from the
network quickly, inlets are small and run at a higher priority
than threads.

Maintaining the thread queue in the frames provides a
natural two-level scheduling hierarchy. When a frame is
scheduled, the remote continuation vector (RCV) is copied
into the local continuation vector (LCV), from which en-
abled threads are executed until the LCV is empty. The
set of threads that run during this time is called a quantum.
Each processor maintains a queue of ready frames with
non-empty CVs. A new frame is activated from the queue
when a quantum completes.

Global data structures in TAM provide synchroniza-
tion on a per-element basis to support I-structure and M-
structure semantics [10]. In particular, reads of empty
elements are deferred until the corresponding write occurs.
Accesses to the data structures are split-phase and are per-
formed via special instructions: ifetch reads an element
by sending a message to the processor containing the data
which returns the value to an inlet, istore writes a value
to an element, resuming any deferred readers, and ialloc

and ifree allocate and deallocate I-structures.

In the current implementation of TAM, instructions are
primarily three address, where the operands are constants,
registers, or frame locations. TAM registers and frame slots
are statically typed into integers, floats, various pointers,
and generals. Generals are sufficiently large to contain any
TAM type but do not identify the type. Correct compilation
ensures that the producer and consumer of a general agree
on the type of the contained value. No fixed limit is placed
on the number of TAM registers, although the compiler
tries to use them as efficiently as possible. The translator
from TAM to a target machine is responsible for mapping
TAM registers to physical registers or spill areas.

The key issues presented by TAM are the parallel
call, dynamic synchronization of computation with asyn-
chronous responses from both remote requests and calls,
split-phase remote operations, and the overlap of computa-
tion with communication.

2.4 Mapping to the machines

The basic mapping of TAM to the two machines is rel-
atively straightforward. Program code is placed on every
processor, but a given code-block invocation takes place on
a single processor. Because the compiler may pull loops
out into separate code-blocks, these can be spread across
the machine to implement parallel loops [7]. The memory
on each processor is divided into two areas. One holds
small arrays and activation frames. The other holds large
arrays, which are spread across all the processors such that
logically consecutive elements are on different processors.
Memory is managed explicitly through library routines.

The J-Machine implementation of TAM [15] makes di-
rect use of the hardware support for different priority lev-
els. Threads run at the background priority level, allowing
them to be quickly interrupted by messages arriving in the
priority 0 queue. (Priority 1 is currently not used.) Be-
cause each priority level has its own register set, inlets do
not interfere with thread execution. An address register
is set aside in each register set to hold the frame pointer.
Threads use an additional general-purpose register to hold
the address of the top of the LCV. Two general-purpose reg-
isters are used as temporaries to hold memory operands and
to implement complex TAM instructions. The remaining
general-purpose register is used to hold one TAM register.
All other TAM registers are mapped to the base of on-chip
memory, a region that can be addressed easily. Frames are
stored in main memory.

A similar approach is followed on the Sparc with in-
lets using a new register window. However, due to the
tight coupling between threads and inlets, it proves to be
more efficient to simply partition a single window. The
CM-5 implementation [8] uses 32 registers divided into
three classes: global registers which hold frequently-used
values, TAM registers which are preserved for the duration
of a quantum, and inlet registers, used during inlet execu-
tion and to pass information from threads to inlets. The
CM-5 translator attempts to keep as many TAM variables
as possible in the TAM registers and spills the rest into the
frame.

2.5 Benchmarks

The empirical basis for comparison is provided by six
benchmark programs described below. TAM-level dy-
namic instruction distributions are collected by running an
instrumented version of the program on the CM-5. The
translator inserts in-line code to record roughly a hundred
specific statistics on each processor, which are combined at
the end of the program.1 These are grouped into the basic

1The Benchmark programs, raw data, and tools to process the data
can be retrieved by anonymous FTP from ftp.cs.berkeley.edu under
/ucb/TAM/isca93.tar.Z.


