Distributed System Security
via Logical Frameworks

Lujo Bauer * Frank Pfenning † Michael K. Reiter †‡*

† Department of Computer Science
‡ Department of Electrical & Computer Engineering
* CyLab
Carnegie Mellon University
Access Control Today

- **Physical**
 - Physical keys
 - Identification cards
 - Access cards and tokens

- **Computer**
 - Username and password
 - Biometrics
 - Smart cards
 - Kerberos, Passport, …

- **Weaknesses of current methods**
 - Limited expressiveness
 - Poor cross-domain interoperability
Converged Mobile Devices ("Smartphones")

- Converged mobile devices ("smartphones")
 - Match wireless telephony to evolved OS or application environments
 - Include the ability to download data to local storage, run applications, and store user data beyond PIM capabilities
 - Leaders: Nokia, Motorola, Sony Ericsson, RIM, Samsung

- Converged device market nearly doubled in 2003 [IDC]
 - Market shows “significant growth and future promise”
 - ~10,000,000 shipped worldwide in 2003, but should inherit mobile phone market—over 500,000,000 shipped in 2003
 - Compound annual growth rate of ~86% projected through 2007

- In the not-too-distant future, every person will have at least one
A Universal Access-control System

- Goal: to use smartphones to intelligently control environment
 - In particular, utilize smartphone as a universal access-control device

- Your smartphone will permit you to do things better ...
 - Office door unlocks as you approach it, computer logs you in, etc.

- ... And to do things you could not do before
 - Delegate authority seamlessly and with fine granularity

- Enabling technologies
 - Logic-based access control
 - Proof-carrying authorization
 - Logical frameworks
I would like to borrow a book from Mike’s office.

- Mike’s students may enter Mike’s office.
- Mike’s admin may act on Mike’s behalf at CMU.
- Mike’s wife may act on Mike’s behalf always.

Only Mike has the authority to enter his office, but he may delegate it to others.
Logic-Based Access Control
[Lampson, Abadi, Burrows & Wobber 1992; ...]

- Access control system can be modeled by a formal logic
 - Allows formal reasoning about the capabilities and limitations of the system
 - Provides for separation of mechanism from policy

- Logic might consist of
 - Strings
 - Channels
 - Compound principles
 - Statements
 - Mike, Jon, HH.D208
 - 0x4C892BD... (public key)
 - Jon as Student, Device for Mike
 - Jon says Goal(HH.D208,...),
 - Jon speaksfor Mike.students,
 - delegates(Mike, Mike.students, Goal(...))
Logic-based Access Control Cont’d

- Logic contains inference rules for reasoning about statements
- Example: Reasoning about belief

A says F ≡ ?

\[
\begin{align*}
\text{pubkey signed } \text{fmla} & \quad \text{F} \\
(name (\text{pubkey})) \text{ says } \text{fmla} & \quad \text{A says } F \\
\text{A says } F & \quad \text{A says } (F \rightarrow G) \\
\hline
\text{A says } G
\end{align*}
\]
Delegates(Mike,Mike.students,
 Goal(CMU.HH.D208.open))
∀F: Delegates(Mike,
 Mike.Admin, Goal(CMU.F))
Mike.Wife speaks for Mike

Jon says
Goal(CMU.HH.D208.open)

Challenge:
Mike says
Goal(CMU.HH.D208.open)
Proof-carrying Authorization (PCA)

- A language and paradigm for developing interoperable security logics
- Resolves tension between generality and expressivity of access-control logics
- Server uses higher-order logic
 - General, undecidable logic
 - Proof checking decidable
- Client uses application-specific logic
 - Application-specific operators defined in higher-order logic
 - Inference rules defined (and proven) as lemmas
 - Proof generation decidable
Proof-carrying Authorization (PCA)

Here is a formal, mechanically verifiable proof of
Mike says Goal(CMU.HH.D208.open)

Let me verify…
Gap Between Model & Implementation

- **Observation:** The implementation may behave differently from the model

- **Problem:** Does the model prove anything about the actual implementation?

- **(Partial) Solution:** Integrate logical framework in implementation
 - Components of the logic and logical framework are core pieces of the system’s data structures and protocols
 - Use standard, well-studied technology: LF
Challenges: Access Control

- Constraining unintended consequences
 - Participants may utter contradictory or overly general statements

- Scalable and automated proof-generation strategies
 - Human assistance not always possible

- Resource-constrained mobile devices
 - Proof-generation can be partitioned to take advantage of powerful, non-mobile infrastructure

- Privacy concerns
 - Every authorization and delegation explicitly encoded
 - Credentials can be observed

- Capture resilience
 - A stolen device should not reveal the credentials stored on it
Challenges: Logical Frameworks

- More expressive frameworks allow us to describe a larger number of realistic scenarios

- Concurrent Logical Framework (CLF)
 - Combination of linear logic, type theory, and monads
 - Directly supports the specification of distributed and concurrent systems

- Specifying system architecture (policies, protocols, proofs) in the enhanced framework