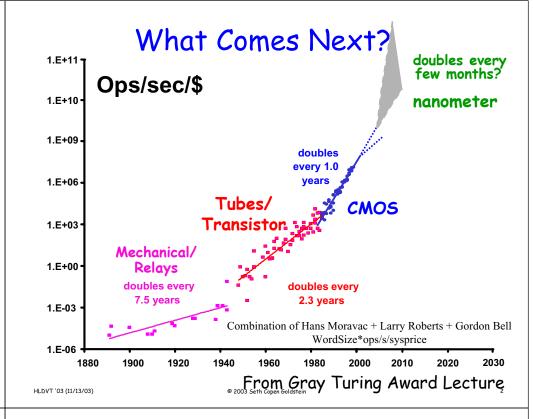
Reconfigurable Nanoelectronics and Defect Tolerance

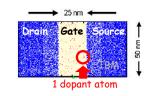
Seth Copen Goldstein
Carnegie Mellon University
seth@cs.cmu.edu

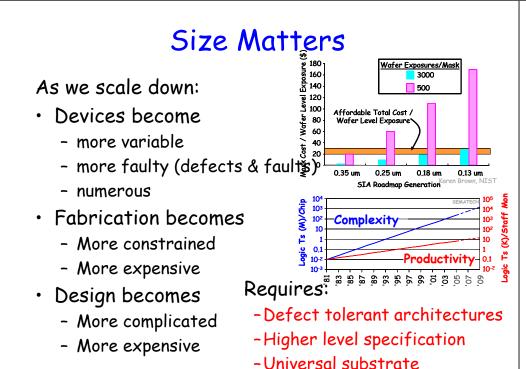

HLDVT 11/13/03

HLDVT '03 (11/13/03)

© 2003 Seth Copen Goldstein

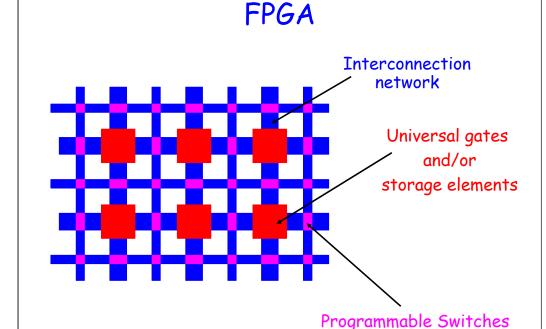
Technology Shifts


- Size of Devices
 - ⇒ Inches to Microns to Nanometers
- Type of Interconnect
 - ⇒ Rods to Lithowires to Nanowires
- Method of Fabrication
 - ⇒ Hammers to Light to Self-Assembly
- Largest Sustainable System
 - $\Rightarrow 10^{1} \text{ to } 10^{8} \text{ to } 10^{12}$
- Reliability
 - ⇒ Bad to Excellent to Unknown


Size Matters

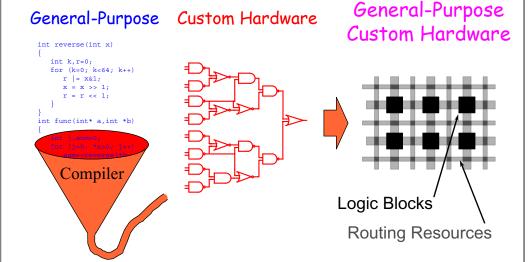
As we scale down:

- Devices become
 - more variable
 - more faulty (defects & faults)
 - numerous
- Fabrication becomes
 - More constrained
 - More expensive
- Design becomes
 - More complicated
 - More expensive


HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

Defect Tolerant Architectures

- · Features:
 - Regular topology
 - Homogenous resources
 - Fine-grained?
 - Post-fabrication modification
- Example from today: DRAM
 - Requires external device for testing
 - Requires external device for repair
- · Logic? FPGA


Key is redundancy

HLDVT '03 (11/13/03)

Reconfigurable Computing

Reconfigurability & DFT

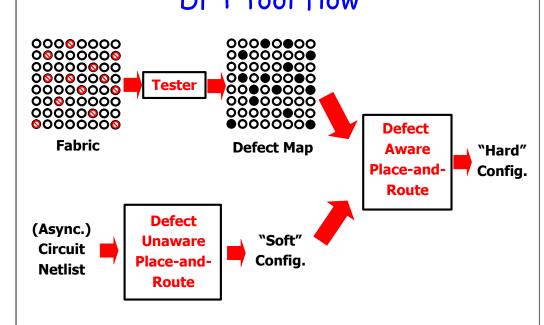
- Regular
- periodic
- Fine-grained
- Homogenous
- programs \Rightarrow circuits

© 2003 Seth Copen Goldstein 9

Reconfigurability & DFT

HLDVT '03 (11/13/03)

HLDVT '03 (11/13/03)


- FPGA computing fabric
 - Regular
 - periodic
 - Fine-grained
 - Homogenous
- programs \Rightarrow circuits
- Aides defect tolerance

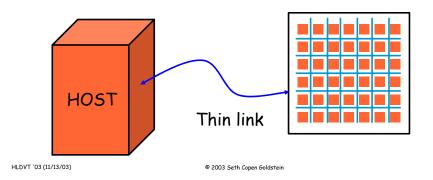
DFT tool flow

Place & Route

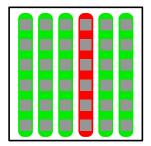
HLDVT '03 (11/13/03)

HLDVT '03 (11/13/03)

© 2003 Seth Copen Goldstein


© 2003 Seth Copen Goldstein

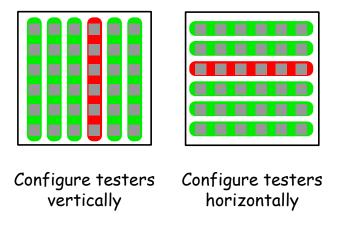
© 2003 Seth Copen Goldstein


12

Finding The Defects

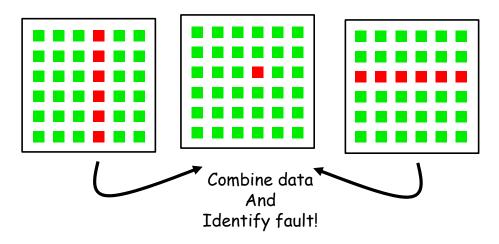
- Need to discover the characteristics of the individual components, but
- Can't selectively stimulate or probe the components
- Download test machines

≈Built-In Self-Test



Configure testers vertically

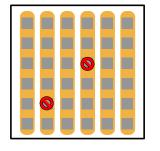
Configure the device to test itself!

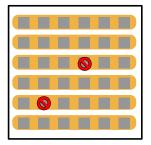

HLDVT '03 (11/13/03) © 2003 5eth Copen Goldstein

≈Built-In Self-Test

Configure the device to test itself!

≈Built-In Self-Test

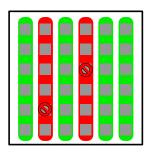


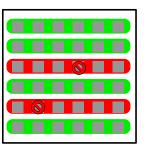

Configure the device to test itself!

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 15 HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

13

What if more defects?

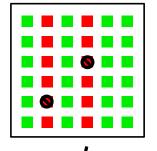

Configure testers vertically

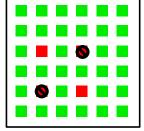

Configure testers horizontally

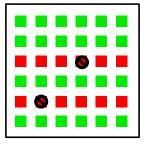
Configure the device to test itself!

HLDVT '03 (11/13/03) © 2003 5eth Copen Goldstein 17

What if more defects?

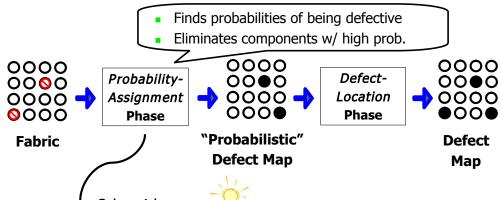

Configure testers vertically


Configure testers horizontally

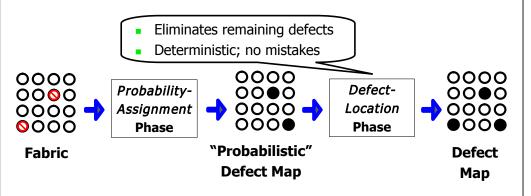

Configure the device to test itself!

HLDVT '03 (11/13/03)
© 2003 Seth Copen Goldstein 18

What if more defects?



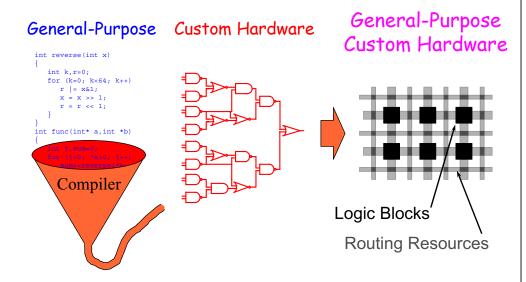
- Need more complex testing methods as defect rate increases
- Key insight: Testers need to return more than binary information


High DefectRates: Our Algorithm

- 2 key ideas:
- More powerful test-circuits
 - More than binary info; e.g. approximate defect counts
- More powerful analysis techniques

HLDVT '03 (II/13/03) © 2003 Seth Copen Goldstein 19 HLDVT '03 (II/13/03) © 2003 Seth Copen Goldstein

High DefectRates: Our Algorithm



How It Works

See Mahim Mishra's Talk at ITC '03 (Can be found at www.cs.cmu.edu/~phoenix)

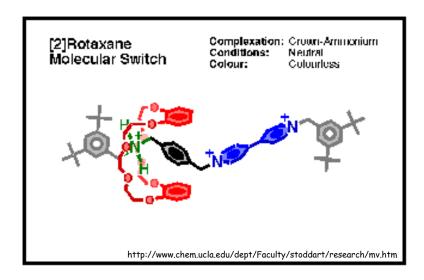
HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 21 HLDVT '03 (11/13/03)

Reconfigurable Computing

Advantages of Reconfigurable

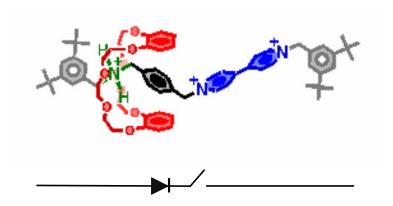
© 2003 Seth Copen Goldstein

- Flexibility of a processor
- *Performance of custom hardware Near

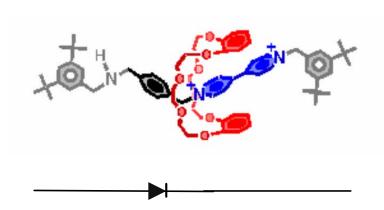

You have to

- Store and
- Address the configuration

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 23 HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

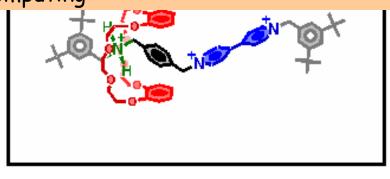

Heart of an FPGA a0 0 data a0 a1 a1 & a2 FPGA: duct Universal gate = 505t of Delay Product The cost Area Delay Delay Control Switch controlled by a 1-bit RAM cell

Key Component: Reconfigurable Switch

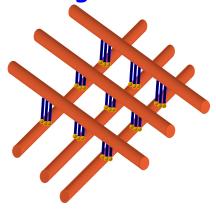


HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 25 HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 26

Key Component: Reconfigurable Switch


Key Component: Reconfigurable Switch

HLDVT '03 (II/13/03) © 2003 Seth Copen Goldstein 27 HLDVT '03 (II/13/03) © 2003 Seth Copen Goldstein

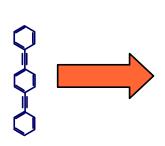

Key Component: Reconfigurable Switch

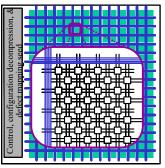
Reconfigurable Molecular Switch: Eliminates overhead for reconfigurable computing

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

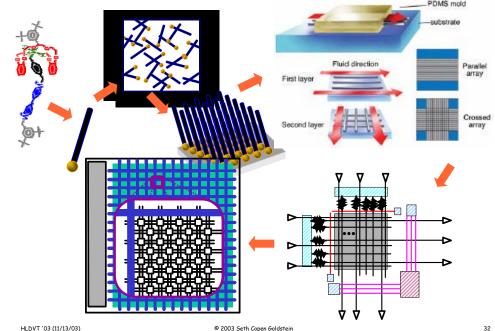
The Molecular Electronics Advantage: A Reconfigurable Switch

- · Each crosspoint is a reconfigurable switch
- · Can be programmed using the signal wires

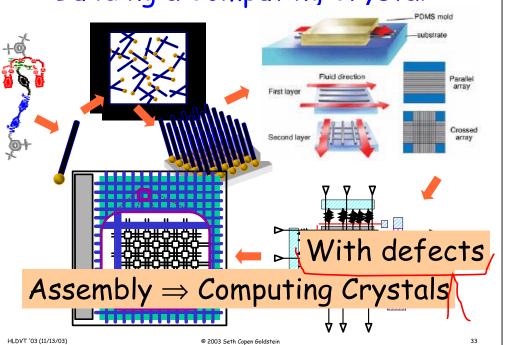

Fliminates overhead found in CMOS FPGAS!


HLDVT '03 (11/13/03)

© 2003 Seth Copen Goldstein


Fabrication Is Different

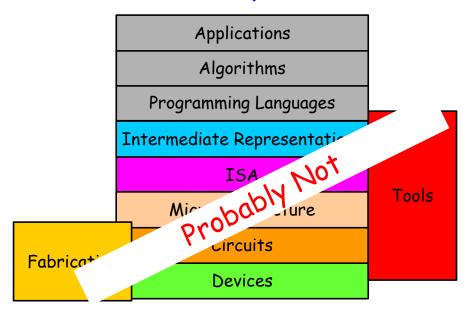
- Devices & wires alone are not useful
- Key to nanoscale computing is bottom-up assembly



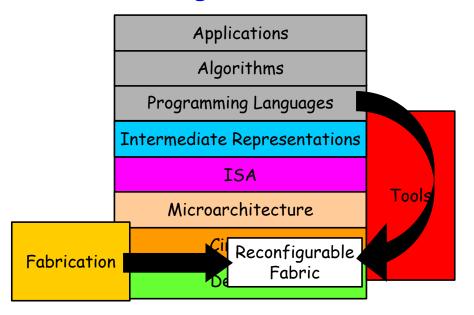
Building a Computing Crystal

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

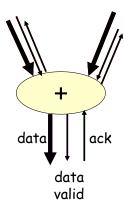
Building a Computing Crystal


Implications

- Devices only at cross-points (only 2 terminal devices?)
- Only regular structures
- · Defect-tolerance required
- Functionality must be added post-fabrication


 \rightarrow Reconfigurable!

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

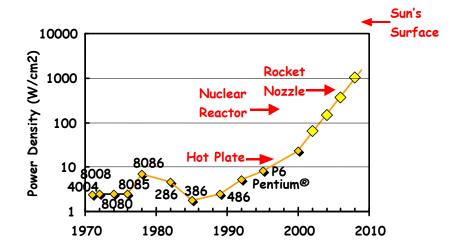

Abstraction Layers Still OK?

Breaking Abstractions

E.g., Asynchronous Design

Tolerant of

- Layout
- Parametric variation
- Variable Latency Operations
- Low-power
- Natural implementation for dataflow
- Attacks other problems
 (e.g., clock skew, distribution, ...)

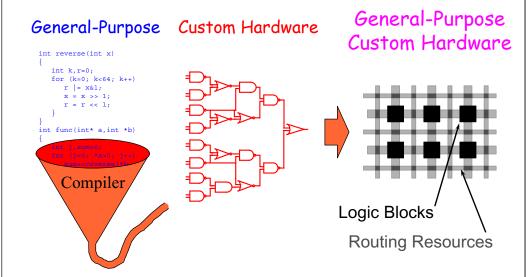

HLDVT '03 (11/13/03) © 2003 5eth Copen Goldstein

E.g., ISA has to go?

- · Current ISA hides to much
 - Good for
 - Forward compatibility
 - Human oriented assembly
 - Ad hock additions
 - Bad for
 - Exploiting resources
 - · Managing new constraints, e.g., power
 - exploiting compiler
 - Verification
- What can replace ISA?
- In general, how do we eliminate barriers without increasing complexity?

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 38

Another Consideration: Power

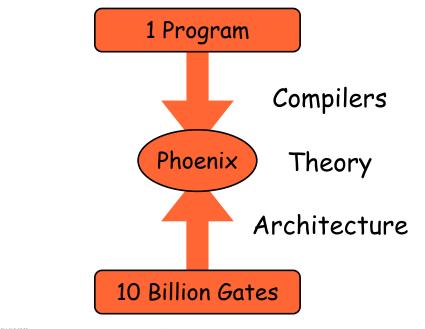

□ Power densities too high to keep junctions at low temps

Source: Irwin & Borkar. De Intel®

Power a 1/Parallel

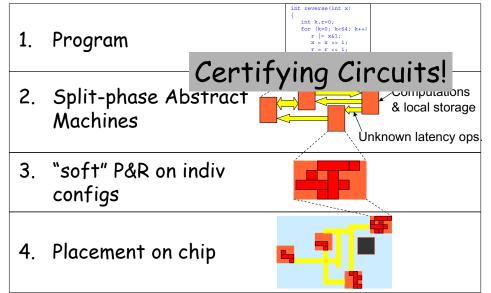
- P α CV²F
- F α (V-Vth) ^{5/4}, for CMOS
- In relevant range: F α V
- So, P α CF³
- Also, 1/A α Tn, early VLSI theory result (1 \leq n \leq 2)
- If we fix T, then F-1 α T, F α A-1/n
- If n=2, P α CA^{-3/2}
- If $C \propto A$, $P \propto A^{-1}$

Reconfigurable Computing


HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 41

Bryant's Law

- Processor verification is always 10 years behind
- · What to do?


Don't use processors!

Spanning 10-orders of Magnitude

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

Circuits From Compilers

HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein 43 HLDVT '03 (11/13/03) © 2003 Seth Copen Goldstein

Conclusions

- Reconfigurable Computing is inevitable
 - Cost of manufacturing
 - Defect tolerance
 - Fabrication constraints
- X-point (e.g., Molecular) switches are ideal for reconfigurable device
- EN: New constraints, but huge potential
 - Billions of devices per cm²
 - Ultra-low power
 - Faster design time
 - Easier verification

Conclusions - 2

- New Abstractions are required
 - Defect tolerance
 - Spatial Computing
 - Asynchronous Circuits
- Abstraction Requirements:
 - Tool friendly not human friendly
 - Support parallel research activities
 - Promote interdisciplinary research