Separation Constraint Partitioning - A New Algorithm for Partitioning

Non-strict Programs into Sequential Threads

Klaus E. Schauser
Department of Computer Science

University of California, Santa Barbara

Santa Barbara, CA 93106
schauser@cs.ucsb.edu

Abstract

In this paper we present substantially improved thread par-
titioning algorithms for modern implicitly parallel languages.
We present a new block partitioning algorithm, separation
constraint partitioning, which is both more powerful and
more flexible than previous algorithms. Owur algorithm is
guaranteed to derive maximal threads. We present a the-
oretical framework for proving the correctness of our par-
titioning approach, and we show how separation constraint
partitioning makes interprocedural partitioning viable.

We have implemented the partitioning algorithms in an
1d90 compiler for workstations and parallel machines. Using
this experimental platform, we quantify the effectiveness of
different partitioning schemes on whole applications.

1 Introduction

Modern implicitly parallel languages, such as the functional
language 1d90, allow the elegant formulation of a broad class
of problems while exposing substantial parallelism. How-
ever, their non-strict semantics require fine-grain dynamic
scheduling and synchronization, making an efficient imple-
mentation on conventional parallel machines challenging. In
compiling these languages for commodity processors, the
most important step is partitioning the program into se-
quential threads. This paper presents a new partitioning
algorithm and experimentally quantifies its effectiveness.

Many of the issues that arise in implementing non-strict
languages (dynamic scheduling, synchronization, and heap
management) are present, independent of the source lan-
guage, when producing code for parallel machines. Thus, the
techniques developed in this paper are also applicable to par-
allel implementations of other languages. Moreover, dealing
with non-strictness requires that these issues be faced even
when compiling for sequential processors, because non-strict
programs require logical parallel execution in order to make
forward progress.

The language studied in this paper, 1d90 [Nik90], is a
non-strict functional language with eager evaluation. This
combination, termed lenient evaluation [Tra91], exhibits
more parallelism than lazy evaluation while retaining much

To appearin the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’95).

David E. Culler, Seth C. Goldstein
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720
{culler,sethg}@cs.berkeley.edu

of its expressive power.! To further increase parallelism,
1d90 provides data structures that automatically synchro-
nize between producer and consumers: I-structures and M-
structures.

When executing a lenient program on a parallel machine,
dynamic scheduling may be required for two reasons. First,
the semantics of the language make it impossible in gen-
eral to statically determine the order of operations. The
order in which operations of a function execute may de-
pend on the dynamic context in which the function is in-
voked (cf., Section 2.1), not just on the value of its argu-
ments. Second, long latency inter-processor communica-
tion and accesses to synchronizing data structures require
that the computation dependent on the messages be sched-
uled dynamically. Dynamic scheduling is expensive on com-
modity microprocessors, incurring a high cost for context
switching. Therefore, these languages have been accom-
panied by the development of specialized computer archi-
tectures, e.g., graph reduction machines [PCSH87, Kie87],
dataflow machines [ACIT83, GKW85, SYHT89, PC90], and
multithreaded architectures [Jor83, NPA92]. Much research
has been done in compiling lenient languages for dataflow
architectures [ACI*83, Tra86, AN90, GKW85, Cul90]. As
a clearer separation of language and architecture has been
obtained, attention has shifted to compilation aspects of
these languages for commodity processors [Tra91, SCvE91,
Nik93].

The emphasis of the compilation work is to statically
schedule groups of instructions into sequential threads and
restrict dynamic scheduling to occur only between threads.
A thread forms the basic unit of work: once scheduled it
runs until completion. The task of identifying portions of
the program that can be scheduled statically and ordered
into threads is called partitioning [Tra91]. Partitioning the
program into sequential threads requires substantial com-
piler analysis (dependence analysis) because, unlike in im-
perative languages, the evaluation order is not specified by
the programmer. Care has to be taken to generate threads
which obey all dynamic data dependencies and do not lead
to deadlock. Partitioning decisions imply trade-offs be-
tween parallelism, synchronization cost, and sequential effi-
ciency [SCvE91]. However, given the limits on thread size
imposed by the language model, the use of split-phase ac-
cesses, and the control paradigm, our goal simply is to max-

1Usually non-strictness is combined with lazy evaluation (e.g., in
LML and Haskell). Under lazy evaluation an expression is only eval-
uated if it contributes to the final result. Lazy evaluation decreases
the parallelism because the evaluation of an expression is only started
after it is known to contribute to the result.

imize the length of the threads and minimize the number of
thread switches.

1.1 Contributions

The main contribution of this paper is the development of
a new thread partitioning algorithm that is substantially
more powerful than any previously known [Tra91, HDGS91,
SCvE91, TCS92]. A compiler for 1d90 has been developed
with back-ends for workstations and the CM-5 multipro-
cessor. It serves as an experimental platform for studying
the effectiveness of the partitioning algorithms. The parti-
tioning algorithms presented in [SCvE91] and [TCS92] are
a starting point for this work and are extended in several
ways. The paper:

e presents a new block partitioning algorithm, separa-
tion constraint partitioning, which is more powerful
than iterated partitioning, the previously best known
block partitioning,

e shows how separation constraint partitioning can be
integrated successfully into the interprocedural parti-
tioning algorithm to improve code at the call bound-
aries,

e outlines the theoretical framework and sketches the
proof of correctness for our partitioning approach,?

e implements the partitioning algorithms, resulting in a
running execution vehicle for [d90 on workstations and
several parallel machines, and

e quantifies the effectiveness of the different partitioning
schemes on whole applications.

In addition, although not documented here, we have ex-
tended interprocedural analysis to handle recursion and mu-
tually dependent call sites [Sch94].

Section 2 formalizes the problem of thread partitioning
and presents an example which shows that non-strict lan-
guages require dynamic scheduling. In Section 3 we present
our new partitioning algorithm, separation constraint par-
titioning. Section 4 briefly discusses how separation con-
straint partitioning can be integrated with interprocedural
partitioning. Section 5 presents experimental results which
show the effectiveness of our partitioning algorithm. Finally,
Section 6 contains the summary and conclusions. A short
sketch of the proof of correctness for the partitioning algo-
rithm appears in Appendix A.

1.2 Related Work

Partitioning is similar in spirit to compilation techniques
for lazy functional languages [SNvGP91, Pey92]. Strictness
analysis [Myc80, CPJ85] tries to determine which arguments
can be evaluated before invoking the body of a function,
thus avoiding the creation of expensive thunks for strict ar-
guments. Partitioning goes a step further as it may derive
that arguments can be evaluated together even if a function
is not strict in them [Tra91]. Path analysis [BH87] detects
the order in which arguments are evaluated, which may re-
sult in a cheaper representation of thunks and reduce the
cost of forcing and updating them. Serial combinators by

?The complete proof can be found in [Sch94].

Hudak and Goldberg are one of the first attempts to im-
prove the parallel execution of lazy functional programs by
increasing their granularity [Gol88]. Their approach is to
group several combinators into larger serial combinators.

Partitioning plays a crucial role for the parallel execu-
tion of strict functional languages, but unlike non-strict lan-
guages, the ordering of instructions can be determined stat-
ically. Thus, the difficulty is not what can be put into the
same thread, but rather what should be placed into the
same thread given communication and load balancing con-
straints [SH86, NRB93].

Most of the partitioning research for lenient languages
was inspired by Traub’s seminal theoretical work, which uses
dependence analysis to characterize when instructions can
be grouped into a thread [Tra91].> Traub showed that the
problem of finding a partitioning with the minimum number
of threads is NP-complete. Thus, all of the partitioning ap-
proaches rely on heuristics to group nodes into threads. lan-
nucci developed dependence set partitioning, which groups
nodes that depend on the same set of inputs [Tan88]. De-
mand set partitioning, presented in [SCvE91] and [HDGS91]
is analogous to dependence set partitioning, but it groups
nodes which are demanded by the same set of outputs. [lter-
ated partitioning combines the power of dependence and de-
mand set partitioning by applying them iteratively [TCS92,
HDGS91]. One of the algorithms is applied, then the re-
duced graph is formed, and the other algorithm is applied.
This process i1s repeated until no further changes occur.
Schauser et al. extended the two basic partitioning schemes
with local “merge up” and “merge down” rules, thus achiev-
ing essentially the same degree of grouping as iterated par-
titioning [SCvE91]. Traub et al. [TCS92] extended iterated
partitioning with interprocedural analysis to obtain larger
threads. Recently, [Co094] and [Sch94] independently devel-
oped extensions to the interprocedural algorithm to handle
recursive functions. Separation constraint partitioning iden-
tifies all possible “merges” allowing the thread partitioning
to be guided by high level heuristics, such as minimizing the
cost of procedural boundaries.

2 Block Partitioning

The partitioning algorithm produces a collection of threads.
The instructions of each thread are statically scheduled, and
all dynamic scheduling required by non-strictness or poten-
tially long latency communication occurs between threads.

Definition 1 (Thread [TCS92]) A thread is a subset of

the instructions of a procedure body, such that:

1. a compile-time instruction ordering can be determined
for the thread which is valid for all contexts in which
the containing procedure can be invoked, and

2. once the first instruction in a thread is executed, it
is always possible to execute each of the remaining
instructions in the compile-time order without pause,
interruption, or execution of instructions from other
threads.

3 Traub’s original framework allows threads to suspend; thus, his
threads capture the sequential ordering which is required between in-
structions, but not the dynamic scheduling which may occur between
the threads. Subsequent research in this area disallows thread sus-
pension, which has the advantage of capturing the cost of switching
between threads.

Our partitioning algorithms work on structured dataflow
graphs [Tra86], the intermediate form used in the Id90 com-
piler. It is similar to intermediate representations found in
other optimizing compilers. A structured dataflow graph
consists of a collection of blocks,* one for each function and
each arm of a conditional, and interfaces which describe
how the blocks relate to one another [TCS92]. Each block
is represented by an acyclic dataflow graph; roughly, it cor-
responds to a group of operators with the same control de-
pendence [FOWS8T]. For example, all operators comprising
the “then” arm of a conditional, excluding those in nested
conditionals, are a block.

Definition 2 (Dataflow Graph) A dataflow graph is a
directed acyclic graph of vertices and dependence edges,
(V, E., Eq), where E. CV x V are the certain direct de-
pendence edges and E; C V x V are the certain indirect
dependence edges.

The vertices describe the instructions, including arith-
metic and logic operators, creation and access of data struc-
tures, and the sending and receiving of arguments and re-
sults. The edges capture certain data dependencies, which
are present in every context in which the procedure can be
invoked. We distinguish two kind of certain dependencies:
direct dependencies (represented in the examples by straight
arcs—see Figure 2a) and indirect dependencies (represented
by squiggly arcs—see Figure 2a). Indirect dependencies rep-
resent potentially long latency dependencies which may in-
volve nodes of other blocks. For example, an indirect edge
connects the request and response nodes for a split-phase
synchronizing data structure access. Such an access may
require a long time to complete due to network latency or
synchronization delay, i.e., it may have to wait until an other
computation completes and stores the referenced value. Def-
inition 1 implies that nodes connected by an indirect depen-
dence must reside in different threads.

In addition, we define a potential indirect dependence
(PID) as one which may exist in some but not all invoca-
tions of the block. PIDs may go through nodes of other
blocks. This concept of potential indirect dependencies is
very important. A PID is a dependence which could exist in
some legal execution of the program, where a legal execu-
tion is defined as one which does not lead to a deadlock in
the absence of partitioning. The key observation is that the
compiler does not have to consider PIDs which are contra-
dicted by certain dependencies because such dependencies
would lead to deadlock. Certain dependencies provide the
mechanism to reduce the set of PIDs. We need to be conser-
vative and overapproximate the PIDs. Due to the non-strict
nature of the language the compiler initially assumes that
for each function any argument may depend on any of its
results. Through the process of analysis some PIDs are ruled
out. The challenge is to represent PIDs as precisely and as
efficiently as possible. We use inlet and outlet annotations
to represent PIDs in the dataflow graph.

Definition 3 (Annotation) An annotation for a block is
a 5 tuple A = (X, Inlet, ¥,, Outlet, CID), where X; is the
inlet alphabet, Inlet : V' — Pow(%;) maps each node to
a set of inlet names (the inlet annotation), X, the outlet
alphabet, Outlet : V — Pow(X,) maps each node to a set of

*In previous work the term basic block was used [Tra86, TCS92].
Since this term has a different meaning in the compiler literature for
imperative languages we use the term block.

outlet names (the outlet annotation), and CID C (V x V)
are the certain indirect dependencies (CID = E,).

In the graphical representation, we attach incoming cir-
cles to nodes for inlet annotations and outgoing circles for
outlet annotations. For example, in Figure 1 the inlet an-
notations are {a} and {b}.

Nodes with outlet and inlet annotations form the end-
points of PIDs. A PID may travel from a node with an outlet
annotation to a node with an inlet annotation. An inlet
name represents a set of outlet nodes that this node cer-
tainly depends on. This set is not known at compile time,
but every node which contains the same inlet name in its an-
notation depends on this same set of outlet nodes, although
we can not identify which outlet nodes they are. Thus, the
initial assumption of any inlet depending on any set of out-
lets (not contradicted by certain dependencies) is captured
by giving each inlet a unique annotation. Likewise, an out-
let name represents a set of inlet nodes that depend on this
node. The process of assigning the same or partially over-
lapping inlet (or outlet) names to multiple nodes allows us
express sharing of dependencies between nodes.

As mentioned above, the PIDs capture the potential de-
pendencies from outlet nodes to inlet nodes that do not lead
to deadlock at runtime. We assume that a PID exists unless
it is contradicted by certain dependencies. More formally,
we define a PID to exist from a node s to a node r if, there
exists an o € Outlet(s) and ¢ € Inlet(r) such that there does
not exist a path over straight and squiggly edges from a node
v’ with 1 € Inlet(r') to a node s’ with o € Outlet(s").

The task of a partitioning algorithm is to take as input
a structured dataflow graph and to partition the vertices of
each block into non-overlapping regions such that each sub-
set can be mapped into a non-suspending sequential thread.
Deriving the threads is done in two steps. First, the nodes
of each block are partitioned into disjoint subsets. Then,
the instructions of each subset are linearized (any topologi-
cal ordering will do). The partitioning algorithms presented
here only derive the subsets of vertices and leave the actual
ordering of instructions within each thread to a later stage
of the compiler. We shall refer to each subset of vertices
simply as a thread.

A correct partitioning has no circular dependencies be-
tween threads, i.e., no static cycles within blocks and dy-
namic cycles across blocks. Without circular dependencies,
it is possible to delay the scheduling of a thread until all
of its predecessors have completed and then run the thread
until completion. In addition, a correct partitioning must
ensure that requests and responses to split-phase operations
are in different threads.

2.1 Simple Examples

We now present a simple example to illustrate the concepts
just introduced. Figure 1 shows the dataflow graph for the
function f which is called by the procedures g and h.

def £ u v = (uxu, vt+v);
def g z = {s,t = (£ z s) in t}; computes (2% 2) + (2 *z2)
def h z = {s,t = (£ t z) in s}; computes (z+ 2) x (2 + 2)

This example illustrates the need for dynamic scheduling
even in the absence of conditionals. The function f takes two
arguments, u and v, and returns two results, u*u and v+ v.
Within f there is no dependence between the multiplication

and addition. Therefore, they can be scheduled in any or-
der under traditional strict evaluation. This is not true for
non-strict evaluation. The function ¢ feeds the first result
of the function f back in as the second argument, while the
function h feeds the second result back in as the first argu-
ment. These two dependencies are PIDs. In the context of
function g the multiplication must be executed before the
addition, while in function h the opposite is true. Thus, the
multiplication and the addition have to be scheduled inde-
pendently, and it is impossible to put them together into a
single non-suspensive thread.

Rec; 4@ Rec, 4@
P

* +

#
Send; $® Send2’®

Figure 1: Small example of a dataflow graph for the function
f u v = (uxu, v+v); and its partitioning into two threads.
The arcs represent direct dependencies while the inlet and
outlet annotations represent sets of potential dependencies
as explained in the text. The shaded regions represent the
threads.

The two PIDs are represented by inlet and outlet anno-
tations. Without any interprocedural analysis to indicate
otherwise, each node is given a unique singleton annota-
tion, implying that we have to assume that each depends
on (or influences) a different set of unknown nodes. In our
example, the argument receive nodes are given the inlet an-
notations {a} and {b}, while the send nodes have the outlet
annotation {z} and {y}. The names themselves are not im-
portant; the absence of sharing between the names is what is
important. By our definition a potential dependence exists
from the send node with outlet annotation {z} back to the
receive node with inlet annotation {b} because there does
not exist a certain dependence path contradicting this, i.e.,
from a node with b in its inlet annotation to a node with =
in its outlet annotation. Likewise, there exists a PID from
Sendy to Reci. Functions g and h contain these PIDs. On
the other hand, there cannot exist a PID from Send; back
to the Reci because this is contradicted by a certain depen-
dence path. Thus, the inlet and outlet annotations correctly
capture the two potential dependencies which may arise at
run time. As a result, the left and right nodes must stay in
separate threads, and the partitioning algorithm can at best
obtain two threads, as indicated by the shaded regions.

We can improve the partitioning by using interprocedu-
ral analysis if we know that the function f is only called in
the following context:

deffooz={s,t=(fzz) ins+t}; computes (z*2)+(z + 2)

In this case, it is valid to give both receive nodes of the
def site the same inlet annotation, say {a}, as both argu-
ment send nodes at the call site depend on the same argu-
ment of the function foo. Likewise, we can give the same

outlet annotation, say {z}, to both send nodes of f. Now
when partitioning f, the compiler can determine that there
cannot exist a potential dependence from a result back to
an argument, since under the new annotation there exists a
certain dependence path from a receive node with the inlet
name a to a send node with the outlet annotation z. Thus,
the compiler can group all of the nodes in f into a single
thread.

Dynamic scheduling may also arise when accessing syn-
chronizing data structures. For example, assume that a
function contains the following code which manipulates I-
structures.

Alk] = Alm] * Alm];
A[1] = Aln] + Alnl;

The corresponding dataflow graph is shown in Figure 2.
This code fetches an element from A[m], multiplies this with
itself and stores the result into location A[k]. Tt also fetches
from location A[n], adds this element with itself and stores
it into location A[l]. The declarative nature of the non-
strict language does not specify the order in which these
statements are executed. Actually, that order may depend
on the context in which this code is executed.

If & = n, the store into location A[k] defines the value
which is fetched from A[n]. Therefore there exists a PID
from the store to the fetch response, as indicated by the
dashed line in Figure 2b. Thus, the multiplication has to be
executed before the addition. If I = m the operations would
execute in the reverse order (see Figure 2c). Note that these
dependencies are not directly present in the function, they
are established through the synchronizing I-structure. These
potential dependencies are captured by the annotations; an
inlet annotation on a fetch node represents a dependence on
some store.

I-structure accesses have to be represented by split-phase
operations which separate the request from the response.
There are two reasons why the request and the response may
not execute together. First, a fetch may get deferred should
it occur before the corresponding store. Second, execution
on a parallel machine may result in a long communication
latency if the accessed element resides on another proces-
sor. Both forms require dynamic scheduling. Thus the re-
quest and response have to reside in different threads. With
split-phase accesses the processor can continue working after
issuing the request, making it possible to hide the commu-
nication latency with computation that is not dependent on
the requested data. The potentially long latency between
the request and response is indicated by the squiggly edges
in the dataflow graph, which represent certain indirect de-
pendencies.

These examples illustrate that potential dependencies
cannot be known at compile time. They can travel through
arguments, results, internal call sites, and through I-struc-
ture accesses.

2.2 Limits of Iterated Partitioning

The previously best known block partitioning scheme, iter-
ated partitioning [TCS92], is not powerful enough to always
find maximal threads. A slightly revised version of the first
example, shown in Figure 3, proves that separation con-
straint partitioning is strictly more powerful than iterated
partitioning, which fails to find maximal threads.

This example consists of six nodes. Iterated partition-
ing forms two threads. The inlet/outlet annotations are not

@) (b) ©

Fetch Fetch
Alm] Aln] Fetch

' v T
e |
Rijf(i}/e ej[ive R?—\(Erenii/e@

* +

*

Store Store

A () | A [y) SAI\?IE]e ()

Fetch Fetch Fetch
Aln] Alm] Aln]

R(i\c[ﬁi]ve@ Ritfrenii/er@ R(;C[ii]ve@

P

+ N +
Y y Y
Store Store Store

Al $® ALK] $® All] @

k=n I=m

Figure 2: Simple example of a dataflow graph with I-structures for the code A[k] = A[m] * A[m]; A[1] = A[n] + A[n];.
The shaded regions show the four threads. Since a fetch of an I-structure element may defer, it cannot be placed into the
same thread as the response. The threads cannot be grouped into a single thread because there may exist potential indirect
dependencies which require dynamic scheduling. These PID edges are indicated by the dashed arcs in Part (b) for k =n and

Part (c) for l = m.

Rec; ‘@ Rec,
P

+ *

\ A

Send; _>® SendZ@

Figure 3: FExample where iterated partitioning fails to merge
two threads.

unique singleton sets, but instead reflect dependence shar-
ing which could be the result of interprocedural analysis.
The dependence set of the three left nodes is {a}, and their
demand set is {z}. Iterated partitioning will group them
all into a single thread. Likewise, the three right nodes are
grouped into a single thread because their dependence set is
{a, b}, and their demand set is {z,y}.

Tterated partitioning cannot merge the left and the right
nodes since their dependence and demand sets are different.
However, they can safely be merged for the following rea-
sons. The dependence sets represent the set of (unknown)
outlets a node depends on. The dependence set for the left
nodes is a subset of that for the right nodes. Since the right
nodes depend on a larger set of outlet nodes, they cannot
influence any of the left nodes, and thus there cannot exist a
PID from the right to the left nodes. The same argument in
reverse holds for the demand sets. It is therefore possible to
merge the two threads into one. Merging these threads re-
quires a more powerful partitioning rule which is not based

solely on equal dependence or demand sets. This observa-
tion is formalized by separation constraint partitioning.

3 Separation Constraint Partitioning

Separation constraint partitioning can, with respect to any
annotation, precisely determine for any two nodes whether
they can be merged or not. The rule is simple: two nodes of
a block cannot be merged (i.e., they must reside in different
threads) if there exists either a certain indirect dependence
(cID) or a potential indirect dependence (PID) between them.
The reason 1s that both forms of indirect dependencies may
require dynamic scheduling.

Given this separation rule, we can easily devise an effec-
tive partitioning algorithm. Starting with the unpartitioned
dataflow graph, we find two nodes without a separation con-
straint, merge them, form the reduced graph, and repeat this
process until no further nodes can be merged. Although
this method is more powerful and elegant than the previous
partitioning algorithms, unfortunately it is computationally
more expensive. As discussed below, this problem can be
alleviated by only running it on a subset of the graph.

Separation constraint partitioning has four advantages.
First, it is guaranteed to derive maximal (but not necessarily
optimal) threads. After it has finished, every pair of threads
has a separation constraint between them, and therefore it
is impossible to merge further. Second, it deals in a unified
way with the partitioning constraints introduced by certain
and potential indirect dependencies, and therefore does not
require subpartitioning (as do dependence and demand set
partitioning [TCS92]). Third, the algorithm can be com-
bined with heuristics that attempt to merge the nodes in an
order which minimizes communication, dynamic scheduling,
and synchronization overhead. Finally, it can also be nat-
urally integrated into the interprocedural partitioning algo-
rithm.

3.1 The Algorithm

The most complicated aspects of the algorithm are the initial
computation of the separation constraints and their update
when two nodes are merged. Separation constraints arise
from ciDs, which connect send nodes to receive nodes, and
PIDs, derived from the annotations for the block. We say
that any two nodes that are connected through a PID or
a CID have an indirect dependence and cannot be merged.
Deriving the CIDs is easy, as they are directly represented in
the graph. The challenge is to efficiently determine the PIDs,
which the compiler does not know and has to approximate
safely.

Algorithm 1 (Separation constraint partitioning)
Given a dataflow graph with inlet/outlet annotations:

1. Compute the reflexive, transitive closure of the successor
relation Succ® over E. U CID.

2. Compute the set of potential indirect dependence edges,
i.e., those edges from outlets to inlets which are not con-
tradicted by certain dependencies.

PID = {(s,r)|31,0 : 1€ Inlet(r), o € Outlet(s),
=3(r', s") € Succ® : 1€ Inlet(r"), 0 € Outlet(s")}

3. Combining PID and CID, compute the set of nodes with
an indirect dependence between them.

ID = {(u,v)|3(s,r) € PIDU CID : (u,s) € Succ®,
(r,v) € Succ*}

4. Find two nodes u,v without an indirect dependence be-
tween them, i.e., for which (u,v) € ID and (v,u) & ID.
Merge u, v into a single thread, and update the represen-
tation.

(a) Derive the new set of nodes, use v as representative
for the two merged nodes and discard .

View =V — {u}

(b) Compute the new reflexive transitive closure.
Succ*new = {(p, $)|(p, s) € Succ®, p # u, s # u}
U{(p, s)|(p, u) € Succ*, (v,s) € Succ™, p # u,s # u}

U{(p, s)|(p,v) € Succ™, (u, s) € Succ*, p # u,s # u}

(c) Compute the new set of indirect dependencies.

IDnew = {(pa S)|(p,5) € ID, r # u, s # u}
U{(p, s)|(p,u) € ID, (v, s) € Succ*, p# u,s # u}
U{(p, s)|(p,v) € ID, (u, s) € Succ*, p# u,s # u}
U{(p, s)|(p, u) € Succ*,(v,s) € ID, p # u,s # u}
U{(p, s)|(p,v) € Succ*, (u,s) € ID, p # u,s # u}
(d) Set V = Vyew, Succ™ = Succ™pew, and
ID = 1D pew.

5. Repeat from Step 4 until no more nodes can be merged.

Observe that existing separation constraints never dis-
appear. Merging two nodes can only introduce new con-
straints. Thus every pair of nodes has to be tested at most
once for merging. After merging two nodes, the transitive
closure and the indirect dependencies are updated. Fur-
thermore, the new ID can be computed from the old ID
and Succ®.

We apply this algorithm to the example in Figure 1. Fol-
lowing the rule in Step 2, we derive that there exists a PID
from the left send to the right receive and from the right

send to the left receive. (Sendl, R€C2) € PID exists because
b € Inlet(Recz) and © € Outlet(Sendy), and there is no path
from a node with b in its inlet set to a node with z in its out-
let set to contradict this. A similar argument can be made
for the other PID. As a result there exists a separation con-
straint from any of the left nodes to any of the right nodes,
and the left nodes cannot be merged with the right nodes,
as observed earlier.

Now we apply this algorithm to the example in Figure 3.
Following the rule in Step 2, we derive that there are no PIDs
because they are all contradicted by certain dependencies:
for every inlet/outlet name pair there exists a path from a
node with the inlet name in its inlet set to a node with the
outlet name in its outlet set. Therefore, PID = §. Since
CID = ® we ascertain that /D = §. Thus there are no sepa-
ration constraints and any two nodes can be merged. Sepa-
ration constraint partitioning will, as expected, end with a
single thread.

3.2 Merge Order Heuristics

The algorithm as presented so far does not specify the order
in which pairs of nodes are visited and tested for merging.
This flexibility is an important advantage, as it permits the
algorithm to be combined with a heuristic that visits the
nodes in an order that minimizes communication, dynamic
scheduling, and synchronization overhead. All three opera-
tions are expensive on commodity processors. We decided
to address communication first, since on most parallel ma-
chines communication has the highest overhead. Our heuris-
tic 1s first to try merging nodes belonging to the same func-
tion call boundary (which reduces communication), then
nodes at conditional boundaries (which reduces dynamic
scheduling), and finally the remaining interior nodes of the
block.

After interprocedural analysis (explained in Section 4),
the annotations for a block may have been refined and the
block can be repartitioned. Repeatedly repartitioning using
iterated partitioning is very expensive. However by using
separation constraint partitioning, we can perform the inter-
procedural analysis on a restricted graph—consisting of the
nodes at def and call site boundaries and their connectivity—
and then partition the interior nodes after the annotations
have been completely refined. Extracting this restricted
graph from the original program is fairly simple and in-
volves only computing the transitive closure of each block’s
dataflow graph. The saving is enormous: for our bench-
mark programs the graph sizes are reduced by a factor of 10
to 20—the largest block was reduced from 619 nodes to 40
nodes. Running separation constraint partitioning on the
restricted graph is very fast, making interprocedural par-
titioning viable. Finally, after obtaining the best possible
partitioning at the function call boundaries, we partition
the interior of blocks. Our approach is to run separation
constraint partitioning only on a subset of the nodes of the
block (the most critical nodes) and for the rest of the block
use iterated partitioning, which in practice runs faster.

3.3 Complexity

To compute the complexity of the above algorithm we as-
sume that /D and Succ* are represented by an adjacency
matrix. Assume that the problem size n is the maximum
over the number of edges, number of inlet names, and num-

ber of outlet names. Since the dataflow graph is acyclic,
initially computing the transitive closure is O(n2). Deter-
mining the PID edges in Step 2 is O(n®). Computing ID is
O(n?). Testing whether two nodes can be merged takes
only constant time, since ID is represented as a matrix.
Since merging never eliminates separation constraints, at
most O(n2) pair of nodes have to be tested, thus this part
of Step 4 is O(n?). Merging occurs at most O(n) times,
and the complexity of Steps 4(a)-(d) is O(n?). Overall, the
total complexity of the algorithm is O(ng’). In practice the
running time is too long for large blocks.

For iterated partitioning the worst case complexity is also
O(ng’), since the complexity of dependence and demand set
partitioning is O(n2). However experimental data indicate
that in practice iterated partitioning requires only a small
number of iterations to find the final solution. Two cycles
(i.e., four partitioning steps) were sufficient for partitioning
the blocks of the set of 1d90 programs we used for the ex-
perimental results section. On the other hand, it is possible
to construct examples which require an arbitrary number of
iterations (see [Sch94] for details).

3.4 Correctness

Proving correctness of separation constraint partitioning is
much harder than dependence and demand set partitioning,
which are quite intuitive. The appendix contains a short
discussion of the correctness proof.

There are two key aspects to this proof. First, we show
that the algorithm correctly updates the set of indirect de-
pendencies ID throughout the execution of the program ev-
erytime two nodes u, v are merged. This implies that certain
and potential indirect dependencies are correctly taken care
of. Second, we prove that when the algorithm terminates,
all partitions are convex, i.e., there do not exist any static
cycles from a thread back to itself. This may not be the
case at intermediate steps of the algorithm. Thus separa-
tion constraint partitioning is quite different from iterated
partitioning. There the partitioning is correct after every
step and we could choose to stop at any time if so desired.
Separation constraint partitioning, on the other hand, has
to run until termination.

4 Interprocedural Partitioning

The block partitioning algorithm presented so far is limited
in its ability to derive threads because without global anal-
ysis it must assume that every send in a block may poten-
tially feed back to any receive unless contradicted by certain
dependencies. This is captured by the singleton inlet and
outlet annotations given initially to send and receive nodes.
Global analysis can determine that some of these potential
dependencies cannot arise and thereby improve the parti-
tioning [TCS92]. For example, the information gained while
partitioning a procedure can be used to improve the inlet
and outlet annotations of its call sites. These refined an-
notations may share names, reflecting the sharing among
dependence and demand sets present in the procedure. In
addition, squiggly edges from argument send nodes to re-
sult receive nodes can be introduced if the procedure has
the corresponding paths from the argument receives to re-
sult sends. Both the refined annotations and the squiggly
edges help to better approximate the PIDs and thereby im-
prove subsequent partitioning.

The same optimizations are possible in the reverse di-
rection. The annotations of the def site of a procedure can
be improved with the information present at its call site.
Dependence and demand sets at the call site determine the
new sharing in inlet and outlet annotations at the def site.
Squiggly edges can be introduced from result send nodes
back to argument receive nodes, if the corresponding paths
from result receive nodes to argument send nodes exist in
the call site. This optimization is more complicated if a pro-
cedure has more than one call site, in which case the new
annotations and squiggly edges must be compatible with all
of the call sites.

Conditionals are handled similarly to function calls. A
conditional with two arms can be viewed as a function call,
where, depending on the result of the predicate, one of two
blocks are called [AA89]. This representation simplifies the
partitioning process, as we can use the same unified mecha-
nism to deal with function calls and conditionals. When the
analysis is applied to function calls it allows us to reduce
communication; when applied to conditionals it allows us to
reduce control flow overhead.

4.1 Interprocedural Partitioning Example

We will not present the formal interprocedural partitioning
algorithm here as it already has been presented in [TCS92].
An extended version which can deal with recursive function
can be found in [Sch94]. However, we discuss a small exam-
ple to help illustrate it.

The example shown in Figure 4 consists of two blocks,
a caller and callee. The left part of the figure shows the
dataflow graph for the caller, the function g, while the right
part shows the dataflow graph for the callee, the function f.
Both procedures receive two arguments and return two re-
sults. The procedure g contains a call site of the procedure
f, as indicated by the interior dashed rectangle, the two ar-
gument send nodes (AS1 and AS2), and result receive nodes
(RR1 and RR2). The corresponding def site of the proce-
dure f consists of the two argument receive nodes (AR1 and
AR?2) and two result send nodes (RS1 and RS2).

As shown in Part (a) of the figure, the algorithm starts
by initially giving all receive and send nodes a unique sin-
gleton inlet or outlet annotation. As shown by the shaded
regions in Part (b), partitioning the caller results in four
threads, while partitioning the callee results in two threads.
This 1s the best partitioning possible under the trivial an-
notation. The top four nodes of the caller cannot be placed
into a single thread because the partitioning algorithm has
to assume that a PID may exist from the node with the outlet
annotation {u} back to the node with the inlet annotation
{b}. Analogous arguments can be made for why the other
threads have to stay separate.

To improve the partitioning, we must apply interproce-
dural analysis which propagates information across blocks.
Propagation involves introducing squiggly edges and refining
inlet and outlet annotations. Let us first explore what hap-
pens when propagating from the caller to the callee. In this
case, no squiggly edge is introduced, since the caller does not
have a certain dependence path from a result receive node to
an argument send node. The new inlet annotations given to
the argument receive nodes at the def site reflect the depen-
dence sets of the argument send nodes at the call site. As
shown in Part (c) of the figure, the node AR1 gets the new
inlet annotation {a}, while the node AR2 gets the inlet an-

Caller Callee

a) Initial Annotation

Every receiveis annotated g f
with aunique singleton inlet
name, and every send with a

unique singleton outlet name. AS1 u) |AS2 @
f
RR1 c) [RR2 d

b) Initial Partitioning

Partitioning of the caller g f
resultsin four threads, while
the callee gets two threads.

¢) Reannotation of Callee
Annotation propagation from g
the caller to the callee results
in the new inlet and outlet
annotations.

d) Partitioning of Callee
With the new annotation sepa- RR1 ¢) |RR2 d
ration constraint partitioning
can obtain a single thread.

e) Reannotation of Caller
Annotation propagation from 9 . e . ° f
the callee to the caller intro-
duces four squiggly edges and
eliminates the annotations. O

f) Partitioning of Caller
Partitioning now obtains two
threads. Further reannotation
and partitioning does not

improve this.

Figure 4: Example of interprocedural partitioning with annotation propagation.

notation {a,b}. Likewise, the new outlet annotations given
to the result send nodes reflect the demand set of the cor-
responding result receive nodes, which are {w} and {w,z}
respectively. The new annotations correspond precisely to
the situation shown in Figure 3. Using separation constraint
partitioning, we can group all nodes of the callee into a sin-
gle thread, as indicated by the shaded region in Part (d) of
the figure.

Next we propagate annotations from the callee to the
caller. This time we can introduce four squiggly edges at the
call site, one from every argument send node to every result
receive node, since the corresponding certain dependence
paths are present in the callee now that it consists of a single
thread. These squiggly edges capture all of the dependencies
which can arise at this call site. Therefore, we can give the
argument send and result receive nodes at the call site empty
inlet and outlet annotations, as shown in Part (e) of the
figure. Applying separation constraint partitioning, the two
top threads in the caller can be merged into a single thread,
as shown in Part (f) of the figure. Likewise, the bottom
two threads can be grouped into a single thread. Because
the top and the bottom threads are connected by squiggly
edges, they have to remain separate. Thus, partitioning
the caller results in two threads, the best partitioning that
can be obtained for this example. Further reannotation and
partitioning does not improve this. Note that the resulting
threads are the same as in a strict sequential program.

5 Experimental Results

In this section we evaluate our partitioning scheme in the
context of the Berkeley 1d90 compiler. Using various metrics
we show how separation constraint partitioning combined
with interprocedural analysis approach the efficiency of an
oracular “strict partitioner.”

5.1 Methodology

The Berkeley 1d90 compiler uses a front-end developed at
MIT [Tra86], which produces structured dataflow graphs for
the partitioning algorithms presented here. The partitioned
graphs are used to generate code for TAM, a threaded ab-
stract machine [CGSvE93]. The TAM code is then trans-
lated to the target machine. Our translation path uses C
as a portable “intermediate form” and is producing code for
the CM-5, as well as for various standard sequential ma-
chines [Gol94]. We used this implementation for statistics
collection and measurements. All of the programs are com-
piled for parallel execution. As they run, lots parallelism
is exposed. However in order to factor out a broad family
of issues unrelated to partitioning, such as load balancing
and locality, we present data here from runs on a single pro-
cessor. See [CGSvE93, SGST93] for data and discussion on
running these programs on parallel machines.

We use six benchmark programs, shown in Table 1, rang-
ing up to 1,100 source code lines. It should be noted that
the code was taken as is, compiled for TAM, and executed
on standard workstations or the CM-5 without any modifi-
cations. The programs range from very fine grained (e.g.,
Quicksort) to medium grained (e.g., MMT).

5.2 Evaluation

To measure the effectiveness of partitioning we compare four
different partitioning schemes: dataflow partitioning (DF),
iterated partitioning (IT), separation constraint partitioning
with interprocedural analysis (IN), and strict partitioning
(ST). Dataflow partitioning and strict partitioning repre-
sent the two extremes of the spectrum. Dataflow parti-
tioning puts unary nodes into the thread of their predeces-
sor, reflecting the limited thread capabilities supported by
many dataflow machines. Strict partitioning ignores possi-
ble non-strictness and compiles function calls and condition-
als strictly, thus representing the best possible interprocedu-
ral partitioning algorithm. Although it is not the case for
our six benchmark programs, strict partitioning produces
an incorrect partitioning for programs which require non-
strictness. Iterated and interprocedural partitioning repre-
sent the two real partitioning schemes. With iterated par-
titioning every block is partitioned in isolation. Separation
constraint partitioning with interprocedural analysis applies
the techniques discussed in this paper—the interprocedural
analysis uses separation constraint partitioning to first group
nodes at def and call site boundaries, after which interior
nodes are merged using iterated partitioning.

Figure 5 shows the dynamic TAM instruction distribu-
tion for the benchmark programs under the four partitioning
schemes, each normalized to dataflow partitioning. Since the
cost for each TAM instruction differs, this figure does not
necessarily reflect execution time which is presented later.
Instructions are classified into one of four categories: ALU
operations, heap accesses, communication, and control op-
erations. The programs toward the left of the figure ex-
hibit very fine-grain parallelism and are control intensive.
The moderate blocking (4x4) and regular structure of MMT
shows a significant contrast. As expected, improved parti-
tioning substantially reduces the number of control opera-
tions. For most programs, iterated partitioning reduces the
number of control operations by more than a factor of 2. For
Simple and MMT the reduction is much larger.” Interpro-
cedural partitioning further reduces the control operations
for the more finely grained programs, while for the coarse
grained programs the improvement is insignificant. Inter-
procedural and strict partitioning also decrease the number
of instructions related to communication, as the grouping of
arguments and results reduces the number of messages. This
effect is particularly important since communication opera-
tions are more than ten times as expensive as any other.

In order to see the effectiveness of separation constraint
partitioning combined with interprocedural analysis we look
at how boundary nodes are grouped into threads. In the
code generation to TAM, passing of arguments and results
for a function invocation requires send instructions. Simi-
larly, the implementation of conditionals is based on switch-
es, which, depending on the result of the predicate, steer
the control to one of two successor threads. One distin-
guishing feature about partitioning across blocks is that it
may group nodes at block boundaries. For example, multi-
ple send nodes residing in the same thread can be grouped
into a single send node if the corresponding receive nodes
also reside in a single thread. A similar optimization also
occurs at boundaries of conditionals. Here multiple switch
operations can be replaced by a single switch.

5 Just as important as the decrease of the number of control opera-
tions is the fact that they also become simpler. For example, forks to
synchronizing thread often turn into forks to unsynchronizing threads.

