image sensors: real device implementations

my favorite (but now old) CCD ...

CCD 222 488×380-Element Area Image Sensor

FEATURES

- 185,440 sensing elements on a single chip
- Available horizontal resolution: 380 elements per line
- Available vertical resolution: 488 lines
- No lag, no geometric distortion
- A gamma of unity
- High dynamic range typically > 1,000:1 at 25°C (excluding dark signal non-uniformity)
- Low light level capability, low noise equivalent exposure
- Video data rates up to 20 MHz, frame rates to 90 Hz
- Sample-and-hold video output
- Low power dissipation, solid-state reliability and small size
- Standard TV aspect ratio (4:3)
- Satisfies NTSC resolution standards
- **■** Two-phase register clocking
- Digitally-controlled readout
- Special selections available consult factory.

CCD222 488X380 Element Area Image Sensors are also included in Fairchild Weston's series of solid-state television camera systems.

PIN NAMES

Kodak KAF-400 CCD specs

PARAMETER	NOMINAL FIGURE
Optical form factor	100%
Sensitivity @ 550 nm	740000 e ⁻ /µJ/cm2
п	37000 e ⁻ /μW/cm2
п	146 mA/W
II .	44.5 ke ⁻ /lux
Output Charge to Voltage Conversion Factor (CVF)	10 μV/e ⁻
Blue quantum efficiency @ 400 nm	0.03
Green quantum efficiency @ 550 nm	0.33
Red quantum efficiency @ 700 nm	0.40
Near IR quantum efficiency @100 nm	0.08
Reading noise	13 electrons
Dark current density @ 25°C	10 pA/cm ²
Dark signal	50 e ⁻ /pixel/s
Signal level at saturation	0.11 µJ/cm2
Dynamic range	76 dB
Non-linearity	1%

must mean for 1/20 second exposure time

pixel size, signal, & signal-to-noise

- charge accumulates at a rate proportion to light intensity per unit area of pixel
- capacitance is proportional to pixel area
- so for a given light intensity, exposure time, and cell depth, the signal voltage (accumulated charge / cell capacitance) is independent of cell area
- but signal-to-noise improves with larger accumulated charge, hence with cell area

additional reading

in our AFS readings directory:

- SENSORS02_05-image_sensors.pdf
 - apparently from somebody's course
 - encompasses biological and electronic systems
 - I found it on the web
 - I don't remember where & can't find it again ...
- sensorsCaptureAttention.pdf
 - comprehensive article on CMOS image sensors

other (not CCD) kinds of modern image sensors

CID: charge injection device

- CCDs are inherently serial readout: no way to address an individual pixel
- could realize better dynamic range, electronic zooming, etc., if could address individual pixels
- CID has been promising "around the corner" possibility for ~20 years

CMOS image sensors

- uses same technology as standard memory chips
- economical: uses highly-tuned high-volume production
- allows high degree of integration between imaging and image processing

Foveon: color-film in silicon

(with lots of material processing compromises to achieve correct filtering and decent transmission)

special purpose hybrid devices e.g., "night vision", "image intensifiers" etc

X-ray image intensifier

similar hybrid methods used in "night vision scopes" (Russian → cheap)