Distributed System Security via Logical Frameworks

Lujo Bauer * Frank Pfenning † Michael K. Reiter † **

† Department of Computer Science ‡ Department of Electrical & Computer Engineering * CyLab Carnegie Mellon University

Access Control Today

Physical

- **▼** Physical keys
- Identification cards
- Access cards and tokens

Computer

- Username and password
- **▼** Biometrics
- **▼** Smart cards
- **▼** Kerberos, Passport, ...

Weaknesses of current methods

- **▼** Limited expressiveness
- **▼** Poor cross-domain interoperability

Converged Mobile Devices ("Smartphones")

- Converged mobile devices ("smartphones")
 - Match wireless telephony to evolved OS or application environments
 - Include the ability to download data to local storage, run applications, and store user data beyond PIM capabilities
 - Leaders: Nokia, Motorola, Sony Ericsson, RIM, Samsung

Converged device market nearly doubled in 2003 [IDC]

- Market shows "significant growth and future promise"
- **¬** ~10,000,000 shipped worldwide in 2003, but should inherit mobile phone market—over **500,000,000** shipped in 2003
- **▼** Compound annual growth rate of ~86% projected through 2007
- In the not-too-distant future, every person will have at least one

A Universal Access-control System

- Goal: to use smartphones to intelligently control environment
 - In particular, utilize smartphone as a <u>universal access-control device</u>
- Your smartphone will permit you to do things better ...
 - Office door unlocks as you approach it, computer logs you in, etc.
- ... And to do things you could not do before
 - Delegate authority seamlessly and with fine granularity
- Enabling technologies
 - Logic-based access control
 - **▼** Proof-carrying authorization
 - Logical frameworks

 I would like to borrow a book from Mike's office.

Jon

Jon's phone

D208 (Mike's office)

Only Mike has the authority to enter his office, but he may delegate it to others.

- Mike's students may enter Mike's office.
- Mike's admin may act on Mike's behalf at CMU.
- Mike's wife may act on Mike's behalf always.

Mike

Mike's phone

Logic-Based Access Control

[Lampson, Abadi, Burrows & Wobber 1992; ...]

Access control system can be modeled by a formal logic

- Allows formal reasoning about the capabilities and limitations of the system
- ▼ Provides for separation of mechanism from policy

Logic might consist of

■ Strings Mike, Jon, HH.D208

▼ Channels 0x4C892BD... (public key)

▼ Compound principles Jon as Student, Device for Mike

▼ Statements Jon says Goal(HH.D208,...),

Jon **speaksfor** Mike.students,

delegates(Mike, Mike.students, Goal(...))

Logic-based Access Control Cont'd

- Logic contains inference rules for reasoning about statements
- Example: Reasoning about belief

A says
$$F \equiv ?$$

Jon

Jon's phone

D208 (Mike's office)

Delegates (Mike, Mike.students, Goal (CMU.HH.D208.open)

∀F: Delegates(Mike,
Mike.Admin, Goal(CMU.F))

Mike.Wife speaksfor Mike

Mike

Challenge:

Mike says Goal (CMU.HH.D208.open)

Proof-carrying Authorization (PCA)

- A language and paradigm for developing interoperable security logics
- Resolves tension between generality and expressivity of access-control logics
- Server uses higher-order logic
 - **▼** General, undecidable logic
 - ▼ Proof checking decidable
- Client uses application-specific logic
 - Application-specific operators defined in higher-order logic
 - Inference rules defined (and proven) as lemmas
 - **▼** Proof generation decidable

Proof-carrying Authorization (PCA)

Gap Between Model & Implementation

- Observation: The implementation may behave differently from the model
- Problem: Does the model prove anything about the actual implementation?
- (Partial) Solution: Integrate logical framework in implementation
 - ▼ Components of the logic and logical framework are core pieces of the system's data structures and protocols
 - Use standard, well-studied technology: LF

Challenges: Access Control

Constraining unintended consequences

■ Participants may utter contradictory or overly general statements

Scalable and automated proof-generation strategies

■ Human assistance not always possible

Resource-constrained mobile devices

■ Proof-generation can be partitioned to take advantage of powerful, non-mobile infrastructure

Privacy concerns

- Every authorization and delegation explicitly encoded
- Credentials can be observed

Capture resilience

■ A stolen device should not reveal the credentials stored on it

Challenges: Logical Frameworks

- More expressive frameworks allow us to describe a larger number of realistic scenarios
- Concurrent Logical Framework (CLF)
 - **▼** Combination of linear logic, type theory, and monads
 - Directly supports the specification of distributed and concurrent systems
- Specifying system architecture (policies, protocols, proofs) in the enhanced framework