Introduction

Steve Seitz
Carnegie Mellon University

Brian Curless
University of Washington

SIGGRAPH 99 Course on
3D Photography

http://www.cs.cmu.edu/~seitz/course/3DPhoto.html

3D Photography

2D Photography

3D Photography

Light

Geometry

Reflectance

Light

Light

Light
3D Photography from 2D Photography

Objects Radiate Visible Light

![Objects radiate visible light diagram]

This Pattern of Light Depends On
- Scene illumination
- Surface geometry
- Surface reflectance

Cameras Capture This Light
- Enables analysis of scene structure

Passive vs. Active 3D Photography

Objective
- Infer structure from radiated light

Two Styles
- **Passive** sensing of light already in environment
 - widely applicable
 - cheap
 - brittle, less accurate
 - Morning Session
- **Active** control of illumination
 - not always viable
 - expensive but getting cheaper
 - extremely accurate
 - Afternoon Session
Speakers

Jean-Yves Bouguet, Intel Corporation

Brian Curless, University of Washington

Paul Debevec, University of California, Berkeley

Marc Levoy, Stanford University

Steven Seitz, Carnegie Mellon University

Speakers

Brian Curless University of Washington

8:50pm Acquiring Images
1:30pm Overview of Active Vision
2:55pm Shape and Appearance from Range Data
Speakers

Steven Seitz Carnegie Mellon University

8:30pm Introduction
9:35pm Overview of Passive Vision
11:20pm From Images to Voxels

Speakers

Paul Debevec University of California, Berkeley

10:30pm Facade: Modeling Architectural Scenes
Speakers

Jean-Yves Bouguet Intel Corporation

2:15pm Desktop 3D Photography

Speakers

Marc Levoy Stanford University

3:50pm The Digital Michelangelo Project
Course Objectives

What NOT to expect
- “Build-your-own” 3D camera instructions

What to Expect
- Practical understanding of issues
- Overview of major approaches
- Latest research results
- Current capabilities, limitations

Course Notes
http://www.cs.cmu.edu/~seitz/course/3DPhot.html

Slides
- Acrobat versions of speakers’ slides

Abstracts
- Digital Michelangelo Project
- Passive vision intro
- Modeling architecture from photographs

Models, Movies, Online Presentations
- VRML models, HTML
- Quicktime movies

Papers
- Electronic versions of relevant publications