CVPR 99 Tutorial on 3D Photography

Passive 3D Photography

Steve Seitz Carnegie Mellon University

http://www.cs.cmu.edu/~seitz

Talk Outline

- 1. Visual Cues
- 2. Classical Vision Algorithms
- 3. State of the Art (video)

Visual Cues

Motion

Visual Cues

Motion

Shading

Merle Norman Cosmetics, Los Angeles

Motion

Shading

Texture

The Visual Cliff, by William Vandivert, 1960

Visual Cues

Motion

Shading

Texture

Focus

From The Art of Photography, Canon

Visual Cues

Motion

Others:

Shading

Highlights

Shadows

Silhouettes

Texture

Inter-reflections

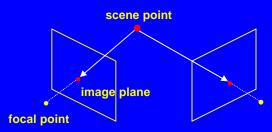
Symmetry

Light Polarization

Focus

• ...

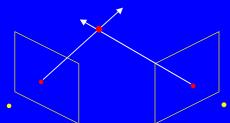
Reconstruction Algorithms


Shape From X

- **✓•** Stereo (shape from parallax)
- **✓•** Structure from motion
- **✓•** Shape from shading
- **✓•** Photometric stereo
 - Shape from texture
 - Shape from focus/defocus
 - Shape from silhouettes, ...

Stereo

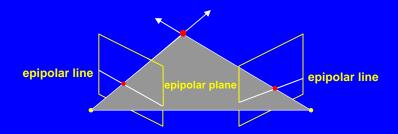
The Stereo Problem


 Reconstruct scene geometry from two or more calibrated images

Stereo

The Stereo Problem

 Reconstruct scene geometry from two or more calibrated images


Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires point correspondence

Stereo Correspondence

Determine Pixel Correspondence

Pairs of points that correspond to same scene point

Epipolar Constraint

 Reduces correspondence problem to 1D search along conjugate epipolar lines

Stereo Matching Algorithms

Match Pixels in Conjugate Epipolar Lines

- This is the tough part
 - > specularities (non-Lambertian surfaces)
 - > ambiguity (low-contrast regions)
 - > missing data (occlusions)
 - > intensity error (quantization, sensor error)
 - > position error (camera calibration)
- Numerous approaches
 - > winner-take all
 - > dynamic programming [Ohta 85]
 - > smoothness functionals
 - > more images (trinocular, N-ocular) [Okutomi 93]

Structure from Motion

The SFM Problem

 Reconstruct scene geometry and camera motion from two or more images

Assume

- Pixel correspondence
 - > via tracking
- Projection model
 - > classic methods are orthographic

Orthographic Projection

Trick

- Choose scene origin to be centroid of 3D points
- Choose image origins to be centroid of 2D points
- Allows us to drop the camera translation:

$$\mathbf{u}_{2\times 1} = \mathbf{D}_{2\times 3} \mathbf{X}_{3\times 1}$$

Shape by Factorization [Tomasi & Kanade, 92]

projection of *n* features in one image:

$$\begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} = \prod_{2 \times n} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

projection of \boldsymbol{n} features in \boldsymbol{f} images

$$\begin{bmatrix} \mathbf{u}_{1}^{1} & \mathbf{u}_{2}^{1} & \cdots & \mathbf{u}_{n}^{1} \\ \mathbf{u}_{1}^{2} & \mathbf{u}_{2}^{2} & \cdots & \mathbf{u}_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{1}^{f} & \mathbf{u}_{2}^{f} & \cdots & \mathbf{u}_{n}^{f} \end{bmatrix} = \begin{bmatrix} \mathbf{D}^{1} \\ \mathbf{D}^{2} \\ \vdots \\ \mathbf{D}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} & \mathbf{X}_{2} & \cdots & \mathbf{X}_{n} \end{bmatrix}$$

$$2f \times n \qquad 2f \times 3$$

W measurement

M motion

S shape

Shape by Factorization [Tomasi & Kanade, 92]

known
$$W = M S$$
 $2f \times n$ $2f \times 3 \times n$

Factorization Technique

- W is at most rank 3 (assuming no noise)
- We can use singular value decomposition to factor W:

$$\mathbf{W}_{2\mathbf{f}\times\mathbf{n}} = \mathbf{M}' \mathbf{S}'_{2\mathbf{f}\times\mathbf{3}} \mathbf{S}_{3\times\mathbf{n}}$$

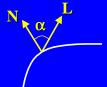
• S' differs from S by a linear transformation A:

$$\mathbf{W} = \mathbf{M}'\mathbf{S}' = (\mathbf{M}\mathbf{A}^{-1})(\mathbf{A}\mathbf{S})$$

Solve for A by enforcing constraints on M

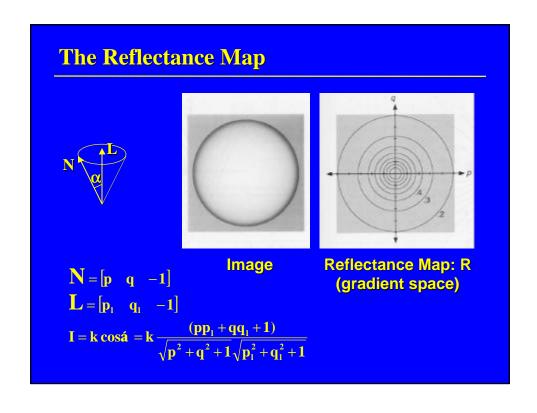
Shape from Shading

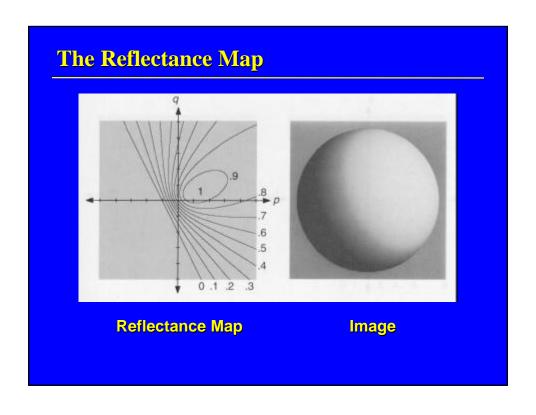
Shape from Shading [Horn, 1970]


Classical Approach

- Reflected light depends only on $\boldsymbol{\alpha}$

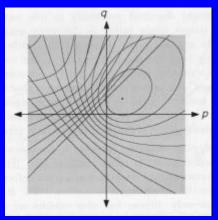
$$radiance = k \cos a$$


• Surface: Z = f(X,Y)


• Normal:
$$N = [p \ q \ -1] = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & -1 \end{bmatrix}$$

This Means We Assume

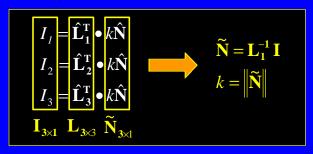
- Orthographic projection
- Lambertian surface
- Known light source at infinity
- No shadows
- Uniform surface material


Finding a Unique Solution

Three Approaches

- Characteristic Strip Method [Horn, 77]
 - > select a few points where normal is known
 - > grow solution by moving direction of ∇R
- Variational Method [Ikeuchi & Horn, 81]
 - > start with an initial guess of surface shape
 - > define energy function
 - > refine to minimize energy function
- Photometric Stereo [Woodham 80]
 - > use more images

Photometric Stereo


Two Images Under Different Lighting

Need Three Images for Unique Solution

Photometric Stereo: Matrix Formulation

Write Equations in Matrix Form

Advantage:

Can solve for variable reflectance k

Resources

Computer Vision Home Page

• http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

Computer Vision Textbooks

- D. H. Ballard and C. M. Brown, Computer Vision, Prentice-Hall, 1982.
- O. Faugeras, Three-Dimensional Computer Vision, MIT Press, 1993.
- B. K. P. Horn, Robot Vision, McGraw-Hill, 1986.
- R. Jain, R. Kasturi and B. G. Schunck, Machine Vision, McGraw-Hill, 1995.
- R. Klette, K. Schluns and A. Koschan, Computer Vision: Three-Dimensional Data from Images, Springer-Verlag, 1998.
- . V. S. Nalwa, A Guided Tour of Computer Vision, Addison-Wesley, 1993.
- M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision, Brooks/Cole Publishing, 1999.
- E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision, Prentice-Hall, 1998.
- D. Marr, Vision, Freeman, 1982.
- J. Koenderink, Solid Shape, MIT Press, 1990.

Bibliography

Stereo

- Yuichi Ohta & Takeo Kanade, "Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming", IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(2), 1985, pp. 129-154.
- Masatoshi Okutomi & Takeo Kanade, "A Multiple-Baseline Stereo", IEEE Trans. on Pattern Analysis and Machine Intelligence", 15(4), 353-363, 1985.

Structure-from-Motion

 Carlo Tomasi & Takeo Kanade, "Shape and Motion from Image Streams Under Orthography: A Factorization Method", Int. Journal of Computer Vision, 9(2), 1992, pp. 137-154.

Shape from Shading

- B. Horn and M. Brooks, "Shape from Shading", 1989, MIT Press.
- L. Wolff, S. Shafer, and G. E. Healey, "Physics-Based Vision: Shape Recovery", 1992, Jones and Bartlett.
- R. J. Woodham, "Photometric Method for Determining Surface Orientation from Multiple Images", Optical Engineering, 1980, pp. 139-144.

Video			