
Separation Constraint Partitioning - A New Algorithm for PartitioningNon-strict Programs into Sequential ThreadsKlaus E. SchauserDepartment of Computer ScienceUniversity of California, Santa BarbaraSanta Barbara, CA 93106schauser@cs.ucsb.edu David E. Culler, Seth C. GoldsteinComputer Science DivisionUniversity of California, BerkeleyBerkeley, CA 94720fculler,sethgg@cs.berkeley.eduAbstractIn this paper we present substantially improved thread par-titioning algorithms for modern implicitly parallel languages.We present a new block partitioning algorithm, separationconstraint partitioning, which is both more powerful andmore exible than previous algorithms. Our algorithm isguaranteed to derive maximal threads. We present a the-oretical framework for proving the correctness of our par-titioning approach, and we show how separation constraintpartitioning makes interprocedural partitioning viable.We have implemented the partitioning algorithms in anId90 compiler for workstations and parallel machines. Usingthis experimental platform, we quantify the e�ectiveness ofdi�erent partitioning schemes on whole applications.1 IntroductionModern implicitly parallel languages, such as the functionallanguage Id90, allow the elegant formulation of a broad classof problems while exposing substantial parallelism. How-ever, their non-strict semantics require �ne-grain dynamicscheduling and synchronization, making an e�cient imple-mentation on conventional parallel machines challenging. Incompiling these languages for commodity processors, themost important step is partitioning the program into se-quential threads. This paper presents a new partitioningalgorithm and experimentally quanti�es its e�ectiveness.Many of the issues that arise in implementing non-strictlanguages (dynamic scheduling, synchronization, and heapmanagement) are present, independent of the source lan-guage, when producing code for parallel machines. Thus, thetechniques developed in this paper are also applicable to par-allel implementations of other languages. Moreover, dealingwith non-strictness requires that these issues be faced evenwhen compiling for sequential processors, because non-strictprograms require logical parallel execution in order to makeforward progress.The language studied in this paper, Id90 [Nik90], is anon-strict functional language with eager evaluation. Thiscombination, termed lenient evaluation [Tra91], exhibitsmore parallelism than lazy evaluation while retaining muchTo appear in the ACM SIGPLAN-SIGACT Symposiumon Principles of Programming Languages (POPL'95).

of its expressive power.1 To further increase parallelism,Id90 provides data structures that automatically synchro-nize between producer and consumers: I-structures and M-structures.When executing a lenient program on a parallel machine,dynamic scheduling may be required for two reasons. First,the semantics of the language make it impossible in gen-eral to statically determine the order of operations. Theorder in which operations of a function execute may de-pend on the dynamic context in which the function is in-voked (cf., Section 2.1), not just on the value of its argu-ments. Second, long latency inter-processor communica-tion and accesses to synchronizing data structures requirethat the computation dependent on the messages be sched-uled dynamically. Dynamic scheduling is expensive on com-modity microprocessors, incurring a high cost for contextswitching. Therefore, these languages have been accom-panied by the development of specialized computer archi-tectures, e.g., graph reduction machines [PCSH87, Kie87],dataow machines [ACI+83, GKW85, SYH+89, PC90], andmultithreaded architectures [Jor83, NPA92]. Much researchhas been done in compiling lenient languages for dataowarchitectures [ACI+83, Tra86, AN90, GKW85, Cul90]. Asa clearer separation of language and architecture has beenobtained, attention has shifted to compilation aspects ofthese languages for commodity processors [Tra91, SCvE91,Nik93].The emphasis of the compilation work is to staticallyschedule groups of instructions into sequential threads andrestrict dynamic scheduling to occur only between threads.A thread forms the basic unit of work: once scheduled itruns until completion. The task of identifying portions ofthe program that can be scheduled statically and orderedinto threads is called partitioning [Tra91]. Partitioning theprogram into sequential threads requires substantial com-piler analysis (dependence analysis) because, unlike in im-perative languages, the evaluation order is not speci�ed bythe programmer. Care has to be taken to generate threadswhich obey all dynamic data dependencies and do not leadto deadlock. Partitioning decisions imply trade-o�s be-tween parallelism, synchronization cost, and sequential e�-ciency [SCvE91]. However, given the limits on thread sizeimposed by the language model, the use of split-phase ac-cesses, and the control paradigm, our goal simply is to max-1Usually non-strictness is combined with lazy evaluation (e.g., inLML and Haskell). Under lazy evaluation an expression is only eval-uated if it contributes to the �nal result. Lazy evaluation decreasesthe parallelism because the evaluation of an expression is only startedafter it is known to contribute to the result.

imize the length of the threads and minimize the number ofthread switches.1.1 ContributionsThe main contribution of this paper is the development ofa new thread partitioning algorithm that is substantiallymore powerful than any previously known [Tra91, HDGS91,SCvE91, TCS92]. A compiler for Id90 has been developedwith back-ends for workstations and the CM-5 multipro-cessor. It serves as an experimental platform for studyingthe e�ectiveness of the partitioning algorithms. The parti-tioning algorithms presented in [SCvE91] and [TCS92] area starting point for this work and are extended in severalways. The paper:� presents a new block partitioning algorithm, separa-tion constraint partitioning, which is more powerfulthan iterated partitioning, the previously best knownblock partitioning,� shows how separation constraint partitioning can beintegrated successfully into the interprocedural parti-tioning algorithm to improve code at the call bound-aries,� outlines the theoretical framework and sketches theproof of correctness for our partitioning approach,2� implements the partitioning algorithms, resulting in arunning execution vehicle for Id90 on workstations andseveral parallel machines, and� quanti�es the e�ectiveness of the di�erent partitioningschemes on whole applications.In addition, although not documented here, we have ex-tended interprocedural analysis to handle recursion and mu-tually dependent call sites [Sch94].Section 2 formalizes the problem of thread partitioningand presents an example which shows that non-strict lan-guages require dynamic scheduling. In Section 3 we presentour new partitioning algorithm, separation constraint par-titioning. Section 4 briey discusses how separation con-straint partitioning can be integrated with interproceduralpartitioning. Section 5 presents experimental results whichshow the e�ectiveness of our partitioning algorithm. Finally,Section 6 contains the summary and conclusions. A shortsketch of the proof of correctness for the partitioning algo-rithm appears in Appendix A.1.2 Related WorkPartitioning is similar in spirit to compilation techniquesfor lazy functional languages [SNvGP91, Pey92]. Strictnessanalysis [Myc80, CPJ85] tries to determine which argumentscan be evaluated before invoking the body of a function,thus avoiding the creation of expensive thunks for strict ar-guments. Partitioning goes a step further as it may derivethat arguments can be evaluated together even if a functionis not strict in them [Tra91]. Path analysis [BH87] detectsthe order in which arguments are evaluated, which may re-sult in a cheaper representation of thunks and reduce thecost of forcing and updating them. Serial combinators by2The complete proof can be found in [Sch94].

Hudak and Goldberg are one of the �rst attempts to im-prove the parallel execution of lazy functional programs byincreasing their granularity [Gol88]. Their approach is togroup several combinators into larger serial combinators.Partitioning plays a crucial role for the parallel execu-tion of strict functional languages, but unlike non-strict lan-guages, the ordering of instructions can be determined stat-ically. Thus, the di�culty is not what can be put into thesame thread, but rather what should be placed into thesame thread given communication and load balancing con-straints [SH86, NRB93].Most of the partitioning research for lenient languageswas inspired by Traub's seminal theoretical work, which usesdependence analysis to characterize when instructions canbe grouped into a thread [Tra91].3 Traub showed that theproblem of �nding a partitioning with the minimum numberof threads is NP-complete. Thus, all of the partitioning ap-proaches rely on heuristics to group nodes into threads. Ian-nucci developed dependence set partitioning, which groupsnodes that depend on the same set of inputs [Ian88]. De-mand set partitioning, presented in [SCvE91] and [HDGS91]is analogous to dependence set partitioning, but it groupsnodes which are demanded by the same set of outputs. Iter-ated partitioning combines the power of dependence and de-mand set partitioning by applying them iteratively [TCS92,HDGS91]. One of the algorithms is applied, then the re-duced graph is formed, and the other algorithm is applied.This process is repeated until no further changes occur.Schauser et al. extended the two basic partitioning schemeswith local \merge up" and \merge down" rules, thus achiev-ing essentially the same degree of grouping as iterated par-titioning [SCvE91]. Traub et al. [TCS92] extended iteratedpartitioning with interprocedural analysis to obtain largerthreads. Recently, [Coo94] and [Sch94] independently devel-oped extensions to the interprocedural algorithm to handlerecursive functions. Separation constraint partitioning iden-ti�es all possible \merges" allowing the thread partitioningto be guided by high level heuristics, such as minimizing thecost of procedural boundaries.2 Block PartitioningThe partitioning algorithm produces a collection of threads.The instructions of each thread are statically scheduled, andall dynamic scheduling required by non-strictness or poten-tially long latency communication occurs between threads.De�nition 1 (Thread [TCS92]) A thread is a subset ofthe instructions of a procedure body, such that:1. a compile-time instruction ordering can be determinedfor the thread which is valid for all contexts in whichthe containing procedure can be invoked, and2. once the �rst instruction in a thread is executed, itis always possible to execute each of the remaininginstructions in the compile-time order without pause,interruption, or execution of instructions from otherthreads.3Traub's original framework allows threads to suspend; thus, histhreads capture the sequential ordering which is required between in-structions, but not the dynamic scheduling which may occur betweenthe threads. Subsequent research in this area disallows thread sus-pension, which has the advantage of capturing the cost of switchingbetween threads.2

Our partitioning algorithms work on structured dataowgraphs [Tra86], the intermediate form used in the Id90 com-piler. It is similar to intermediate representations found inother optimizing compilers. A structured dataow graphconsists of a collection of blocks,4 one for each function andeach arm of a conditional, and interfaces which describehow the blocks relate to one another [TCS92]. Each blockis represented by an acyclic dataow graph; roughly, it cor-responds to a group of operators with the same control de-pendence [FOW87]. For example, all operators comprisingthe \then" arm of a conditional, excluding those in nestedconditionals, are a block.De�nition 2 (Dataow Graph) A dataow graph is adirected acyclic graph of vertices and dependence edges,(V; Es; Eq), where Es � V � V are the certain direct de-pendence edges and Eq � V � V are the certain indirectdependence edges.The vertices describe the instructions, including arith-metic and logic operators, creation and access of data struc-tures, and the sending and receiving of arguments and re-sults. The edges capture certain data dependencies, whichare present in every context in which the procedure can beinvoked. We distinguish two kind of certain dependencies:direct dependencies (represented in the examples by straightarcs|see Figure 2a) and indirect dependencies (representedby squiggly arcs|see Figure 2a). Indirect dependencies rep-resent potentially long latency dependencies which may in-volve nodes of other blocks. For example, an indirect edgeconnects the request and response nodes for a split-phasesynchronizing data structure access. Such an access mayrequire a long time to complete due to network latency orsynchronization delay, i.e., it may have to wait until an othercomputation completes and stores the referenced value. Def-inition 1 implies that nodes connected by an indirect depen-dence must reside in di�erent threads.In addition, we de�ne a potential indirect dependence(pid) as one which may exist in some but not all invoca-tions of the block. pids may go through nodes of otherblocks. This concept of potential indirect dependencies isvery important. A pid is a dependence which could exist insome legal execution of the program, where a legal execu-tion is de�ned as one which does not lead to a deadlock inthe absence of partitioning. The key observation is that thecompiler does not have to consider pids which are contra-dicted by certain dependencies because such dependencieswould lead to deadlock. Certain dependencies provide themechanism to reduce the set of pids. We need to be conser-vative and overapproximate the pids. Due to the non-strictnature of the language the compiler initially assumes thatfor each function any argument may depend on any of itsresults. Through the process of analysis some pids are ruledout. The challenge is to represent pids as precisely and ase�ciently as possible. We use inlet and outlet annotationsto represent pids in the dataow graph.De�nition 3 (Annotation) An annotation for a block isa 5 tuple A = (�i; Inlet;�o;Outlet;CID), where �i is theinlet alphabet, Inlet : V ! Pow(�i) maps each node toa set of inlet names (the inlet annotation), �o the outletalphabet, Outlet : V ! Pow(�o) maps each node to a set of4In previous work the term basic block was used [Tra86, TCS92].Since this term has a di�erent meaning in the compiler literature forimperative languages we use the term block.

outlet names (the outlet annotation), and CID � (V � V)are the certain indirect dependencies (CID = Eq).In the graphical representation, we attach incoming cir-cles to nodes for inlet annotations and outgoing circles foroutlet annotations. For example, in Figure 1 the inlet an-notations are fag and fbg.Nodes with outlet and inlet annotations form the end-points of pids. A pid may travel from a node with an outletannotation to a node with an inlet annotation. An inletname represents a set of outlet nodes that this node cer-tainly depends on. This set is not known at compile time,but every node which contains the same inlet name in its an-notation depends on this same set of outlet nodes, althoughwe can not identify which outlet nodes they are. Thus, theinitial assumption of any inlet depending on any set of out-lets (not contradicted by certain dependencies) is capturedby giving each inlet a unique annotation. Likewise, an out-let name represents a set of inlet nodes that depend on thisnode. The process of assigning the same or partially over-lapping inlet (or outlet) names to multiple nodes allows usexpress sharing of dependencies between nodes.As mentioned above, the pids capture the potential de-pendencies from outlet nodes to inlet nodes that do not leadto deadlock at runtime. We assume that a pid exists unlessit is contradicted by certain dependencies. More formally,we de�ne a pid to exist from a node s to a node r if, thereexists an o 2 Outlet(s) and i 2 Inlet(r) such that there doesnot exist a path over straight and squiggly edges from a noder0 with i 2 Inlet(r0) to a node s0 with o 2 Outlet(s0).The task of a partitioning algorithm is to take as inputa structured dataow graph and to partition the vertices ofeach block into non-overlapping regions such that each sub-set can be mapped into a non-suspending sequential thread.Deriving the threads is done in two steps. First, the nodesof each block are partitioned into disjoint subsets. Then,the instructions of each subset are linearized (any topologi-cal ordering will do). The partitioning algorithms presentedhere only derive the subsets of vertices and leave the actualordering of instructions within each thread to a later stageof the compiler. We shall refer to each subset of verticessimply as a thread.A correct partitioning has no circular dependencies be-tween threads, i.e., no static cycles within blocks and dy-namic cycles across blocks. Without circular dependencies,it is possible to delay the scheduling of a thread until allof its predecessors have completed and then run the threaduntil completion. In addition, a correct partitioning mustensure that requests and responses to split-phase operationsare in di�erent threads.2.1 Simple ExamplesWe now present a simple example to illustrate the conceptsjust introduced. Figure 1 shows the dataow graph for thefunction f which is called by the procedures g and h.def f u v = (u*u, v+v);def g z = {s,t = (f z s) in t}; computes (z � z) + (z � z)def h z = {s,t = (f t z) in s}; computes (z + z) � (z + z)This example illustrates the need for dynamic schedulingeven in the absence of conditionals. The function f takes twoarguments, u and v, and returns two results, u�u and v+v.Within f there is no dependence between the multiplication3

and addition. Therefore, they can be scheduled in any or-der under traditional strict evaluation. This is not true fornon-strict evaluation. The function g feeds the �rst resultof the function f back in as the second argument, while thefunction h feeds the second result back in as the �rst argu-ment. These two dependencies are pids. In the context offunction g the multiplication must be executed before theaddition, while in function h the opposite is true. Thus, themultiplication and the addition have to be scheduled inde-pendently, and it is impossible to put them together into asingle non-suspensive thread.
Rec1

*

Send1

Rec2

+

Send2

a b

yxFigure 1: Small example of a dataow graph for the functionf u v = (u*u, v+v); and its partitioning into two threads.The arcs represent direct dependencies while the inlet andoutlet annotations represent sets of potential dependenciesas explained in the text. The shaded regions represent thethreads.The two pids are represented by inlet and outlet anno-tations. Without any interprocedural analysis to indicateotherwise, each node is given a unique singleton annota-tion, implying that we have to assume that each dependson (or inuences) a di�erent set of unknown nodes. In ourexample, the argument receive nodes are given the inlet an-notations fag and fbg, while the send nodes have the outletannotation fxg and fyg. The names themselves are not im-portant; the absence of sharing between the names is what isimportant. By our de�nition a potential dependence existsfrom the send node with outlet annotation fxg back to thereceive node with inlet annotation fbg because there doesnot exist a certain dependence path contradicting this, i.e.,from a node with b in its inlet annotation to a node with xin its outlet annotation. Likewise, there exists a pid fromSend2 to Rec1. Functions g and h contain these pids. Onthe other hand, there cannot exist a pid from Send1 backto the Rec1 because this is contradicted by a certain depen-dence path. Thus, the inlet and outlet annotations correctlycapture the two potential dependencies which may arise atrun time. As a result, the left and right nodes must stay inseparate threads, and the partitioning algorithm can at bestobtain two threads, as indicated by the shaded regions.We can improve the partitioning by using interprocedu-ral analysis if we know that the function f is only called inthe following context:def foo z={s,t=(fz z) in s+t}; computes (z � z)+(z + z)In this case, it is valid to give both receive nodes of thedef site the same inlet annotation, say fag, as both argu-ment send nodes at the call site depend on the same argu-ment of the function foo. Likewise, we can give the same

outlet annotation, say fxg, to both send nodes of f . Nowwhen partitioning f , the compiler can determine that therecannot exist a potential dependence from a result back toan argument, since under the new annotation there exists acertain dependence path from a receive node with the inletname a to a send node with the outlet annotation x. Thus,the compiler can group all of the nodes in f into a singlethread.Dynamic scheduling may also arise when accessing syn-chronizing data structures. For example, assume that afunction contains the following code which manipulates I-structures.A[k] = A[m] * A[m];A[l] = A[n] + A[n];The corresponding dataow graph is shown in Figure 2.This code fetches an element from A[m], multiplies this withitself and stores the result into location A[k]. It also fetchesfrom location A[n], adds this element with itself and storesit into location A[l]. The declarative nature of the non-strict language does not specify the order in which thesestatements are executed. Actually, that order may dependon the context in which this code is executed.If k = n, the store into location A[k] de�nes the valuewhich is fetched from A[n]. Therefore there exists a pidfrom the store to the fetch response, as indicated by thedashed line in Figure 2b. Thus, the multiplication has to beexecuted before the addition. If l = m the operations wouldexecute in the reverse order (see Figure 2c). Note that thesedependencies are not directly present in the function, theyare established through the synchronizing I-structure. Thesepotential dependencies are captured by the annotations; aninlet annotation on a fetch node represents a dependence onsome store.I-structure accesses have to be represented by split-phaseoperations which separate the request from the response.There are two reasons why the request and the response maynot execute together. First, a fetch may get deferred shouldit occur before the corresponding store. Second, executionon a parallel machine may result in a long communicationlatency if the accessed element resides on another proces-sor. Both forms require dynamic scheduling. Thus the re-quest and response have to reside in di�erent threads. Withsplit-phase accesses the processor can continue working afterissuing the request, making it possible to hide the commu-nication latency with computation that is not dependent onthe requested data. The potentially long latency betweenthe request and response is indicated by the squiggly edgesin the dataow graph, which represent certain indirect de-pendencies.These examples illustrate that potential dependenciescannot be known at compile time. They can travel througharguments, results, internal call sites, and through I-struc-ture accesses.2.2 Limits of Iterated PartitioningThe previously best known block partitioning scheme, iter-ated partitioning [TCS92], is not powerful enough to always�nd maximal threads. A slightly revised version of the �rstexample, shown in Figure 3, proves that separation con-straint partitioning is strictly more powerful than iteratedpartitioning, which fails to �nd maximal threads.This example consists of six nodes. Iterated partition-ing forms two threads. The inlet/outlet annotations are not4

*

Store

+

Store

k = n l = m

Fetch
A[m]

Fetch
A[n]

Receive
A[m]

Receive
A[n]

a b

yxA[k] A[l]

*

Store

+

Store

Fetch
A[m]

Fetch
A[n]

Receive
A[m]

Receive
A[n]

a b

yxA[k] A[l]

*

Store

+

Store

Fetch
A[m]

Fetch
A[n]

Receive
A[m]

Receive
A[n]

a b

yxA[k] A[l]

(c)(b)(a)

Figure 2: Simple example of a dataow graph with I-structures for the code A[k] = A[m] * A[m]; A[l] = A[n] + A[n];.The shaded regions show the four threads. Since a fetch of an I-structure element may defer, it cannot be placed into thesame thread as the response. The threads cannot be grouped into a single thread because there may exist potential indirectdependencies which require dynamic scheduling. These pid edges are indicated by the dashed arcs in Part (b) for k = n andPart (c) for l = m.
Rec1

+

Send1

Rec2

*

Send2

a ab

xyxFigure 3: Example where iterated partitioning fails to mergetwo threads.unique singleton sets, but instead reect dependence shar-ing which could be the result of interprocedural analysis.The dependence set of the three left nodes is fag, and theirdemand set is fxg. Iterated partitioning will group themall into a single thread. Likewise, the three right nodes aregrouped into a single thread because their dependence set isfa; bg, and their demand set is fx; yg.Iterated partitioning cannot merge the left and the rightnodes since their dependence and demand sets are di�erent.However, they can safely be merged for the following rea-sons. The dependence sets represent the set of (unknown)outlets a node depends on. The dependence set for the leftnodes is a subset of that for the right nodes. Since the rightnodes depend on a larger set of outlet nodes, they cannotinuence any of the left nodes, and thus there cannot exist apid from the right to the left nodes. The same argument inreverse holds for the demand sets. It is therefore possible tomerge the two threads into one. Merging these threads re-quires a more powerful partitioning rule which is not based

solely on equal dependence or demand sets. This observa-tion is formalized by separation constraint partitioning.3 Separation Constraint PartitioningSeparation constraint partitioning can, with respect to anyannotation, precisely determine for any two nodes whetherthey can be merged or not. The rule is simple: two nodes ofa block cannot be merged (i.e., they must reside in di�erentthreads) if there exists either a certain indirect dependence(cid) or a potential indirect dependence (pid) between them.The reason is that both forms of indirect dependencies mayrequire dynamic scheduling.Given this separation rule, we can easily devise an e�ec-tive partitioning algorithm. Starting with the unpartitioneddataow graph, we �nd two nodes without a separation con-straint, merge them, form the reduced graph, and repeat thisprocess until no further nodes can be merged. Althoughthis method is more powerful and elegant than the previouspartitioning algorithms, unfortunately it is computationallymore expensive. As discussed below, this problem can bealleviated by only running it on a subset of the graph.Separation constraint partitioning has four advantages.First, it is guaranteed to derive maximal (but not necessarilyoptimal) threads. After it has �nished, every pair of threadshas a separation constraint between them, and therefore itis impossible to merge further. Second, it deals in a uni�edway with the partitioning constraints introduced by certainand potential indirect dependencies, and therefore does notrequire subpartitioning (as do dependence and demand setpartitioning [TCS92]). Third, the algorithm can be com-bined with heuristics that attempt to merge the nodes in anorder which minimizes communication, dynamic scheduling,and synchronization overhead. Finally, it can also be nat-urally integrated into the interprocedural partitioning algo-rithm.5

3.1 The AlgorithmThe most complicated aspects of the algorithm are the initialcomputation of the separation constraints and their updatewhen two nodes are merged. Separation constraints arisefrom cids, which connect send nodes to receive nodes, andpids, derived from the annotations for the block. We saythat any two nodes that are connected through a pid ora cid have an indirect dependence and cannot be merged.Deriving the cids is easy, as they are directly represented inthe graph. The challenge is to e�ciently determine the pids,which the compiler does not know and has to approximatesafely.Algorithm 1 (Separation constraint partitioning)Given a dataow graph with inlet/outlet annotations:1. Compute the reexive, transitive closure of the successorrelation Succ� over Es [CID .2. Compute the set of potential indirect dependence edges,i.e., those edges from outlets to inlets which are not con-tradicted by certain dependencies.PID = f(s; r)j9i; o : i2Inlet(r); o2Outlet(s);:9(r0; s0)2Succ� : i2Inlet(r0); o2Outlet(s0)g3. Combining PID and CID , compute the set of nodes withan indirect dependence between them.ID = f(u; v)j9(s; r) 2 PID [CID : (u; s) 2 Succ�;(r; v) 2 Succ�g4. Find two nodes u; v without an indirect dependence be-tween them, i.e., for which (u; v) 62 ID and (v; u) 62 ID.Merge u; v into a single thread, and update the represen-tation.(a) Derive the new set of nodes, use v as representativefor the two merged nodes and discard u.Vnew = V � fug(b) Compute the new reexive transitive closure.Succ�new = f(p; s)j(p; s) 2 Succ�; p 6= u; s 6= ug[f(p; s)j(p; u) 2 Succ�; (v; s) 2 Succ�; p 6= u; s 6= ug[f(p; s)j(p; v) 2 Succ�; (u; s) 2 Succ�; p 6= u; s 6= ug(c) Compute the new set of indirect dependencies.IDnew = f(p; s)j(p; s) 2 ID ; p 6= u; s 6= ug[f(p; s)j(p;u) 2 ID ; (v; s) 2 Succ�; p 6= u; s 6= ug[f(p; s)j(p;v) 2 ID; (u; s) 2 Succ�; p 6= u; s 6= ug[f(p; s)j(p;u) 2 Succ�; (v; s) 2 ID; p 6= u; s 6= ug[f(p; s)j(p;v) 2 Succ�; (u; s) 2 ID; p 6= u; s 6= ug(d) Set V = Vnew , Succ� = Succ�new , andID = IDnew .5. Repeat from Step 4 until no more nodes can be merged.Observe that existing separation constraints never dis-appear. Merging two nodes can only introduce new con-straints. Thus every pair of nodes has to be tested at mostonce for merging. After merging two nodes, the transitiveclosure and the indirect dependencies are updated. Fur-thermore, the new ID can be computed from the old IDand Succ�.We apply this algorithm to the example in Figure 1. Fol-lowing the rule in Step 2, we derive that there exists a pidfrom the left send to the right receive and from the right

send to the left receive. (Send1;Rec2) 2 PID exists becauseb 2 Inlet(Rec2) and x 2 Outlet(Send1), and there is no pathfrom a node with b in its inlet set to a node with x in its out-let set to contradict this. A similar argument can be madefor the other pid. As a result there exists a separation con-straint from any of the left nodes to any of the right nodes,and the left nodes cannot be merged with the right nodes,as observed earlier.Now we apply this algorithm to the example in Figure 3.Following the rule in Step 2, we derive that there are no pidsbecause they are all contradicted by certain dependencies:for every inlet/outlet name pair there exists a path from anode with the inlet name in its inlet set to a node with theoutlet name in its outlet set. Therefore, PID = ;. SinceCID = ; we ascertain that ID = ;. Thus there are no sepa-ration constraints and any two nodes can be merged. Sepa-ration constraint partitioning will, as expected, end with asingle thread.3.2 Merge Order HeuristicsThe algorithm as presented so far does not specify the orderin which pairs of nodes are visited and tested for merging.This exibility is an important advantage, as it permits thealgorithm to be combined with a heuristic that visits thenodes in an order that minimizes communication, dynamicscheduling, and synchronization overhead. All three opera-tions are expensive on commodity processors. We decidedto address communication �rst, since on most parallel ma-chines communication has the highest overhead. Our heuris-tic is �rst to try merging nodes belonging to the same func-tion call boundary (which reduces communication), thennodes at conditional boundaries (which reduces dynamicscheduling), and �nally the remaining interior nodes of theblock.After interprocedural analysis (explained in Section 4),the annotations for a block may have been re�ned and theblock can be repartitioned. Repeatedly repartitioning usingiterated partitioning is very expensive. However by usingseparation constraint partitioning, we can perform the inter-procedural analysis on a restricted graph|consisting of thenodes at def and call site boundaries and their connectivity|and then partition the interior nodes after the annotationshave been completely re�ned. Extracting this restrictedgraph from the original program is fairly simple and in-volves only computing the transitive closure of each block'sdataow graph. The saving is enormous: for our bench-mark programs the graph sizes are reduced by a factor of 10to 20|the largest block was reduced from 619 nodes to 40nodes. Running separation constraint partitioning on therestricted graph is very fast, making interprocedural par-titioning viable. Finally, after obtaining the best possiblepartitioning at the function call boundaries, we partitionthe interior of blocks. Our approach is to run separationconstraint partitioning only on a subset of the nodes of theblock (the most critical nodes) and for the rest of the blockuse iterated partitioning, which in practice runs faster.3.3 ComplexityTo compute the complexity of the above algorithm we as-sume that ID and Succ� are represented by an adjacencymatrix. Assume that the problem size n is the maximumover the number of edges, number of inlet names, and num-6

ber of outlet names. Since the dataow graph is acyclic,initially computing the transitive closure is O(n2). Deter-mining the PID edges in Step 2 is O(n3). Computing ID isO(n2). Testing whether two nodes can be merged takesonly constant time, since ID is represented as a matrix.Since merging never eliminates separation constraints, atmost O(n2) pair of nodes have to be tested, thus this partof Step 4 is O(n2). Merging occurs at most O(n) times,and the complexity of Steps 4(a){(d) is O(n2). Overall, thetotal complexity of the algorithm is O(n3). In practice therunning time is too long for large blocks.For iterated partitioning the worst case complexity is alsoO(n3), since the complexity of dependence and demand setpartitioning is O(n2). However experimental data indicatethat in practice iterated partitioning requires only a smallnumber of iterations to �nd the �nal solution. Two cycles(i.e., four partitioning steps) were su�cient for partitioningthe blocks of the set of Id90 programs we used for the ex-perimental results section. On the other hand, it is possibleto construct examples which require an arbitrary number ofiterations (see [Sch94] for details).3.4 CorrectnessProving correctness of separation constraint partitioning ismuch harder than dependence and demand set partitioning,which are quite intuitive. The appendix contains a shortdiscussion of the correctness proof.There are two key aspects to this proof. First, we showthat the algorithm correctly updates the set of indirect de-pendencies ID throughout the execution of the program ev-erytime two nodes u; v are merged. This implies that certainand potential indirect dependencies are correctly taken careof. Second, we prove that when the algorithm terminates,all partitions are convex, i.e., there do not exist any staticcycles from a thread back to itself. This may not be thecase at intermediate steps of the algorithm. Thus separa-tion constraint partitioning is quite di�erent from iteratedpartitioning. There the partitioning is correct after everystep and we could choose to stop at any time if so desired.Separation constraint partitioning, on the other hand, hasto run until termination.4 Interprocedural PartitioningThe block partitioning algorithm presented so far is limitedin its ability to derive threads because without global anal-ysis it must assume that every send in a block may poten-tially feed back to any receive unless contradicted by certaindependencies. This is captured by the singleton inlet andoutlet annotations given initially to send and receive nodes.Global analysis can determine that some of these potentialdependencies cannot arise and thereby improve the parti-tioning [TCS92]. For example, the information gained whilepartitioning a procedure can be used to improve the inletand outlet annotations of its call sites. These re�ned an-notations may share names, reecting the sharing amongdependence and demand sets present in the procedure. Inaddition, squiggly edges from argument send nodes to re-sult receive nodes can be introduced if the procedure hasthe corresponding paths from the argument receives to re-sult sends. Both the re�ned annotations and the squigglyedges help to better approximate the pids and thereby im-prove subsequent partitioning.

The same optimizations are possible in the reverse di-rection. The annotations of the def site of a procedure canbe improved with the information present at its call site.Dependence and demand sets at the call site determine thenew sharing in inlet and outlet annotations at the def site.Squiggly edges can be introduced from result send nodesback to argument receive nodes, if the corresponding pathsfrom result receive nodes to argument send nodes exist inthe call site. This optimization is more complicated if a pro-cedure has more than one call site, in which case the newannotations and squiggly edges must be compatible with allof the call sites.Conditionals are handled similarly to function calls. Aconditional with two arms can be viewed as a function call,where, depending on the result of the predicate, one of twoblocks are called [AA89]. This representation simpli�es thepartitioning process, as we can use the same uni�ed mecha-nism to deal with function calls and conditionals. When theanalysis is applied to function calls it allows us to reducecommunication; when applied to conditionals it allows us toreduce control ow overhead.4.1 Interprocedural Partitioning ExampleWe will not present the formal interprocedural partitioningalgorithm here as it already has been presented in [TCS92].An extended version which can deal with recursive functioncan be found in [Sch94]. However, we discuss a small exam-ple to help illustrate it.The example shown in Figure 4 consists of two blocks,a caller and callee. The left part of the �gure shows thedataow graph for the caller, the function g, while the rightpart shows the dataow graph for the callee, the function f .Both procedures receive two arguments and return two re-sults. The procedure g contains a call site of the proceduref , as indicated by the interior dashed rectangle, the two ar-gument send nodes (AS1 and AS2), and result receive nodes(RR1 and RR2). The corresponding def site of the proce-dure f consists of the two argument receive nodes (AR1 andAR2) and two result send nodes (RS1 and RS2).As shown in Part (a) of the �gure, the algorithm startsby initially giving all receive and send nodes a unique sin-gleton inlet or outlet annotation. As shown by the shadedregions in Part (b), partitioning the caller results in fourthreads, while partitioning the callee results in two threads.This is the best partitioning possible under the trivial an-notation. The top four nodes of the caller cannot be placedinto a single thread because the partitioning algorithm hasto assume that a pidmay exist from the node with the outletannotation fug back to the node with the inlet annotationfbg. Analogous arguments can be made for why the otherthreads have to stay separate.To improve the partitioning, we must apply interproce-dural analysis which propagates information across blocks.Propagation involves introducing squiggly edges and re�ninginlet and outlet annotations. Let us �rst explore what hap-pens when propagating from the caller to the callee. In thiscase, no squiggly edge is introduced, since the caller does nothave a certain dependence path from a result receive node toan argument send node. The new inlet annotations given tothe argument receive nodes at the def site reect the depen-dence sets of the argument send nodes at the call site. Asshown in Part (c) of the �gure, the node AR1 gets the newinlet annotation fag, while the node AR2 gets the inlet an-7

AR1 e f

zy

AR2

+ *

RS1 RS2

f
a

g

RR1 c d

vu

RR2

AS1 AS2

f

Caller Callee

b

xw

AR1 e f

zy

AR2

+ *

RS1 RS2

f
a

g

RR1 c d

vu

RR2

AS1 AS2

f

b

xw

b) Initial Partitioning
Partitioning of the caller
results in four threads, while
the callee gets two threads.

a) Initial Annotation
Every receive is annotated
with a unique singleton inlet
name, and every send with a
unique singleton outlet name.

AR1 a ab

wxw

AR2

+ *

RS1 RS2

f
a

g

RR1 c d

vu

RR2

AS1 AS2

f

b

xw

c) Reannotation of Callee
Annotation propagation from
the caller to the callee results
in the new inlet and outlet
annotations.

d) Partitioning of Callee
With the new annotation sepa-
ration constraint partitioning
can obtain a single thread.

AR1 a ab

wxw

AR2

+ *

RS1 RS2

f
a

g

RR1 RR2

AS1 AS2

f

b

xw

e) Reannotation of Caller
Annotation propagation from
the callee to the caller intro-
duces four squiggly edges and
eliminates the annotations.

f) Partitioning of Caller
Partitioning now obtains two
threads. Further reannotation
and partitioning does not
improve this.Figure 4: Example of interprocedural partitioning with annotation propagation.8

notation fa; bg. Likewise, the new outlet annotations givento the result send nodes reect the demand set of the cor-responding result receive nodes, which are fwg and fw;xgrespectively. The new annotations correspond precisely tothe situation shown in Figure 3. Using separation constraintpartitioning, we can group all nodes of the callee into a sin-gle thread, as indicated by the shaded region in Part (d) ofthe �gure.Next we propagate annotations from the callee to thecaller. This time we can introduce four squiggly edges at thecall site, one from every argument send node to every resultreceive node, since the corresponding certain dependencepaths are present in the callee now that it consists of a singlethread. These squiggly edges capture all of the dependencieswhich can arise at this call site. Therefore, we can give theargument send and result receive nodes at the call site emptyinlet and outlet annotations, as shown in Part (e) of the�gure. Applying separation constraint partitioning, the twotop threads in the caller can be merged into a single thread,as shown in Part (f) of the �gure. Likewise, the bottomtwo threads can be grouped into a single thread. Becausethe top and the bottom threads are connected by squigglyedges, they have to remain separate. Thus, partitioningthe caller results in two threads, the best partitioning thatcan be obtained for this example. Further reannotation andpartitioning does not improve this. Note that the resultingthreads are the same as in a strict sequential program.5 Experimental ResultsIn this section we evaluate our partitioning scheme in thecontext of the Berkeley Id90 compiler. Using various metricswe show how separation constraint partitioning combinedwith interprocedural analysis approach the e�ciency of anoracular \strict partitioner."5.1 MethodologyThe Berkeley Id90 compiler uses a front-end developed atMIT [Tra86], which produces structured dataow graphs forthe partitioning algorithms presented here. The partitionedgraphs are used to generate code for TAM, a threaded ab-stract machine [CGSvE93]. The TAM code is then trans-lated to the target machine. Our translation path uses Cas a portable \intermediate form" and is producing code forthe CM-5, as well as for various standard sequential ma-chines [Gol94]. We used this implementation for statisticscollection and measurements. All of the programs are com-piled for parallel execution. As they run, lots parallelismis exposed. However in order to factor out a broad familyof issues unrelated to partitioning, such as load balancingand locality, we present data here from runs on a single pro-cessor. See [CGSvE93, SGS+93] for data and discussion onrunning these programs on parallel machines.We use six benchmark programs, shown in Table 1, rang-ing up to 1,100 source code lines. It should be noted thatthe code was taken as is, compiled for TAM, and executedon standard workstations or the CM-5 without any modi�-cations. The programs range from very �ne grained (e.g.,Quicksort) to medium grained (e.g., MMT).

5.2 EvaluationTo measure the e�ectiveness of partitioning we compare fourdi�erent partitioning schemes: dataow partitioning (DF),iterated partitioning (IT), separation constraint partitioningwith interprocedural analysis (IN), and strict partitioning(ST). Dataow partitioning and strict partitioning repre-sent the two extremes of the spectrum. Dataow parti-tioning puts unary nodes into the thread of their predeces-sor, reecting the limited thread capabilities supported bymany dataow machines. Strict partitioning ignores possi-ble non-strictness and compiles function calls and condition-als strictly, thus representing the best possible interprocedu-ral partitioning algorithm. Although it is not the case forour six benchmark programs, strict partitioning producesan incorrect partitioning for programs which require non-strictness. Iterated and interprocedural partitioning repre-sent the two real partitioning schemes. With iterated par-titioning every block is partitioned in isolation. Separationconstraint partitioning with interprocedural analysis appliesthe techniques discussed in this paper|the interproceduralanalysis uses separation constraint partitioning to �rst groupnodes at def and call site boundaries, after which interiornodes are merged using iterated partitioning.Figure 5 shows the dynamic TAM instruction distribu-tion for the benchmark programs under the four partitioningschemes, each normalized to dataow partitioning. Since thecost for each TAM instruction di�ers, this �gure does notnecessarily reect execution time which is presented later.Instructions are classi�ed into one of four categories: ALUoperations, heap accesses, communication, and control op-erations. The programs toward the left of the �gure ex-hibit very �ne-grain parallelism and are control intensive.The moderate blocking (4x4) and regular structure of MMTshows a signi�cant contrast. As expected, improved parti-tioning substantially reduces the number of control opera-tions. For most programs, iterated partitioning reduces thenumber of control operations by more than a factor of 2. ForSimple and MMT the reduction is much larger.5 Interpro-cedural partitioning further reduces the control operationsfor the more �nely grained programs, while for the coarsegrained programs the improvement is insigni�cant. Inter-procedural and strict partitioning also decrease the numberof instructions related to communication, as the grouping ofarguments and results reduces the number of messages. Thise�ect is particularly important since communication opera-tions are more than ten times as expensive as any other.In order to see the e�ectiveness of separation constraintpartitioning combined with interprocedural analysis we lookat how boundary nodes are grouped into threads. In thecode generation to TAM, passing of arguments and resultsfor a function invocation requires send instructions. Simi-larly, the implementation of conditionals is based on switch-es, which, depending on the result of the predicate, steerthe control to one of two successor threads. One distin-guishing feature about partitioning across blocks is that itmay group nodes at block boundaries. For example, multi-ple send nodes residing in the same thread can be groupedinto a single send node if the corresponding receive nodesalso reside in a single thread. A similar optimization alsooccurs at boundaries of conditionals. Here multiple switchoperations can be replaced by a single switch.5Just as important as the decrease of the number of control opera-tions is the fact that they also become simpler. For example, forks tosynchronizing thread often turn into forks to unsynchronizing threads.9

