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Abstract
A new technique is presented for computing 3D

scene structure from point and line features in monoc-
ular image sequences. Unlike previous methods, the
technique guarantees the completeness of the recovered
scene, ensuring that every scene feature that is detected
in each image is reconstructed. The approach relies on
the presence of four or more reference features whose
correspondences are known in all the images. Under
an orthographic or a�ne camera model, the parallax
of the reference features provides constraints that sim-
plify the recovery of the rest of the visible scene. An
e�cient recursive algorithm is described that uses a
uni�ed framework for point and line features. The al-
gorithm integrates the tasks of feature correspondence
and structure recovery, ensuring that all reconstructible
features are tracked. In addition, the algorithm is
immune to outliers and feature-drift, two weaknesses
of existing structure-from-motion techniques. Experi-
mental results are presented for real images.

1 Introduction
Many existing structure-from-motion algorithms

generate optimal structure estimates but typically re-
construct very little of the visible scene. This short-
coming is due primarily to the reliance on error-prone,
nearest-neighbor-based, feature tracking methods [1, 2]
that can reliably track only a subset of the visible im-
age features. Since the set of trackable image features
is generally a small subset of the detected image fea-
tures, the 3D reconstruction is necessarily incomplete.

In this paper we present a novel approach for 3D
scene reconstruction that provides guarantees on the
completeness, consistency, and optimality of the recon-
struction. Furthermore, no limiting assumptions such
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as spatial or temporal smoothness are needed. Specif-
ically, we guarantee

� Completeness: Every continuously-visible scene
feature is reconstructed

� Consistency: Every reconstructed scene feature
can be explained by a feature in each image.

� Optimality: The computed structure is the best
least-squared approximation to the image mea-
surements, subject to constraints provided by a
set of reference features.

By scene feature, we mean any point or line that moves
rigidly, such as a surface marking or surface orientation
discontinuity. To be reconstructible, a scene feature
must be detected in each image. We assume that the
projection process is accurately modeled by an a�ne
camera model. In addition, we require that the 2D
positions of at least four non-coplanar corresponding
reference features can be found in each image.

The fundamental insight used in this paper is that
the features that can be reliably tracked provide ge-
ometric constraints that simplify the correspondence
and reconstruction of the rest of the features in the
image sequence. Hence, we can extend a small set of
feature correspondences to a complete set covering all
reconstructible features, and to a complete reconstruc-
tion.

The reference features are used to simplify struc-
ture recovery in two ways: First, the parallax of the
reference features determines epipolar lines that con-
strain the feature correspondence process to a one-
dimensional search. Subsequent images further con-
strain the possible matches. Second, the reference fea-
tures determine a global a�ne reference frame in which
structure recovery is straightforward. Completeness is
ensured by maintaining a separate hypothesis for each
set of possibly corresponding image features, subject
to the epipolar constraints. Consistency is achieved by
discarding any hypothesis that cannot be explained by
a 3D scene feature.

Our approach has a number of useful properties
that resolve outstanding problems in current structure-
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from-motion approaches. In particular, outlier detec-
tion and removal occur naturally in the process of
structure recovery, avoiding the need for special outlier
detection algorithms. Outliers pose a signi�cant prob-
lem for structure recovery algorithms based on least-
squares techniques [3, 4] because a few bad features
will bias the entire reconstruction. In our approach,
each feature is recovered independently so outliers do
not bias the recovery of other features. Furthermore,
the algorithm automatically eliminates any image fea-
ture that cannot be explained by a 3D scene feature,
thereby virtually eliminating outliers altogether. A
similar issue is feature-drift, which typically occurs in
long image-sequences due to the propagation of track-
ing errors. Feature-drift does not arise in our approach
because all possible sets of feature correspondences are
retained as separate hypotheses. A hypothesized set of
corresponding image features is discarded only when
there is no scene feature that could explain it. Finally,
the worst-case computational complexity of the algo-
rithm is O(nm3) for n images and m reconstructible
scene features, in contrast to the exponential growth
generally exhibited by complete algorithms [2].

The rest of the paper is organized as follows: Section
2 reviews related work on structure-from-motion and
feature tracking. Section 3 discusses the constraints
provided by a set of reference features, including the
derivation of an a�ne reference frame and the deter-
mination of epipolar lines. The framework for recon-
structing scene features is presented in Section 4. Two
optimizations are described in Section 5 that reduce
the correspondence problem to a table lookup. The
complete algorithm is presented in Section 6, and Sec-
tion 7 presents experimental results on real images.

2 Related Work
Despite its importance, the completeness problem

has been neglected in the structure-from-motion lit-
erature, although a few vision researchers have con-
sidered completeness in related problems. Kutulakos
and Dyer [5] introduced a provable algorithm for global
surface reconstruction using an active observer. Their
approach provided guarantees on the completeness of
the recovered scene, but required continuous and con-
trolled camera motion. There has been some work on
feature-tracking using multiple hypotheses to generate
and maintain di�erent sets of possible feature corre-
spondences [2]. Unfortunately, these algorithms have
exponential complexity so suboptimal approximations
are used in practice. Moreover, the strategies for hy-
pothesis pruning are based on assumptions such as mo-
tion continuity that are often violated in practical ap-
plications.

Other researchers have noted that the image motion
of a few reference features provides useful geometric
constraints. Koenderink and van Doorn [6] showed
that four points determine a global, object-centered,
a�ne reference frame in which 3D structure informa-
tion can be recovered. Several researchers have noted
that epipolar lines can be determined from a num-
ber of feature correspondences in uncalibrated images
[4, 7, 8, 9, 10]. The epipolar lines constrain the set
of possible feature correspondences and can be ob-

tained from as few as four corresponding points un-
der orthographic or a�ne projection. Other work has
shown that additional images further constrain corre-
spondences and this property has been used in trinoc-
ular stereopsis [10, 11].

3 Constraints from Four Features
Image motion of a rigid scene is known to be highly

constrained; the projections of any scene feature are
limited to a set of epipolar lines. The problem is that
these epipolar lines are not generally known in advance
so they are not used in feature tracking. Recent results
[4, 9, 10], however, have shown that epipolar lines can
be determined from as few as four feature correspon-
dences, without the need for camera calibration. These
results suggest a two stage solution to the feature cor-
respondence problem where a few feature correspon-
dences are used to simplify tracking for the rest of the
scene.

Our algorithm for recovering scene structure de-
pends upon the acquisition of a set of a�ne projection
matrices, �i, that allow inverse projection of image
features into a global 3D a�ne space. Several methods
have been proposed for determining these quantities
from point correspondences [4, 6]. We use an adapta-
tion of the method proposed by Tomasi and Kanade [3]
for an orthographic camera and modi�ed by Shapiro
[4] for the a�ne case. This method was chosen because
(1) more than four points may be used, and (2) it has
been adapted for recursive estimation of the projection
matrices [12] when the images are processed incremen-
tally. The original (non-recursive) method is reviewed
brie
y below.

3.1 Projection Matrices
From four or more non-coplanar image feature cor-

respondences it is possible to obtain the projection
equations that map a point from an a�ne 3D space to
each image. We use the factorization approach [3, 4] to
determine the a�ne projection matrices. For simplic-
ity, assume that the origin of each image Ii is chosen
to be the centroid of the k reference features. The pro-
jection matrices are found by concatenating the image
measurements, forming a 2n � k matrix M and com-
puting the singular value decomposition M = U�V.
The projection matrices�1; : : : ;�n are the successive
2 � 3 blocks of the �rst three columns of U. As in
[4], the projection matrices need not be orthogonal, in
which case the reconstructed scene will be an a�ne
transformation of the true scene. For further details of
the algorithm, see [3, 4, 12].

It is useful to know the direction of the optical axis
Ki of Ii, also known as the direction of projection for
an orthographic camera. The optical axis of image Ii
is the null-space of �i, i.e., Ki = fP j �iP = 0g, and
points in the direction of the eigenvector of the matrix�

�i

0 0 0

�
with eigenvalue 0.

3.2 Epipolar Lines
For a given point p in image I1, the epipolar

line in Ii is de�ned to be the projection of the line
Lp = fP j �iP = pg into image Ii. An implicit form
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of Lp can be found in terms of the a�ne fundamen-
tal matrix [4]. We present a di�erent derivation which
involves aligning the a�ne coordinate system with I1.
The advantage of the latter approach is that the epipo-
lar geometry is given directly by the projection matri-
ces.

Suppose that the X and Y axes of the global a�ne
coordinate frame are aligned with the �rst image, i.e.,

�1 =

�
1 0 0
0 1 0

�
(1)

and p = [x y]
T
is a point in I1. Then

Lp = f[x y Z]
T j Z 2 <g

If �i is partitioned as�i = [Ai j di], where Ai is 2�2
and di is 2� 1, we get the following expression for the
epipolar line of p in Ii

l
p
i = f�i[x y Z]

T j Z 2 <g

= fAip+ Zdi j Z 2 <g (2)

Therefore, di is the direction of the epipolar line and
Aip is its orthogonal o�set from the origin of Ii. This
derivation also shows that all epipolar lines in Ii are
parallel, since di does not depend on p.

To use formula (2) we must transform the global
coordinate system so that it is aligned with I1. This is
accomplished by post-multiplying each projection ma-
trix with any non-singular 3� 3 matrix S satisfying:

�1S =

�
1 0 0
0 1 0

�

A simple solution for S is

S =

�
A�1

1
�A�1

1
d1

0 0 1

�

Finally, note that the optical axisK1 of the �rst image

in the aligned coordinate system is simply [0 0 1]
T
.

4 Scene Reconstruction
In this section we describe a voting technique for re-

covering the 3D positions of image features in an a�ne
reference frame. The technique is complete in the sense
that every reconstructible feature is accounted for. A
reconstructible feature is any point or line feature in
the scene that is continuously-visible, i.e., is detected
as a feature in each image. Our method makes use of
an implicit representation of scene features that per-
mits the representation of points and lines within a
common parameter space.

The method uses epipolar constraints to �nd feature
correspondences and a global a�ne reference frame in
which to represent the recovered scene. The approach
is incremental, providing updated optimal estimates
of 3D structure as each image becomes available. The
algorithm integrates the tasks of feature tracking and
structure recovery into one process, ensuring that only
the reconstructible features are tracked.

For simplicity of presentation, we assume that pro-
jection matrices �1; : : : ;�n have been recovered.

4.1 Determining Correspondences
Any feature point p in Ii can be said to vote for the

linear subspace Lp that projects to that feature. An
explicit form for Lp is given by

Lp = fOp + ZKi j Z 2 <g (3)

where Op is taken to be ��1

i p with ��1

i the pseudo-
inverse of �i. Let p be a feature in I1. The fea-
tures that could correspond to p in Ii are the points
q such that Lq intersects Lp. These features lie along
l
p
i , the projection of Lp into Ii. In general, n features
p
1
; : : : ;pn correspond to the same scene point only if

the lines Lp1 ; : : : ; Lpn mutually intersect.
Due to measurement errors, the set of points that

could project to p is more accurately modeled as a
conic volume Cp with axis Lp and a constant eliptical
cross-section given by the measurement covariance of
p. As before, p

1
; : : : ;pn could correspond to the same

scene feature only if
T
Cpi 6= ;.

The discussion so far suggests a voting technique
such as a Hough transform to determine correspon-
dences. Such an approach involves sampling the 3D
world into a grid of bins. Each image feature, p, votes
for all the bins overlapping Cp. Any bin with a large
number of votes supports the correspondence of the
set of features voting for the bin. In addition, the po-
sition of a bin in the Hough space provides the rough
3D location of the corresponding feature in the scene.

The Hough approach is attractive but costly due
to its extensive memory requirements. We present a
similar, but less costly, approach in which bins are al-
located only as needed. As described before, each fea-
ture p in I1 votes for a 3D volume Cp. Initially, a bin
B

p
�1;1 is allocated for each such volume. Cp can be

broken into a set of segments, each parameterized by
an interval [Z1; Z2]. If we de�ne

L
p
Z1;Z2

= fOp + ZK1 j Z1 � Z � Z2g

then C
p
Z1;Z2

is de�ned to be the segment of Cp with

axis Lp
Z1;Z2

. Any feature q in another image such that
Cq and Cp intersect supports the hypothesis of a scene
feature in the region of intersection. For simplicity, this
region is approximated by the smallest segment Cp

Z1;Z2

that encloses Cq
T
Cp. For each such region, a new bin

B
p
Z1;Z2

is allocated. The new set of bins replaces the

old set. After n images, each segment Cp
Z1;Z2

that is

supported by all n images will have it's own bin Bp
Z1;Z2

.
This approach is also suited for matching corre-

sponding image line segments. Speci�cally, a point
p along each line segment in the �rst image is
chosen to represent that feature. Any line seg-
ment l in a subsequent image votes for the volume
Cl =

S
fCq j q on lg. Every set of mutually intersect-

ing volumes Cp; Cl2 ; : : : ; Cln will have a bin B
p
Z1;Z2

such that Lp
Z1;Z2

�
Tn

i=2 C
li

Section 6 presents an e�cient method that �nds cor-
respondences by traversing epipolar lines. The process
is made more e�cient by �rst rectifying the images so
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that all epipolar lines are horizontal and then caching
proximity information so that corresponding features
can be found by table lookup.

Since there is a one-to-one correspondence between
bins and possible sets of corresponding features, all
possible interpretations of the scene are explic-
itly taken into account. In addition, only corre-
spondences that are consistent with a 3D scene
feature are considered. These two properties ensure
the completeness and consistency of the algorithm.

4.2 Determining 3D Position
In this section we make use of an implicit represen-

tation of three-dimensional subspaces such as points,
lines, and planes, as solutions of 3 � 3 linear systems
of equations of the form AX = B. This representa-
tion is attractive because it o�ers a uniform treatment
of point and line features. Furthermore, the implicit
formulation generally results in a more compact (and
hence more e�cient) system of linear equations than
does the more common explicit form.

Each image feature votes for a scene feature in the
3D subspace projecting to that feature. We represent
an a�ne subspace S as a tuple hA;Oi where O is the
orthogonal o�set of the subspace from the origin and
A is a matrix whose columns span the linear subspace
S � O. In particular, a point pi in Ii votes for the
subspace hKi;O

pii. If p and q are two points along
a line feature li in Ii then li votes for the subspace
h[Ki j O

q �Op];Opi.
In general, let f1; : : : ; fn be a set of corre-

sponding image point or line features and let
hA1;O1i; : : : ; hAn;Oni be the respective subspaces for
which they vote. The task is to determine the scene
subspace that is as close as possible, in a least-squared
sense, to these subspaces. Towards this end, the Ma-
halanobis distance of a point P to a subspace hA;Oi
is given by

(P �O)THWH(P �O) (4)

where the 3� 3 symmetric matrix H is de�ned by

H = I�A(ATA)�1AT

The 3 � 3 matrix W weights a vote according to its
uncertainty and is typically chosen to be the inverse
covariance matrix of the expected error. If W is the
identity, Eq. (4) gives the orthogonal squared distance
from the given subspace [13]. The weight matrix can
be determined from the measurement covariance as fol-
lows: let � be the covariance of an image feature p in
Ii. The subspace voted for by p is weighted by

W =�T
i �

�1�i

A scene feature is reconstructed by minimiz-
ing the following expression, which gives the
weighted sum of squared distances of a point P to
hA1;O1i; : : : ; hAn;Oni

Epoint(P ) =
nX

i=1

(P �Oi)
THiWiHi(P �Oi)

= P THP � 2OTP + c (5)

where

H =
nX

i=1

HiWiHi (6)

O =

nX
i=1

HiWiHiOi (7)

c =

nX
i=1

OT
i HiWiHiOi (8)

The optimal point �P is found by di�erentiating
Eq. (5) and setting the result to 0. After slight re-
arrangement, this minimization yields the following
3 � 3 linear system whose solution is the optimal re-
constructed scene point:

H �P = O (9)

In the case of line features and ideal measurements,
Eq. (9) yields a one-parameter family of solutions that
spans the reconstructed line. In general, the residual
error of a 3D line segment L = fP + tD j t1 � t � t2g
from a set of image features is evaluated by integrating
Eq. (5):

Eline(L; t1; t2) =
1

t2 � t1

Z t2

t1

Epoint(P + tD) dt

Eline is minimized when P satis�es Eq. (9) and D
is the eigenvector of H with the smallest eigenvalue. If
we denote �3 as the smallest eigenvalue of H and V3

as its associated eigenvector, the optimal reconstructed
line in the scene and its expected error are given by

�L = f �P + tV3 j t 2 <g

Eline(�L; t1; t2) = Epoint( �P ) + ��3 (10)

where � = 1

3
(t2
2
+ t2t1 + t2

1
). In practice, � can be

estimated from the endpoints of one or more corre-
sponding image features, or be �xed as a user-speci�ed
parameter. In our experiments, we chose Eline = �3
which e�ectively sets � = 1. This choice of Eline

takes into account the error in the direction of �L but
not its o�set.

The correspondence method of the last section gen-
erates a collection of image feature correspondences
(bins), each of which votes for a possible feature in
the scene. By using these bins to accumulate struc-
ture information as well as correspondence votes, the
processes of structure recovery and feature correspon-
dence are integrated. Each set of features determines
a scene feature and a residual error. The information
required to compute these quantities is stored in a bin:

BIN
H { 3 � 3 projection matrix
O { 3 � 1 o�set vector
c { auxiliary error term
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This formulation works well in a recursive frame-
work, where new measurements are incorporated in-
crementally into each bin, using Eqs. (6 - 8). In this
respect, our approach is similar to methods based on
the Kalman �lter [4, 11] which is a popular tool for
solving linear equations recursively. The primary ad-
vantage of our approach is the implicit formulation of
structure which treats points and lines uniformly. Ob-
serve that each bin implicitly represents either a 3D
point or a line. In contrast, previous approaches based
on the Kalman �lter employed an explicit description
of the degrees of freedom of the reconstructible sub-
space, which di�ers for points and lines. In particu-
lar, points require a three parameter representational
space and lines require a minimum of four parameters
[11]. In contrast, an implicit formulation permits re-
construction of both points and lines within a common
three-dimensional parameter space. Computationally
this means that the implicit framework is more e�cient
both because of the reduced complexity and because
the Kalman �lter requires n matrix inversions whereas
the implicit equations require only one.

5 Preprocessing Optimizations
Two optimizations are described that increase the

e�ciency of the algorithm by preprocessing the images.
The �rst technique recti�es the images so that epipo-
lar lines are horizontal. The second technique caches
proximity information from the recti�ed images so that
feature correspondences can be found by table lookup.

5.1 Image Recti�cation
The run time of determining feature correspon-

dences is dominated by the cost of searching along
epipolar lines. The task is ameliorated by appropri-
ately transforming the images or edge maps so that
epipolar lines are specially aligned. This technique,
known as image recti�cation, has been previously ap-
plied to perspective imagery to simplify matching for
binocular and trinocular stereo [11]. For perspec-
tive cameras in general position, image-recti�cation in-
volves a non-linear image transform1.

Under an a�ne or orthographic projection model,
all epipolar lines in each image are parallel so the recti-
�cation process is simpli�ed considerably. Each image
is merely rotated so that epipolar lines are horizontal;
skews and shears are unnecessary. The angle of rota-
tion is determined by the direction of the epipolar lines
in the image to be recti�ed. This direction is given by
the vector di = [x y]T in Eq. (2) and the recti�cation
angle �i is

�i = �arctan(
y

x
)

Image Ii, i = 2; : : : ; n, is recti�ed by transforming each
feature by the matrix

Ri =

�
cos(�i) �sin(�i)
sin(�i) cos(�i)

�

1The projective recti�cation transform is linear in projective-

space but not in image-space.

Image recti�cation a�ects the projection matrices
as well. The projection matrix of each recti�ed image
is modi�ed by �i = Ri�i after which it is of the form

�i =

�
a b c
d e 0

�

After recti�cation, epipolar computations are sim-
pli�ed as follows: The epipolar line in image Ii of a
point p = [xp yp]

T in image I1 is the horizontal scan-
line whose y-coordinate is given by:

y = dxp + eyp (11)

Similarly, let Lp = f[x y Z]T j Z 2 <g and let
q = [xq yq ]

T be a point along l
p
i . The line Lq voted

for by q intersects Lp at the point [x y Zq]
T where

Z =
xq � axp � byp

c
(12)

5.2 Interval Table
The search for feature correspondences can be re-

duced to a table lookup by precomputing the features
that are su�ciently close to each scanline. Each rec-
ti�ed image is transformed to a set of interval lists,
one per scanline. Each list of intervals speci�es the set
of all possible correspondences of every feature in I1
having a given epipolar line in Ii.

The interval table is computed as follows: the set of
features that are within a tolerated vertical distance of
each scanline is found using a distance transform [14].
For each such feature, an interval is created for the
region of the scanline within tolerance of that feature.
A table is constructed that maps each scanline to the
list of its intervals that are su�ciently close to an image
feature. The result is a table that gives all the possible
correspondences in an image for each feature in I1. The
table is indexed using Eq. (11). To reconstruct both
point and line features, two interval tables are needed.

The method assumes that estimated measurement
covariances are constant for features within each im-
age. Let �1; : : : ;�n be the 2� 2 covariance matrices
for images I1; : : : ; In, respectively. These quantities
are typically provided by feature detectors and a�ne
calibration techniques.

Under predictable sources of error, corresponding
points will stray from epipolar lines by a predictable
amount. The con�dence that p and q correspond is
determined by estimating the covariance about lpi , de-
�ned by

�l
i =�i�

�1

1
�1�

�1

1

T
�T

i

The vertical variance of q from l
p
i is

�li = [0 1](�l
i +�i)[0 1]

T
(13)

If feature measurements are assumed to be Gaus-
sian, �li has a �

2 distribution with two degrees of free-
dom. A suitable tolerance threshold may be selected
by consulting a �2 table.
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6 The Algorithm
The complete algorithm for determining the struc-

ture of a scene from a sequence of two or more un-
calibrated images is presented in this section. It is
assumed that at least four image features have been
detected and matched in each image.

Scene Reconstruction Algorithm

1. Preprocess the images: Detect point and line fea-
tures, determine projection matrices, rectify, and
compute interval tables. This step can be per-
formed incrementally.

2. Choose features in image I1. For each feature p,
create an initial bin Bp

�1;1 using the point or line
formula, as appropriate.

3. Get the next image, Ii, and obtain the set of pos-
sible matches using the interval table. Transform
the intervals to a�ne depth intervals (Zq

1
; Z

q
2
) us-

ing Eq. (12).

4. For each feature q in Ii and bin B
p
Z1;Z2

such that

(Zq
1
; Z

q
2
)
T
(Z1; Z2) 6= ;, create a new bin, Bp

Z0

1
;Z0

2

,

where (Z 0
1
; Z 0

2
) = (Zq

1
; Z

q
2
)
T
(Z1; Z2). The bin

�elds, H, O, and c, are set to the sums of the
respective �elds of bins Bp

Z1;Z2
and B

q
�1;1. The

new bins replace the previous set.

5. For each feature p in image I1 with at least one
bin, choose the bin B

p
Z1;Z2

with minimum error,

using Eq. (5) or (10), and compute the 3D coor-
dinates of the corresponding scene feature.

6. Go to Step 3 or stop if the image sequence is ex-
hausted.

Although the algorithm is dominated by Step 5,
this step need not be performed at every iteration be-
cause the 3D structure is implicitly stored in the set of
bins. Rather, the scene structure can be periodically
updated after a block of images is processed. For in-
stance, a batch version of the above algorithm would
have Step 5 performed last.

To avoid a combinatorial increase in the number
of bins, a monotonicity constraint is added to Step 4
requiring that each bin B

p
Z1;Z2

, �1 < Z1; Z2 < 1,
be replaced with at most one other bin. Speci�-
cally, if multiple features q1; : : : ; qm in Ii all satisfy

(Zqi

1
; Z

qi

2
)
T
(Z1; Z2) 6= ;, a single bin is created for

the feature qj with minimal error. The result is that
a feature may have at most m bins, where m is the
maximum number of features in an image.

To evaluate the complexity of the algorithm, we as-
sume a constant number of image features, m. Each
feature may have at most m bins and each bin requires
O(m) operations per image due to the monotonicity
constraint. With n images, the worst-case complexity
of the algorithm is therefore O(nm3), not including

Figure 1: Set of features tracked in cube sequence.

preprocessing. Computation of the interval table re-
quires a series of simple image transformations such
as rotations and distance transforms that can be per-
formed e�ciently in hardware. The only remaining
cost is due to tracking the reference features and �nd-
ing the projection matrices. The complexity of the
latter task is O(nk2) for k reference features.

7 Experiments
7.1 Rotating Cube Sequence

A variant of a Rubik's Cube was placed on a pan-
tilt device and �lmed while it was undergoing a 23
degree rotation about one axis and a 45 degree ro-
tation about another. Several point-features were se-
lected and automatically tracked through a sequence
of 83 images. A few features that did not lie on the
cube were manually deleted from the feature set. The
�rst image is shown in Figure 1 with reference features
marked. Images 26 through 50 were set aside as a test
set and not used in the structure recovery procedure.
This sequence contains several sets of closely-spaced
parallel lines, making feature-tracking di�cult using
traditional correlation-based methods.

Edges were detected in every image and the algo-
rithm was run on the line segments in images 1-25 and
51-83. To verify that the reconstruction was accurate,
we reprojected the recovered lines and compared the
reconstructed and original images. To determine line
endpoints, each line was clipped so that its projection
matched the corresponding edge in image 1 as closely
as possible.

Fig. 2 shows the results. Qualitatively, it is appar-
ent that the reconstructed images match the original
images quite well. The �gure illustrates the ability
of the method to reconstruct views (top) and to pre-
dict novel views (bottom). In addition, the ability to
eliminate outliers is demonstrated. Notice that the
detected line segments (left) each contain several lines
that are not on the cube. These are features on the
pantilt head that did not rotate with the cube and
were automatically �ltered out as outliers. Also note
that certain lines were �ltered out that should not have
been. The loss of lines can be attributed to edges that
were not detected in one or more images. Each im-
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Figure 2: Reconstructed projections of a cube. Left: Detected line segments for image 20 (top) and 40 (bottom).
Center: Reconstructed images created by reprojecting the recovered lines. Right: Overlay of the original and
reconstructed lines. Note that outliers were automatically removed (center).

Figure 3: Reconstructed a�ne structure of a building. Left: Frontal view from below. Right: Top view.
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Figure 4: Set of features tracked in building sequence.

age contained roughly 70-100 line features. The al-
gorithm found correspondences and computed recon-
structed lines at a rate of approximately 12 frames per
second on a Sun SPARC 10, not including image pre-
processing and �le I/O.

7.2 Images of Outdoor Building Scene
In this section we present a case where conventional

structure-from-motion techniques are not viable due to
the extreme di�culty of obtaining many feature cor-
respondences. Eight photographs of a bank building
were taken from varying viewpoints. The images were
processed in an arbitrary order and there is no coher-
ence from one image to another that could be used to
ameliorate feature correspondence. Eight correspond-
ing reference features were manually selected in each
image (shown in Fig. 4). The correspondences of all
the reconstructible line segments were found by our al-
gorithm, which took roughly 20 seconds for 8 frames,
each containing 300-450 line segments. The slower run-
time re
ects a �ve-fold increase in the number of fea-
tures, with respect to the cube sequence.

Fig. 3 shows the reconstructed a�ne structure of
the building, shown in appropriate reference frames.
Notice that the reconstructed walls are not perpendic-
ular, whereas the walls of the actual building meet at
right angles. This is not an error on the part of the al-
gorithm, but rather an artifact of working in an a�ne
reference frame.

Note that only lines that were detected in every im-
age were reconstructed, so several edges were dropped,
particularly those near image borders. This indicates
that the algorithm is sensitive to occlusions and fea-
tures missed during edge detection. Handling of tem-
porary occlusions is possible in this framework by
slightly generalizing the notion of reconstructible fea-
ture so that representation in every image is not re-
quired. This is a topic of future work.

8 Conclusions
We have presented a uni�ed approach for solving the

problems of feature correspondence and robust struc-
ture recovery of point and line features. The algorithm
departs from previous work by providing guarantees

on the completeness and consistency of the recovered
scene. By solving for feature correspondences and
structure simultaneously, all possible explanations of
the scene can be accounted for. This framework elimi-
nates the need for smooth camera motion and provides
automatic removal of outliers based on incompatibility
with a rigid motion. The algorithm is recursive and its
accuracy is demonstrated with real image sequences.

Future plans include a real-time implementation of
the algorithm to permit complete structure recovery
online. We also plan to extend the framework to allow
reconstruction of features that become occluded and
to investigate generalizing the method to work with a
projective camera model.
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