
1
Copyright 2003-2014 by Scott E. Fahlman

Scone User's Guide

Scott E. Fahlman
Carnegie Mellon University

Language Technologies Institute &
Computer Science Department

Contact: sef@cs.cmu.edu

This document corresponds to Scone version 1.0.0,

released August, 2014.

2
Copyright 2003-2014 by Scott E. Fahlman

Copyright Notice:

This manual is copyright © 2003-2014 by Scott E. Fahlman.

Carnegie Mellon University holds the copyright to the core Scone software. The Scone software
is made available to the public under the Apache 2.0 open source license. A copy of this license
is distributed with the software. The license can also be found at
http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Acknowledgments:
Development of Scone since February 2013 has been supported in part by the U.S. Office of
Naval Research under award number N000141310224.

Development of Scone from January 2012 through August 2013 was supported in part by the
Intelligence Advanced Research Projects Activity (IARPA) via Department of Defense US
Army Research Laboratory contract number W911NF-12-C-0020.
Development of Scone from 2003 through 2008 was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under contract numbers NBCHD030010 and FA8750-07-
D-0185.

Additional support for Scone development has been provided by research grants from Cisco
Systems Inc. and from Google Inc.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of IARPA, DoD/ARL, ONR, DARPA, the U.S. Government, or any of our other
sponsors.

3
Copyright 2003-2014 by Scott E. Fahlman

Table of Contents

1.	
 Overview .. 6	

Note on Common Lisp Syntax .. 7	

Running Scone .. 7	

2.	
 Loading, Saving, and Checkpointing KB Files ... 8	

Functions and Variables .. 8	

3.	
 Scone Elements .. 12	

3.1	
 Structure of Scone Elements .. 12	

Functions and Variables .. 13	

3.2	
 Element Properties ... 14	

Functions ... 15	

4.	
 Referring to Scone Elements ... 16	

4.1	
 Element Internal Names ... 16	

Functions and Variables .. 18	

4.2	
 Element External (English) Names .. 19	

Functions and Variables .. 20	

5.	
 Markers .. 22	

Functions and Variables .. 23	

6.	
 Contexts .. 26	

Functions and Variables .. 26	

7.	
 Adding Elements to the Scone KB .. 27	

7.1	
 Creating New Elements ... 27	

The :context Keyword Argument ... 27	

Internal Names and the :iname Argument .. 27	

The :english Keyword Argument .. 28	

Negation Links .. 28	

7.2	
 Indv Nodes ... 29	

Functions ... 29	

7.3	
 Type Nodes .. 30	

Functions ... 31	

7.4	
 Map Nodes ... 32	

4
Copyright 2003-2014 by Scott E. Fahlman

Functions ... 32	

7.5	
 IS-A Links .. 32	

Functions ... 32	

7.6	
 EQ Links .. 33	

Functions ... 33	

7.7	
 Has Links ... 33	

Functions ... 33	

7.8	
 Cancel Links .. 33	

Functions ... 34	

7.9	
 Relations .. 34	

Functions ... 35	

7.10	
 Statement Links ... 35	

Functions ... 35	

7.11	
 Split and Complete-Split Links .. 35	

Functions ... 36	

7.12	
 Functions to Create Multiple Nodes .. 36	

Functions ... 37	

7.13	
 Roles .. 37	

8.	
 Removing Elements from the Scone KB. .. 39	

Functions and Variables .. 39	

9.	
 Queries and Predicates ... 40	

9.1	
 Element-Type Predicate Functions .. 40	

9.2	
 Predicates on the Is-A Hierarchy ... 41	

Functions and Variables .. 41	

9.3	
 Mark, List, and Show Functions .. 41	

Functions and Variables .. 42	

9.4	
 Query Functions for Roles and Relations .. 44	

9.5	
 Miscellaneous Show Functions .. 46	

10.	
 Marker Scans ... 47	

Functions and Variables .. 47	

11.	
 Miscellaneous Functions and Variables ... 49	

11.1	
 Commentary, Printing, and Naming .. 49	

5
Copyright 2003-2014 by Scott E. Fahlman

11.2	
 Variables Linking to Essential Scone Elements .. 49	

12.	
 Structure-Creation Functions from the Core KB .. 51	

Functions and Variables .. 51	

13.	
 Alphabetical Index of Functions and Variables .. 52	

6
Copyright 2003-2014 by Scott E. Fahlman

1. Overview
Scone is a knowledge-base system (KBS) intended for use as a component in a wide range of
software applications. The Scone system comprises a search/inference engine and a “core”
knowledge base (KB) of common knowledge. Application-specific KBs and interfaces to other
software applications can be built on top of this common base.

This manual is intended as a programmer-level guide to the operation and functions of the Scone
software. It is not intended to be a tutorial on knowledge representation concepts used in Scone.
A book-length tutorial document is needed, and it is currently under development. Some of the
ideas in Scone are discussed in essay-length posts on Scott Fahlman’s “Knowledge Nuggets”
blog: http://www.cs.cmu.edu/~nuggets/. Scone is currently under active development. We will
include an updated version of this manual with each release, along with other release notes as
appropriate.
The greatest problem for users of knowledge-base systems has been the difficulty of adding new
knowledge to the system and making that knowledge fully effective. This gives rise to spotty
coverage of common-sense domains. Scone attempts to ease this burden by relatively clean
design, expressiveness of the representation system, and by insulating the user from most
efficiency concerns. In addition, the Scone group has developed a number of tools for
converting knowledge from other structured or semi-structured formats (existing ontologies such
as SUMO and WordNet, tables, databases, and information mined from the Internet) to Scone
format. Extraction of Scone knowledge from natural-language text, such as Wikipedia or
newswire stories, is a long-term goal and is the subject of active research in our group.

Scone is written in Common Lisp.1 The primary vehicle for Scone development is Steel Bank
Common Lisp (SBCL), which is a derivative of CMU Common Lisp (CMUCL). SBCL is a free,
high-performance implementation of Common Lisp running on Linux and some other operating
systems. The SBCL system makes use of the 64-bit address space on Intel and AMD processors,
making it possible to run very large knowledge bases on those machines.
Scone also has been run successfully on CMU Common Lisp and on several Windows-based
Common Lisp systems, including CLISP, LispWorks, and Allegro Common Lisp. However, as
of now, we do not actively test or maintain Scone in those environments.

Scone can be run as a server process on an Intel/Linux system, communicating with other
software applications via character-stream I/O using the TCP/IP socket mechanism. The other
software applications may be written in any computer language and may be running on the same
machine or a different machine on the Internet.

Scone is designed for efficiency of search and inference on conventional high-end workstations.
However, the marker-passing inference algorithms used in Scone were originally designed with
parallelism in mind. Scone is therefore well suited for future implementation on a massively
parallel machine or perhaps a computing grid.

1 It would be possible to re-implement the Scone engine in some other language such as Java, perhaps with certain performance-
critical code in C for efficiency. However, we believe that Common Lisp is by far the best language for the development of
Scone, and (with careful coding) the Lisp version is nearly as efficient as it would be in C. The downside is that experienced
Lisp programmers are becoming an endangered species.

7
Copyright 2003-2014 by Scott E. Fahlman

Note on Common Lisp Syntax
This manual assumes that the reader has some general familiarity with Common Lisp2 syntax.
As a quick reminder, if this document indicates that a function’s syntax looks like this
some-function (a b &optional c) [FUNCTION]

then some-function is the name of the function, arguments a and b are required, while
argument c is optional, with some default value. Unless otherwise specified, the default default
value is nil – Lisp's representation for both the empty list and "false".
If a function's syntax specification looks like this

some-function (a b &key :cat :dog) [FUNCTION]
then a and b are required arguments, while :dog and :cat are optional “keyword” arguments,
which the caller can pass in any order or not at all. Some syntactically legal calls to this function
would include the following
(some-function 27 'my-arg)
(some-function 27 'my-arg :cat "Felix" :dog "Fido")
(some-function 27 'my-arg :dog "Fido" :cat "Felix")

In Common Lisp, 'foo represents a quoted constant value (in this case the symbol foo), and
"foo" represents a string object. Symbols prefixed with the colon character are called
keywords, and do not have to be quoted; these are used for named tokens or enumerations and for
labeling the keyword/value pairs in a function call.

In Common Lisp, functions may return more than one value via the values form. This is
useful when a function generates more than one useful value – for example, to return both a
quotient and a remainder from a division function. If the function is called normally, return
values beyond the first one are discarded. However, if the function is called under multiple-
value-bind or similar functions, the additional return values are captured.

The curly-brace {something} syntax that Scone uses for element internal names is not
standard Common Lisp syntax; it is a Scone-specific extension created using Lisp's character
macro facility.

Running Scone
Instructions for running Scone will vary, depending on the operating system, details of the
installation, the version of Common Lisp, and the version of Scone. Please see the "README"
file in the Scone distribution for detailed instructions on loading and starting the version of
Scone you are using.

In our typical setup, start Steel Bank Common Lisp, then type (scone) or (scone
“current”) to start the system, where the string “current” may be replaced with some
other Scone version you want to run. In most cases you will then want to call (load-kb
“core”) to load the core knowledge base.

2 For a good introduction to Common Lisp, we suggest Practical Common Lisp by Peter Seibel, available for free online or in
hardcopy form at booksellers. For excellent examples of how to use Lisp in AI programming, including some knowledge
representation examples, see Paradigms of AI Programming by Peter Norvig. The definitive online reference for Common Lisp
is the Common Lisp Hyperspec, produced by Kent M. Pitman for Lispworks Ltd., based on the ANSI X3J13 language standard.

8
Copyright 2003-2014 by Scott E. Fahlman

2. Loading, Saving, and Checkpointing KB Files
The knowledge-base (or “KB”) files in Scone are just files of Common Lisp expressions and
comments, following the syntax of Common Lisp. Users can easily modify these files offline,
using the text editor of their choice. These files have the extension “.lisp”. Since these text-
format KB files are just Common Lisp source files, any Common Lisp expressions you like may
be included in these files, mixed with the Scone-specific expressions that create new elements.

Functions and Variables

Loading KB Files

load-kb (filename &key :verbose) [FUNCTION]
Loads the named file, with missing parts of the pathname filled in from the default in
default-kb-pathname . This is just a wrapper on Lisp's built-in load function, but
load-kb does some internal bookkeeping so that the most recent loads can be rolled back if
necessary, and so that the system knows it is in non-interactive mode during the load.

Often the KB file will effectively be a script that loads a list of other KB files. If the
:verbose argument is t , the result of loading and executing each form in the file will be
printed.
Example of usage: (load-kb “project1/geopolitics” :verbose t)

default-kb-pathname [VARIABLE]
A string. The default location for text-format KB files. This is initialized by the scone
function, which starts some version of Scone.

loading-kb-file [VARIABLE]
If reading a KB file, this will be t . Certain interactive dialogues may be suppressed, etc.

loaded-files [VARIABLE]
A list of files loaded in the current KB. The head of the list is the file loaded most recently.
Files go on this list when they have been loaded completely.

currently-loading-files [VARIABLE]
A list of the files currently being loaded. One file may load another, and so on, so there many
be a number of files on this list. The first file on the list is the most recently started (i.e. the
load that is most deeply nested), while the last file is generally the one for which the user
called load-kb .

verbose-loading [VARIABLE]
If set, loading files will produce printout showing progress. Normally set by the :verbose
keyword argument in load-kb .

9
Copyright 2003-2014 by Scott E. Fahlman

disambiguate-policy [VARIABLE]
This global variable controls what happens when an ambiguous element name is encountered
during input. :error says to signal an error. :ask says to query the user interactively.

Variables Controlling Inference and Checking During KB Modification

reloading-kb-file [VARIABLE]
Normally when loading forms into the KB, Scone will do extra work to see if the new
knowledge is legal and consistent, and whether Scone must create derived elements implied
by the new knowledge. If we are re-loading a KB file that was dumped from Scone, we set
reloading-kb-file to t , indicating that all this checking has already been done and
does not need to be repeated. This can greatly speed up the re-loading. Note that if other KB
files have changed significantly since the dump occurred, it is best to load, rather than re-load,
the dump – that is, we want to do the checking after all.

no-kb-error-checking [VARIABLE]
If t , suppress most error checking when creating KB elements. Use this only when loading a
file that you've loaded successfully before. This speeds up loading, but not as much as
reloading-kb-file. The latter also skips looking for derived information, assuming that this
is all present in the dump file.

check-defined-types [VARIABLE]
If t (the default), check whether newly defined elements fit the definition of some defined
type, and, if so, make it an instance or subtype of that defined-type. If nil , don't bother.

create-undefined-elements [VARIABLE]
If t (the default), check whether newly defined elements fit the definition of some defined
type. If nil , don't bother.

deduce-owner-type-from-role [VARIABLE]
If nil , a call to x-is-the-y-of-z (or a variant) signals an error if Z does not have or inherit a Y-
role. If t (the default), try to create an is-a link from Z to the owner of role-node Y. If
successful, Y is now inherited and we can go ahead and give it value X. If not, due to a type
mismatch or some other error, return NIL and do not modify the KB.

comment-on-element-creation [VARIABLE]
If t (the default), whenever Scone creates inferred KB structures (nodes or link) not
specifically requested by the user, it prints a comment about this via the commentary stream.
This can become verbose if, for example, we are loading a file that defines types in some
random order, rather than top-down, but it also catches lots of errors and typos.

comment-on-defined-types [VARIABLE]
If t , whenever Scone detects that some element satisfies the definition of a defined type and
adds the element to that type, it prints a comment about this via the commentary stream. This
is useful for debugging, but can be verbose when loading files that are known to be correct, so
the default is nil .

10
Copyright 2003-2014 by Scott E. Fahlman

Deferred Connections

Note: The deferred-connection mechanism has been largely superseded by the newer
mechanism that creates an {unknown thing} element whenever the user makes reference to
an element that has not yet been explicitly defined. The deferred-connection mechanism is now
used only for bootstrapping of the root elements of the knowledge base, and we hope to remove
it altogether in the near future.

Normally we build a Scone knowledge base in orderly layers. A new element will be connected
to other elements that have already been created. But it some situations it is necessary to create
forward references or circular references. In such cases, we use the “deferred connections”
mechanism. This facility is enabled by placing (setq *defer-unknown-connections*
t) at the start of a file that contains forward references. Normally this variable is nil , and
references to unknown elements signal an error.

When *defer-unknown-connections* is t and an element-creation routine is told to
connect a wire to some element, specified by its iname, and if no such element exists at present
in the KB, we push an entry onto the *deferred-connections* list so that we can try to
create the connection later, after additional elements have been created or loaded. This allows us
to handle situations with forward or circular references, even if the circularities span multiple file
boundaries.

defer-unknown-connections [VARIABLE]
If t , this enables the deferred-connection mechanism. This allows for references to elements
that have not yet been defined, but that is not always a good thing: many such references are
errors. So this is nil by default, and we only activate it for files that actually need this.

deferred-connections [VARIABLE]
This is the list of connections and element-names that we should try to set up later, after the
named elements have been defined.

process-deferred-connections nil [FUNCTION]
The process-deferred-connections function says that we should scan the
deferred-connections list now to see if any of the deferred connections can now be
created. Any connections successfully processed are removed from the *deferred-
connections* list; the rest remain on the list. This function is called after loading each
new KB file, but users may occasionally want to call it directly.

Manual Checkpointing of the KB

When a KB is growing interactively, we probably want to checkpoint it from time to time so that
knowledge won’t be lost if the Scone process dies or is killed. One way to checkpoint is to save
the entire Lisp core image, but that may not be practical because the core-image may be multiple
gigabytes in size. The functions in this section provide an alternative.

11
Copyright 2003-2014 by Scott E. Fahlman

checkpoint-kb (&optional filename) [FUNCTION]
Dumps all the elements in the current KB into a Lisp (i,e. text) file with name filename .
Any missing components of the filename are filled in from *default-kb-pathname* . If
not supplied, the filename defaults to "checkpoint" . This does not alter the running
Scone, so it is safe (though perhaps not efficient) to checkpoint often. The elements created
by the bootstrap.lisp file are not dumped.

To create a clone of the checkpointed Scone process, start a new Scone process (with
bootstrap.lisp already loaded) and then use load-kb to load the checkpoint file.

checkpoint-new (&optional filename) [FUNCTION]
Like checkpoint-kb , but dumps only the elements created since the completion of the
most recent file load by load-kb . The default output filename is "checkpoint-new" .

To create a clone of the checkpointed Scone process, start a new Scone, load the same files as
in the original Scone, and then load the checkpoint file. At the start of the checkpoint file,
there is a test to ensure that the expected files are in fact present in the Lisp. (This checks
only for files of the correct filename, not for identical versions.)

check-loaded-files (file-list) [FUNCTION]
Check whether all the files in file-list are currently loaded in Scone. Check only the
filename itself, not the directory or extension. Don't worry about load order or any extra files
that have been loaded. If we fail the test, signal a continuable error.

12
Copyright 2003-2014 by Scott E. Fahlman

3. Scone Elements
3.1 Structure of Scone Elements
The Scone knowledge base is best thought of as a collection of interconnected elements. Each
element is represented in the Scone software as a data structure – a Common Lisp "defstruct".3
An element in Scone can be a node, a link, or a relation.4
A node represents a conceptual entity such as “George Washington” or “the typical elephant” or
“the mother of Clyde”. Note that the node represents a specific concept or meaning in each case,
not a word or word-definition. The connection between Scone elements and natural-language
words or phrases is a many-to-many association It is the job of external software (an English-
language front-end to Scone – under construction) to resolve any ambiguity.

A link represents a relation or statement of some kind, such as “Clyde is an elephant” or “The
wife of George is Martha” or “Every elephant hates P. T. Barnum.”

A split is a special kind of link with an unusual structure: it connects to any number of elements
rather than just two or three. It is used to state that these connected elements – types and
individuals – are mutually distinct and disjoint.
A relation is an element that represents the definition of a relation in Scone. The set of relations
is open-ended. Once it has been created, the relation can be instantiated for specific cases by
creating statement links. A relation is in some respects like a type-node: it can have other
relations below it in the is-a hierarchy – effectively these are sub-types of the relation – and
statement-links serve as the instances.
A Scone knowledge base represents its long-term knowledge as a set of elements and the pattern
of interconnections among these elements. In general, nodes are connected by links. Each link
has a few distinct wires by which it can be connected to other elements in the knowledge base.
These are designated A-wire, B-wire, C-wire, parent-wire, context-wire, and (for split-links
only) any number of split-wires.

The A and B wires are used by links to indicate the two elements that the link is saying
something about. For example, if a link L represents the statement “Clyde hates Jumbo”, the A
wire of element L would go to {Clyde} , the B wire to {Jumbo} , the parent wire to {hates} ,
and the context wire to the currently-active context, which is always held in the Lisp variable
context .
Some relations and statements in Scone also use the C-wire. This allows us to easily represent
trinary relations and statements, such as "the distance from A to B is C".

3 Scone elements are not currently implemented as objects in the Common Lisp Object System (CLOS) because element
structures are heavily used in inner loops of the Scone engine, and some CLOS implementations are inefficient. We may revisit
that decision in future releases of Scone.
4 At present, we use a single structure type to represent all types of Scone elements. That is a simple solution, but is a bit
wasteful, since a given element-type will not use all the wires and other fields in this structure, though only a relatively small
fraction of the allocated storage is wasted. We may revisit this decision later, and use multiple structure types to more closely fit
the needs of each element.

13
Copyright 2003-2014 by Scott E. Fahlman

In general, the parent wire of a link is used to indicate one superior class of this link in the type
hierarchy. In other words, the parent wire tells us what kind of link this is. (A few particularly
important link types, such as is-a, eq, and cancel, are represented as special built-in element
types, and are directly recognizable by the software.) The context wire is used for links to
indicate the context (represented by a node) in which a given statement is considered to be true.
Every element has a terminal point to which any number of incoming wires from other elements
may be attached.
We think of a link as connecting two or three nodes (A and B and maybe C), and representing
some statement about the relationship between these nodes: “A is a B” or “A hates B” or
whatever. However, the link also is an entity in the knowledge base, representing the statement
itself, and we can make statements (sometimes referred to as “meta-statements”) about this
statement: who told us this piece of information, how strongly we believe it, whether exceptions
are possible, and so on. So each link element really has two parts: the five wires, which are used
to implement the statement the link is making, plus the marker bits and terminal point of a node
that represents the statement itself. We sometimes refer to this built-in node as the handle node
of the link. (Note that in many cases it is preferable to put meta-information on a context node
containing a collection of other nodes and links, rather than on the handle node of an individual
link.)

Here is another complication: We think of a node as representing an entity, about which we can
make various statements by attaching link-wires to it. But every node (except the top-level
{thing} node) will be a member of at least one superior class. So to reduce the total number of
elements and to speed up some common inferences, we equip each node with a parent wire that
serves as a virtual is-a link to one superior class. So the {George Washington} individual-
node may have a parent-wire going to the {person} type-node, rather than an is-a link to
{person} .
While this use of a node’s parent-wire significantly reduces the number of elements required in a
Scone knowledge base, there is a cost: because a parent-wire is not a full-fledged link with an
integral handle node, we cannot attach meta-information to this virtual is-a link or tie it to a
context. If it becomes necessary to do that, we must detach the parent wire and, replace it with a
full-fledged is-a link. This is handled by the convert-parent-wire-to-link function.

Functions and Variables
n-elements [VARIABLE]

The number of elements currently in use in the KB.

first-element [VARIABLE]
First element in the chain of all elements in the KB.

last-element [VARIABLE]
Last element in the chain of all elements in the KB.

do-elements [Complex Macro Body] [MACRO]
This macro iterates over the set of all elements. A call to this macro looks like this:

14
Copyright 2003-2014 by Scott E. Fahlman

(do-elements (var) … body forms …)

 or
(do-elements (var after) … body forms …)

Each element in turn is bound to var and then the body is executed. Returns nil . If after
is supplied, it must be a form that evaluates to an element. In this case we execute the body
only for elements created after the after element.

next-element (e) [FUNCTION]
Given an element e , get the next one in the chain.

previous-element (e) [FUNCTION]
Given an element e , get the previous element in the chain. Note: This is inefficient, since we
don't keep back-pointers in this chain. It is used in infrequent tasks such as removing an
element from the KB.

a-element (e) [FUNCTION]
b-element (e) [FUNCTION]
c-element (e) [FUNCTION]
parent-element (e) [FUNCTION]
context-element (e) [FUNCTION]

Given an element e , return the element connected to the specified wire of e (the A, B, C,
parent, or context wire), or nil if that wire is not connected.

split-elements (e) [FUNCTION]
Given a split element e , return the list of elements connected to the split wires of e , or nil if
there are none.

incoming-a-elements (e) [FUNCTION]
incoming-b-elements (e) [FUNCTION]
incoming-c-elements (e) [FUNCTION]
incoming-parent-elements (e) [FUNCTION]
incoming-context-elements (e) [FUNCTION]
incoming-split-elements (e) [FUNCTION]

Given an element e , return a list of all elements whose specified wire (the A, B, C, parent,
context, or split wire) is connected to e’s terminal point. Return nil if there are none.

convert-parent-wire-to-link (e &key :context) [FUNCTION]
The parent-wire of element e is disconnected and replaced by an equivalent is-a link, which
can then be modified or tied to a context. If the user does not supply a :context for the
new is-a link, use the current *context* . Returns the new is-a link.

3.2 Element Properties

Every Scone element has a property list, storing attribute-value pairs. The set of attributes is
open-ended. Each attribute is represented by a Common Lisp keyword. Some properties are
defined and used by the Scone implementation, while others may be defined by users or by

15
Copyright 2003-2014 by Scott E. Fahlman

software external to Scone. These properties provide an inexpensive way to store meta-
information about an element in situations where the information is static and where high-speed
access is not required; information that may be cancelled or altered, or that may change from one
context to another, is better represented using full-fledged Scone elements.

Functions
get-element-property (e property) [MACRO]

Find and return the specified property of element e , or nil if this property is not present.
The property argument is typically a Lisp keyword.

set-element-property (e property &optional value) [FUNCTION]
Set the specified property of element e to value . If value is not supplied, the default value
is t . Returns value .

clear-element-property (e property) [FUNCTION]
Remove the specified property of element e . If e doesn't have this property, do nothing.

push-element-property (e property value) [FUNCTION]
The property of e should be a list. Push value onto this list. Create the property if it
doesn't already exist.

16
Copyright 2003-2014 by Scott E. Fahlman

4. Referring to Scone Elements
Many of the Scone functions described in this document take one or more elements as
arguments. Within the running Scone system, each element is represented as a Common Lisp
structure (sometimes called a “defstruct”). If you have a pointer to one of these element-objects,
perhaps returned by lookup-element or some other Scone function, you can supply this
directly wherever an element is required.5

Alternatively, you can refer to an element by its name. There are two kinds of element names in
Scone: internal names (sometimes called inames) and external names (sometimes called
“English names”, though other natural languages will eventually be supported).
An internal name such as {George Washington} refers uniquely and unambiguously to a
specific Scone element. External names are not so constrained: an element may have many
external names, and an external name such as "mouse" may refer to several distinct Scone
elements – in this case, one representing the animal mouse and one representing a computer
pointing device. A knowledge-base file can contain both internal and external names, but if a
reference is made to an external name with more than one possible meaning, the system may
interactively request a clarification while the file is being loaded. So it is generally best to use
internal names within KB files.

4.1 Element Internal Names
Internal names are surrounded by “curly braces”. So, for example, the internal name of the node
at the top of the type hierarchy can be referred to as {thing} . This curly-brace notation can be
used wherever a Scone element is required.

An internal name is an arbitrary character string that serves as the label for a specific element.
We tend to use names like {elephant} that will be meaningful to a human reader, but that is
just for convenience in developing and understanding the system’s knowledge base. As far as
Scone is concerned, the internal name for the {elephant} node could just as well be
{elephant (the animal)} , {P123456} , {xyzzy} , or {aardvark} – as long as the
chosen name is unique.

These iname strings are matched in a case-insensitive way; that is, {Clyde} , {clyde} , and
{CLYDE} all refer to the same element. However, Scone remembers the exact string, including
case, that was used when an element was first created, and that string is used whenever the
system must print out a reference to the element.
Internal name strings may contain spaces and other punctuation characters, but not the colon
character, which is reserved for another use (see below). So, for example,
{mother of Clyde} is a legal internal name, and names with spaces are indeed fairly
common.

5 In Lisp, almost all data objects are allocated in dynamic storage, and we pass around pointers to these objects. So it is common
in Lisp culture to say that we are “passing Scone element X to function Y”, when in fact we are really passing a pointer to the
heap-allocated structure representing Scone element X. If all pointers to the element-X structure are dropped, the Lisp garbage
collector will eventually reclaim the storage. But note that a chain of pointers runs through all the Scone elements, so no element
structure will be reclaimed unless we explicitly snip it out of this chain, perhaps with remove-element .

17
Copyright 2003-2014 by Scott E. Fahlman

Internal names are organized into namespaces. Within its namespace, an internal name must be
unique. That is, it refers to only one element. Any attempt to create a second node with the
same iname in a given namespace is an error.

Namespaces are designated by Common Lisp strings such as "common" or "astronomy" .
These namespace names must be globally unique so that accidental collisions do not occur if we
try to combine separately developed knowledge bases. An informal registry of Scone namespace
names currently in use is maintained by the author. Contact the author if you want to register a
new global namespace. (Scone may eventually have to move to a more complex universal
namespace scheme, of the kind found in XML-based knowledge representations, but we want to
delay that move as long as possible – the resulting names are long and confusing for human
readers.)

To designate an internal name without danger of ambiguity we use its full name. This is a
Common Lisp string divided into two parts by a colon. The part of the string before the colon
designates the namespace, while the part after the colon is the unique internal name within that
namespace. So {biology:mouse} and {computer:mouse} may co-exist without creating a
conflict. There may be only one colon in an internal name string.

There is a function called in-namespace that takes a string as an argument. That string is
converted to a namespace object, which becomes the value of the *namespace* variable.
Whenever the system is given an iname without a colon in it (referred to as a short name), the
value of the *namespace* variable is used as the default namespace. Typically a KB file will
have an in-namespace form at the start and will use short-names internally, except when it is
necessary to refer to an iname in another namespace.

A namespace may optionally include one other namespace, which may include another, and so
on, forming a chain. If an attempt is made to look up an internal name in a given namespace and
the iname is not found there, the system will look in the included namespace (if any) and then in
its included namespace, and so on until the end of the chain is reached. If the iname is not found
anywhere in this chain of namespaces, the name is undefined.
If we create a new iname, it will be placed directly into the current *namespace* , but an error
will be signaled if the name conflicts with the same namestring in any included namespace.
This namespace-inclusion mechanism is often used to include the "common" namespace in
some more specialized namespace that the user is creating, so that elements like
{common:thing} and {common:person} can be referred to simply as {thing} and
{person} .
Links normally do not have meaningful internal names. However, if you believe that you will
want to refer to a specific link, you can give it an internal name via the :iname keyword
argument of the “new-whatever” function that creates the link. The *generate-long-
element-names* control variable, if t , tells the system to create longer, more meaningful
names for links. That requires more space, but can be useful for development and debugging.
For elements that represent primitive Lisp data types, such as numbers, functions, or strings, the
Lisp object itself is used as the iname and there is never a namespace designator. (These objects
are kept in a special universal namespace.) So {123} designates an element representing an

18
Copyright 2003-2014 by Scott E. Fahlman

integer, and {12.34} represents a real number. The Scone element {#'query-user}
represents a Lisp function named query-user .

A set of brackets containing a quoted string, such as {"http://www.cmu.edu"} , is a string
element, representing the Lisp string itself. We use these string elements to represent words,
names, URLs, command-line commands, and so on. Note that any colon within a string element
is part of the string, not a namespace designator.

Functions and Variables
namespace [VARIABLE]

The structure representing the current default namespace.

namespaces [VARIABLE]
A hash table containing an entry for each namespace currently loaded in the KB. Associates a
string (the name of the namespace) with a namespace structure.

list-namespaces nil [FUNCTION]
Return a list of all the Scone namespaces that are currently loaded.

lookup-element (name &key :syntax-tags) [FUNCTION]
This takes an element-designator name (an element object, an internal name in curly braces,
or an external name string) and returns the corresponding element object. If the argument
does not correspond to an existing element in the KB, return nil .

 The optional :syntax-tag argument, if present, is used in the resolution of external
(English) name strings to element objects. (See the discussion of the disambiguate
function in the English Names section of this manual). If lookup-element is given a string
argument and successfully finds an element, it returns the element's syntax-tag as the second
return value.

lookup-element-test (name &key :syntax-tags) [FUNCTION]
Like lookup-element , but if the named element does not (yet) exist, signal an error.

lookup-element-or-defer (name &key :syntax-tags) [FUNCTION]
 Like lookup-element , but if the named element does not (yet) exist, return the argument

unchanged.

in-namespace (namespace-name &key :include) [FUNCTION]
The namespace designated by the namespace-name string becomes the new default
namespace (the value of the *namespace* variable). If the specified namespace does not
already exist, it is created. If the :include argument is supplied, this indicates an existing
namespace that is included in the new one, if a new one is actually created. The :include
argument may be either a namespace object or a string designating a namespace.

19
Copyright 2003-2014 by Scott E. Fahlman

4.2 Element External (English) Names
A long-term goal for Scone is to interface it to a natural-language input-output system so that
users can augment or query the knowledge base in English (or in the human language of their
choice). At present, the system has only a simple facility for associating words or phrases
(represented as Common Lisp strings) with various elements in the knowledge base. We refer to
these words and phrases collectively as external names to distinguish them from the internal
element-names described in the previous section.

While most of the machinery for natural-language input and output is external to the Scone
inference engine, it makes sense (for now, at least) to maintain the dictionary mapping names to
elements and elements to names as part of the core Scone system. When a KB file containing
new concepts is loaded into the knowledge base, the external names for these concepts are
loaded at the same time, as part of the information in this file.
The mapping between external names and Scone elements is many-to-many. Scone provides a
simple interface by which an external natural-language system can ask for all the Scone elements
(if any) that correspond to a given name. Similarly, the user can ask for a list of all the names (if
any) that correspond to a given element.
Note that the name strings are matched exactly, except that the match is case-insensitive. At
present there is no spelling correction or “find an approximate match” capability. In general,
external name strings should be entered in lower-case, except in the case of proper nouns like
“Obama”. There should be no whitespace surrounding the word or phrase. In multiple-word
strings (representing idiomatic phrases such as “kick the bucket”) the words should be
separated by a single space.
Each mapping of a name-string to an element has an associated syntax-tag. This is a Lisp
keyword that corresponds roughly to the part of speech associated with the name-string. This
allows the NL machinery to return only those Scone meanings that correspond to the part of
speech it has found – for example, the action “fall” rather than a noun representing a season.
Note:	
 This	
 syntax-­‐tag	
 mechanism	
 is	
 something	
 of	
 a	
 place-­‐holder	
 for	
 now.	
 Once	
 the	
 natural-­‐language	
 interface	
 to	

Scone	
 is	
 further	
 developed,	
 we	
 will	
 have	
 a	
 much	
 better	
 idea	
 of	
 what	
 syntactic	
 machinery	
 really	
 is	
 needed.	
 	
 We	
 will	

probably	
 end	
 up	
 with	
 a	
 complex	
 hierarchy	
 of	
 word-­‐types	
 and	
 grammatical	
 roles,	
 represented	
 in	
 Scone	
 itself,	
 but	

more	
 or	
 less	
 distinct	
 from	
 the	
 conceptual	
 knowledge	
 that	
 the	
 linguistic	
 forms	
 refer	
 to.	

For now, the following syntax-tags are defined:
:noun

Either a common name or a proper name for the entities represented by the element. "Clyde"
or "elephant".

:adj

An adjective like "blue", which represents a unary predicate of some kind, and is generally
associated with a Scone type-node. To describe a type, you normally combine this adjective
with some noun labeling a supertype of the type-node in question. So we would normally say
"a blue object" or "a blue automobile" rather than just "a blue".

:adj-noun

A word like "solid" that can be used either as a noun or as an adjective. These are very
common in English.

20
Copyright 2003-2014 by Scott E. Fahlman

:role

A word like "population" that designates a role under some type node. Normally this used
with "of" or a possessive form: "the population of India" or "India's population".

:inverse-role

Name given to the inverse of a role relation. For example, if the role name is “parent”, the
inverse-role may be “child”. So if we are told that "John is the child of Mary", the natural-
language machinery can convert this to "Mary is the parent of John".

:relation

A word like "employs" or "hates" or a phrase like "taller than" representing some relation that
is (grammatically) not a role.

:inverse-relation

Name given to the inverse of a relation. For example, if the relation name is “taller than”, the
inverse-relation may be “shorter than”. So if we are told that "John shorter than Mary", the
natural-language machinery can convert this to "Mary is taller than John".

:action

An action verb such as "hit".

Functions and Variables
legal-syntax-tags [VARIABLE]

Each external name has an associated syntax-tag. The tags currently defined are stored in this
variable.

english (element &rest r) [FUNCTION]
Define one or more English names for the specified element . The remaining arguments
after element are strings or syntax tags (keywords). Initially, we assume that each string
becomes an English name of element with syntax-tag :noun , but the tag changes in a sticky
way whenever a different syntax-tag is encountered. If the special syntax-tag :iname is
encountered, that indicates that the element's internal name is used as one of the English
names. However, if the argument list contains :no-iname , that takes precedence and
any :iname in the r list is ignored.

For example, the form
(english {swamp} :iname "wetland" "marsh" :adj "soggy" "marshy")
says that the element {swamp} has English names "swamp" , "wetland" , and "marsh"
(all nouns), plus the adjectives "soggy" and "marshy" (as in "soggy area" or "marshy
area").

lookup-definitions (string &optional syntax-tags) [FUNCTION]
Returns a list containing all the meanings of the string argument (if any). Each meaning in
the list will be of the form (element . syntax-tag) . If the syntax-tag argument is
supplied, construct and return a list containing only meanings with the specified syntax tag.
This function works only for external name strings and is called by the other functions of the
lookup-element family.

21
Copyright 2003-2014 by Scott E. Fahlman

mark-named-elements (string m &optional syntax-tag) [FUNCTION]
All the elements associated with the name string are marked with marker m . If syntax-
tag is supplied, only meanings of the specified type are marked.

get-english-names (element &optional syntax-tag) [FUNCTION]
Returns a list of all the names associated with element (if any). Each name will be of the
form (string . syntax-tag) . If a syntax-tag argument is supplied, construct and
return a list containing only names of the specified type.

disambiguate (name definition-list &optional syntax-tags) [FUNCTION]
Given a list of possible definitions (element.tag pairs) for an English word, try to
disambiguate it based on the value of *disambiguate-policy*. If :ERROR, just signal an error.
If :ASK, ask the user. If :HEURISTIC, use SYNTAX-TAGS to choose the best definition, or
if that fails just pick one.

list-synonyms (string &optional syntax-tag) [FUNCTION]
show-synonyms (string &optional syntax-tag) [FUNCTION]

The list-synonyms function finds all the elements that are registered as a meaning of
string in the KB. For each of these it returns a list, each element of which has a Scone
element first, followed by any number of alternative names for that element. If syntax-
tag is non-null, we look only at elements whose connection to string is of this type. The
show-synonyms function is similar, but it prints out the synonyms it finds instead of
returning a list.

list-dictionary-entries nil [FUNCTION]
List all entries in the dictionary. This is primarily for debugging.

See also the functions lookup-element , lookup-element-predicate , and lookup-
element-test in the previous section. These can be used to convert a string (and optional
syntax-tag) to a single Scone element. If the string is ambiguous – that is, if it is associated with
more than one Scone element via the given syntax-tag – these functions call disambiguate ,
which asks the user to pick one of the possible meanings.

22
Copyright 2003-2014 by Scott E. Fahlman

5. Markers
Every Scone element has a set of bits representing permanent state information about that
element. These bits are known as the element’s flag bits. Some of the flag bits are used to
encode the type of the node or link: individual vs. type node, “is a” versus “eq” link, and so on.
Other flag bits encode properties of the element, such as whether a statement link is an instance
of a transitive relation. As a rule, flag bits are intended for internal use by the Scone engine, and
are not directly manipulated by users of the Scone system, so we will not describe them in detail
in this manual.

Every Scone element also has storage for a number of marker bits, which are set and cleared by
the Scone engine as part of various search and inference operations. Operations on marker bits
generally refer to a specific marker using a numerical index, starting at 0. The constant n-
markers indicates the maximum number of marker bits a Scone element can hold: in the
current implementation for 32-bit SBCL, n-markers is 28, so legal markers are designated by
integers 0 through 27. On a 64-bit Common Lisp, there are more markers available – check n-
markers to see how many you have.

Markers are normally allocated and used in pairs: a positive-marker, used to mark some set of
elements, and an associated cancel-marker. The cancel-marker is placed on elements definitely
not in the set marked with the positive marker and also on links that are cancelled in the course
of marking this set of elements. We speak of a marker and its cancel marker together as a
marker-pair. Effectively, these pairs implement a 3-valued logic: yes, definitely no, and maybe
or “don’t know”.
The number of possible marker pairs, as well as the number of positive markers, is indicated by
the constant n-marker-pairs , which will be half of n-markers (rounded down). In the 32-
bit SBCL implementation n-marker-pairs is 14. So markers numbered 0-13 are positive
markers, and markers 14-27 are the corresponding cancel markers. When given a positive
marker m , the function (cancel-marker m) will return the corresponding cancel marker.

Two of these marker-pairs are currently reserved for use by the Scone engine. The context
marker (normally marker-pair 0) is used to mark all the nodes representing the currently active
context and its superiors. The global variable *context-marker* always holds the index of
the context marker, so users should refer to the marker via that variable. Similarly, the
activation-marker (normally marker-pair 1) is used to mark all the elements that are
active in the current context. The remaining marker-pairs are available for search and inference
operations initiated by the user.
Scone provides functions for allocating and freeing markers (or marker-pairs) for use by various
software operations. The variable *available-markers* indicates the number of marker-
pairs available for allocation at any given time. The get-marker function selects and reserves
one of the available markers and returns its index; the corresponding cancel-marker is also
reserved by this operation. The free-marker function removes the specified marker and its
cancel-marker from all Scone elements and returns this marker-pair to the available-markers
pool. The with-temp-markers macro is a convenient way to allocate a temporary marker-
pair, use it while executing any number of operations, and then to reliably free it.

23
Copyright 2003-2014 by Scott E. Fahlman

For a detailed description of how Scone uses these markers for search and inference, please see
the paper "Marker-Passing Inference in the Scone knowledge-Base System", available from the
Scone website: http://www.cs.cmu.edu/~sef/scone/publications/.

Functions and Variables

Define the Range of Legal Markers and Marker-Pairs

n-markers [CONSTANT]
The maximum number of marker bits allowed in this Scone engine. This number is set when
the Scone engine is compiled for a particular hardware architecture, so it cannot be changed
dynamically.

n-marker-pairs [CONSTANT]
The maximum number of marker pairs.

legal-marker? (m) [MACRO]
legal-marker-pair? (m) [MACRO]

Predicates to determine whether a number m represents a legal marker in the current Scone.
The legal-marker? predicate accepts any integer greater than 0 and less than n-
markers; the legal-marker-pair? predicate accepts only those integers less than n-
marker-pairs? .

check-legal-marker (m) [MACRO]
check-legal-marker-pair (m) [MACRO]

Check whether m is a legal user marker. If not, signal an error.

marker-bit (m) [MACRO]
Get the marker bit mask associated with marker m .

get-cancel-marker (m) [MACRO]
Get the cancel-marker corresponding to marker m .

Basic Marker Functions

mark (e m) [FUNCTION]
Marks element e with marker m . If e is already marked with m , do nothing. Return the number
of elements marked with m after this operation.

unmark (e m) [FUNCTION]
Removes marker m from element e . If e is not marked with m , do nothing. Return the number
of elements marked with m after this operation.

marker-count (m) [FUNCTION]
Returns the number of elements currently marked with marker m .

24
Copyright 2003-2014 by Scott E. Fahlman

marker-on? (e m) [FUNCTION]
Predicate to determine whether element e has marker m turned on.

marker-off? (e m) [FUNCTION]
Predicate to determine whether element e has marker m turned off.

clear-marker (m) [FUNCTION]
Clear marker M from all elements, but do not free it.

clear-marker-pair (m) [FUNCTION]
Clear marker M and the associated cancel marker from all elements, but do not free it.

clear-all-markers nil [FUNCTION]
Clear and free all markers from all elements in the KB. Note that this clears the context and
activation markers, so you should follow this with an in-context or refresh-context
call.

do-marked (var m &optional after) … body forms … [MACRO]
This macro iterates over the set of all elements marked with marker m . A call to this macro
looks like this:

(do-marked (var m) … any number of body forms …)

 or
(do-marked (var m after) … any number of body forms…)

Each m-marked element in turn is bound to var and then the body is executed. Returns nil .
If after is supplied, it must be a form that evaluates to an element marked with m . Only
iterate over elements after this one in the chain of m-marked elements. NOTE: It is OK to
mark new elements with m in the body of this loop, but don't unmark any elements.

Boolean Marker Functions

mark-boolean (m must-be-set must-be-clear &optional flags-set flags-clear) [FUNCTION]
The m argument is a marker. The must-be-set and must-be-clear arguments are lists
of markers. Conceptually, we scan every element in the KB. If all of the must-be-set
markers are on and none of the must-be-clear markers are on, turn on marker m for this
element. Returns the number of elements marked with m after this operation.

So, for example, (mark-boolean 3 '(0 1) '(2)) places marker 3 on every element
that is currently marked with 0 and 1 and that is not marked with 2.

The flags-set and flags-clear arguments, if supplied, can control which kinds of
elements will potentially be marked. This option is for internal use, and is not documented
here.

unmark-boolean (m must-be-set must-be-clear &optional flags-set flags-clear) [FUNCTION]
Like mark-boolean , but clears marker m from the selected elements.

25
Copyright 2003-2014 by Scott E. Fahlman

convert-marker (m1 m2) [FUNCTION]
For every element marked with m1 , mark it with m2 (if it was not marked with m2 already)
and clear m1 from that element. This could be done with mark-boolean , but this
specialized version is faster.

Marker Allocation

Note: It is a Very Bad Idea to just grab a marker and start using it without informing the system
that this marker is now in use. This can lead to bugs that are very hard to diagnose. So always
use with-markers or get-marker and free-marker when you want a marker to play
with.
n-available-markers [VARIABLE]

The number of markers currently available for allocation.

get-marker nil [FUNCTION]
Allocate an available marker, returning the integer index. If no available markers remain,
return nil .

free-marker (m) [FUNCTION]
Return Marker m to the pool of available markers and clear the marker. If the marker is
already available or is reserved by the system, do nothing.

free-markers nil [FUNCTION]
Return all markers to the free pool and clear them, except for those such as the context marker
that are permanently allocated to the Scone engine.

with-markers (marker-vars body-form &optional fail-form) [MACRO]
The marker-vars argument is a list of variables. Each is locally bound to the index of a
freshly allocated marker. We then execute the body form, returning whatever value or values
that form returns. But before leaving this form, either in the normal way or via an error or
non-local exit, we de-allocate and clear these markers.

If there are not enough markers available to fill all the marker-vars , we don't allocate any
new markers. Instead we execute the fail-form and return whatever it returns. The default
action, if there is no fail-form , is to signal an error.

A call to this macro might look like this:
(with-markers (v1 v2 v3)
 (progn
 (some-action-using-marker v1)
 (another-action-using-markers v1 v2 v3))
 (deal-with-an-allocation-failure))

26
Copyright 2003-2014 by Scott E. Fahlman

6. Contexts
Every Scone element has a context-wire. This is used to tie a node to the context in which it
exists, and it is used to tie a link to the context is which it is true. A context is simply a Scone
node. When a new context-node is first created, it inherits the contents (nodes and links) of its
superior nodes in the is-a hierarchy. You can then add additional KB structure in the new
context. You can also cancel or negate nodes and links that would otherwise be inherited.

The care and feeding of contexts, and all the uses to which they can be put, is a big topic, beyond
the scope of this manual. Here we will just document that functions and variables that
implement the context machinery.

Functions and Variables
context [VARIABLE]

The element representing the current context..

in-context (e) [FUNCTION]
Argument e is an existing element representing a context. e becomes the value of
context . Then we propagate *context-marker* to all the contexts whose contents
are inherited by e , and we propagate *activation-marker* to all the elements active in
this set of contexts. If the *context* is already e , do nothing. This can be a relatively
expensive operation – we have chosen to do more work when changing contexts in order to
make within-context operations as fast as possible.

new-context (iname &optional parents) [FUNCTION]
This is a convenience function for creating a new context node as a descendant of one or more
pre-existing context-nodes. It is actually a specialized form of new-indv (see below). The
parents argument may either be a single parent node or a list of parents. If parents is
unsupplied or nil , assume that there is a single parent, {general} .

refresh-context nil [FUNCTION]
Keep the current value of *context* , but update the context and activation markers. This is
used when we think that the context and activation markers may somehow have been messed
up.

context-marker [VARIABLE]
Marker permanently assigned to mark the current *context* node and its superiors.

context-cancel-marker [VARIABLE]
Cancellation marker corresponding to *context-marker* .

activation-marker [VARIABLE]
Marker permanently assigned to mark every element active or present in the current context.

activation-cancel-marker [VARIABLE]
Cancellation marker corresponding to *activation-marker* .

27
Copyright 2003-2014 by Scott E. Fahlman

7. Adding Elements to the Scone KB
7.1 Creating New Elements
Each type of Scone element has a “new” function that creates it: new-indv , new-type , new-
is-a , and so on. These new-functions also check whether the element about to be added
conflicts with other information currently in the KB.
All of these new-functions have certain features in common. All will create at least one new
element in the KB, and the new element object created (or the primary new element created, if
there are more than one) is returned as the value of executing the new-function. A knowledge-
base (or KB) file is just a collection of such new-functions, with perhaps some comments and
assorted other functions mixed in.

New-functions that create a node, such as new-indv , generally take two required arguments,
the internal name of the new node and the parent node. So a typical call might be something like

(new-indv {Clyde} {elephant}) .
Most new-functions that create a link take two required arguments, the two elements that the link
connects, called the A and B arguments. So a typical call might be something like
(new-is-a {Clyde} {elephant}) .

The new-function for general statements takes three required arguments, as in
(new-statement {Clyde} {hates} {Ernie}) .
In this case, {Clyde} is attached to the A-wire of the new statement link, {Ernie} is attached
to the B-wire, and {hates} is attached to the parent-wire of the link.

The :context Keyword Argument
All new-functions take optional keyword arguments. Normally, all new elements are created in
the current context (as indicated by the current value of the *context* variable). The new
elements’ context-wires are connected to that context node. However, you can over-ride this for
a particular new element by providing a :context argument pointing to some other context-
node.

Internal Names and the :iname Argument
iname is not a required argument for links, splits, and certain other elements. The system
normally just makes up a suitable new name for these elements. However, you can provide a
specific iname for these elements if you like via the :iname keyword argument.

Where an iname argument is required, a value of nil tells Scone to make up a unique name for
the new element. For example, if we say
(new-indv nil {elephant})

the new individual node will be given a name like {elephant (0-27)} . Numbers are
appended to these made-up-names to ensure that they are unique.

28
Copyright 2003-2014 by Scott E. Fahlman

For convenience, the iname argument can be a quoted string instead of an internal name in curly
braces, but the effect is the same: that string is converted into an iname, and it must be unique
within its namespace. So (new-indv “Clyde” {elephant}) is functionally equivalent to
(new-indv {Clyde} {elephant}) .

The :english Keyword Argument
Most of the new-functions take an :english keyword argument. This takes a list of names and
syntax tags that is interpreted as in the english function. So, for example, we might see a form
like this:
 (new-type {swamp} {geographical area}
 :english '(:iname "wetland" "marsh" :adj "soggy" "marshy"))

This creates new type of land area with internal name {swamp} and English names "swamp",
"wetland", "marsh", and adjective names "soggy" and "marshy".

By default, the new-element's internal name becomes its English name (or one of them), with a
syntax-tag that is the default for elements of this type: :noun for most indv and type nodes,
:role for new roles, and :relation for new relations. This is in addition to whatever names
are given by the :english keyword argument. However, if the first element of the :english
argument is a syntax-tag, the iname gets that syntax tag instead of the default. If you don't want
the internal name to become an English name at all, put the tag :no-iname in the :english
list. As a rule, internal names that the Scone system constructs itself are not saved as English
names.

So, for example, if we execute the form
(add-indv {gizmo} {frobnitz} :english ("foo" "bar"))

the new {gizmo} node would have English names "gizmo" , "foo" and "bar" , all with the
syntax-tag :noun . But for the form
(add-indv {noisy} {sound level} :english '(:adj "loud"))

the new {noisy} node has English names "noisy" and "loud" , both with syntax-tag :adj .

Negation Links
For each of the link-types in the system (except for the cancel-link), there is a negated version:
is-not-a , not-eq , and so on. There is also a negated form of the generic statement link:
not-statement . If there is a negated link from A to B, that will have the effect of over-riding
any positive link of the corresponding type from A to B. That is, the negated relation is always
stronger than the positive form of the relation whether the positive form is inherited or stated
directly. If you want to re-assert the positive relation between A and B, you must first cancel the
negative link using a cancel-link .

Cancellation and negation in Scone is another topic that is beyond the scope of this manual. It
interacts in complex ways with transitive relations. A quick rule of thumb is that a non-transitive
statement can either be cancelled or over-ridden by a negation; a transitive statement can only be
over-ridden, since there may be multiple paths; a negation can only be cancelled (which is
allowed, because negation links are never transitive).

29
Copyright 2003-2014 by Scott E. Fahlman

7.2 Indv Nodes
An individual node (or indv-node) represents an individual entity rather than a type. It is not
necessarily a physical object: it can be something more abstract, such as a number or a specific
date. Individuals are normally the leaf-nodes of Scone's is-a hierarchy.
An indv-node may be proper or generic. A proper individual node represents a specific, first-
class individual such as {George Washington} or {Paraguay} or {21 March 1948} .
Normally, proper individuals are assumed to be distinct from one another, and it is an error to
equate two of them. However, in special cases we may choose to over-ride this prohibition, for
example to equate {Clark Kent} to {Superman} .

A generic individual node represents some role or defined individual, such as "Clyde's mother"
or "the first elephant on the moon" . Generic individuals can be given properties and relations,
just like proper individuals: we can say things like "Clyde's mother is beautiful" or "the first
elephant on the moon was an African elephant". However, generic individuals are not assumed
to be distinct from one another – in fact, we may think of a generic individual as a stand-in for
an proper individual to be named later. It is legal to equate {mother of Clyde} to the proper
indv-node {Bertha T. Elephant} or to another generic indv-node like {the first
elephant on the moon} or to both of these at once.

Some individual nodes are primitive individual nodes. These Scone elements represent Common
Lisp objects such as numbers (integers, ratios, or real numbers), strings, or functions. There are
new-functions for the various types of primitive nodes, but you normally create them at read-
time by putting the desired Lisp object within curly brackets: {3} , {22/7} , {3.14159} ,
{"xyzzy"} , or {#'append} . These primitive nodes have a default parent based on their type
– a Scone type-node such as {string} or {ratio} , but the user may optionally provide a
more specific parent node via the :parent argument.

Functions
new-indv [FUNCTION]

(iname parent &key :context :proper :may-have :definition :english :english-default)
This creates a new individual with the specified iname and parent . (As noted above, if the
iname argument is nil the system will make up a unique name.)

 The user may optionally specify a :context argument (defaults to the value of
context). By default, a has-link is also created, connecting the context to the new indv-
node.

 If :proper is supplied and is explicitly nil , this is a generic individual; otherwise assume
the new node represents a proper individual.

 The :may-have argument, if T, indicates that the element may or may not exist in the
specified context. In this case, no has-link is created.

 If a :definition is supplied, this is a defined indv node, and the definition is saved. This
is intended for internal use.

30
Copyright 2003-2014 by Scott E. Fahlman

 The :english argument is used to supply one or more English names for the new element,
as described above. The default syntax-tag for these English names is normally :noun , but a
different tag can be supplied via the :english-default argument.

new-number (value &key :parent) [FUNCTION]
new-integer (value &key :parent) [FUNCTION]
new-ratio (value &key :parent) [FUNCTION]
new-float (value &key :parent) [FUNCTION]
new-string (value &key :parent) [FUNCTION]
new-function (value &key :parent) [FUNCTION]
new-struct (value &key :parent) [FUNCTION]

Each of these functions create a new “primitive” individual node representing some Common
Lisp data object: a number (of any kind), an integer, ratio, floating-point number, string,
functions, or a structure (also known as a “defstruct”). The value argument must be a Lisp
object of the proper type. If another Scone object with this same (eql) Lisp value already
exists, we may return the existing object instead of creating a new one. These objects are all
created in the {universal} context.

node-value (element) [FUNCTION]
If element is a primitive individual node, extracts the value from the iname and returns it as
a Lisp object. Otherwise, returns nil .

7.3 Type Nodes
A type-node represents the typical member of some class or set: {elephant} , {rainbow} ,
{weekday} , and so on. You can attach properties and class-memberships to a type-node just as
if it were an individual: "The typical elephant is a mammal", "the color of the typical elephant is
gray", and so on. In the way they are used, type-nodes and indv-nodes are very similar, except
that individual nodes are normally leaf-nodes in the is-a hierarchy, while type nodes are intended
to have subtypes and instances.
Note that a type node represents the typical member of a set and not the set itself. For every type
node, there is an implicit set-node that does represent the set. However, we don't actually create
the set node until/unless we have something to say about the set. The get-set-node and
get-type-node functions allow us to access the set-node of a given type-node, and vice-
versa. It is perhaps confusing that the set-node of a type-node is an individual node – it
represents an individual instance of a set.
As with new-indv , the new-type function optionally takes :context and :english
arguments. The :n argument is used to indicate the number of instances of this type that exist in
the specified (or default) context.

Most type-nodes represent description-based types such as “elephant”. For these, we have a
description of the typical member, but not a precise definition. However, Scone is also able to
represent defined-types, which are normally created by the new-defined-type function,
described below. As new elements are created and as the KB is modified, the Scone engine
looks for members and subtypes of each defined type. When one is found, the engine creates a
new derived is-a link, placing the element under the defined type in the is-a hierarchy. Once that

31
Copyright 2003-2014 by Scott E. Fahlman

is done, the new member may inherit properties and relations that are true of the defined class,
but not part of the definition.6

Functions
new-type [FUNCTION]

(iname parent &key :context :definition :may-have :n :english :english-default)

Creates and returns a new type-node with the specified iname (which will be created if the
iname is nil) and parent . By default, this also creates a has-link from the specified
context to the new type-node.

 The user may optionally specify a :context argument (defaults to the value of
context). By default, a has-link is also created, connecting the context to the new indv-
node.

 The :may-have argument, if T, indicates that the element may or may not exist in the
specified context. In this case, no has-link is created.

 If a has-link is created, the :n argument is placed on the has-link to indicate how many
elements of this type exist (or typically exist) in the context.

 If a :definition is supplied, this is a defined indv node, and the definition is saved. This
is intended for internal use.

 The :english argument is used to supply one or more English names for the new element,
as described above. The default syntax-tag for these English names is normally :noun , but a
different tag can be supplied via the :english-default argument.

get-set-node (e &optional parent) [FUNCTION]
Returns the set-node associated with type-node e, creating it if necessary. The parent of the
new set node is assumed to be {set} , but an alternative value can be supplied as the optional
second argument.

get-type-node (e) [FUNCTION]
Element e should be a set-node associated with some type-node. Returns that type-node, if it
exists, or nil .

new-defined-type (iname supertype-list predicate &key :context :english) [FUNCTION]
Creates and returns a new defined-type node with the specified iname . The definition is a
predicate in two parts: supertype-list is a list of elements that must all be superiors of
the candidate element. There must be at least one element in this list, and for efficiency it

6 Because Scone’s reasoning is not logically complete, we cannot guarantee that every member of this defined class will be
identified every the time the KB is modified. The computation involved may be intractable or unbounded. However, we will
catch the vast majority of these. We plan to add additional inference mechanisms to the Scone engine to identify certain defined-
class members at query time.

32
Copyright 2003-2014 by Scott E. Fahlman

should be as specific as possible. A single object may be passed in instead of a list;
predicate , if non-nil, is a Lisp predicate function of one argument that must evaluate to t
for members of this defined class. The predicate should not include testing the supertype-
list -- that is done separately.

new-intersection-type (iname parents &key :context :english) [FUNCTION]
parents should be a list of elements, usually type-nodes. Create and return a new defined-
type element, with name iname , defined to be the intersection of all of the supertypes on the
list.

new-union-type (iname parent subtypes &key :context :english) [FUNCTION]
subtypes is a list of type-nodes or individuals. Creates and returns a new type that is, by
definition, the union of these subtypes. All of these subtypes become members of a complete-
split, indicating that a member of the union-type must be a member of one – and only one – of
the subtypes.

7.4 Map Nodes
A map-node represents, by definition, “the x of y” – for example, the {mother} of {Clyde} .
Users do not normally deal with map-nodes directly – they are created and accessed by the
functions in section 7.13 below.

If the role argument is an individual role, the map-node is an individual map node; if the role is
a type-role, the map-node is a type map node.

Functions
new-map (role owner &key :iname :english :no-supplement) [FUNCTION]

Make and return a new map-node representing the role of the owner . The role and owner
must already exist – no deferrals are allowed here. Optionally provide an :iname
and :english names. If no :iname is supplied, we make up a suitable one. The :no-
supplement arg, if T, turns off some internal housekeeping that is normally done.

7.5 IS-A Links
An is-a link says that element A "is a" B in the specified context, and that A should (by default)
inherit all the properties and type-memberships of B. We speak of B as being "above" A in the
is-a hierarchy.

If A and B are both type-nodes, this is a subtype relationship; if A is an individual and B is a
type, it is an instance-of relationship. The type hierarchy branches in both directions (multiple
inheritance), so a node may have any number of incoming and outgoing is-a links. As noted
earlier, a node's parent wire may take the place of one of these outgoing is-a links.

Functions
new-is-a (a b &key :negate :dummy :derived :iname :parent :context :english) [FUNCTION]

Creates and returns an is-a link from a to b .

33
Copyright 2003-2014 by Scott E. Fahlman

new-is-not-a (a b &key :iname :dummy :parent :context :english) [FUNCTION]
Make and return a new is-not-a link with the specified elements on the A and B wires.

7.6 EQ Links
An eq link says that A and B are equivalent – they represent the same entity – in the specified
context. A inherits all the properties of B and B inherits all the properties of A. It is common to
equate a proper individual with a generic individual, or two generic individuals to one another.
The system will complain if you try to equate two proper individuals, though you can ignore the
warning and force this.

Functions
new-eq (a b &key :negate :dummy :iname :parent :context :english :no-supplement) [FUNCTION]

Creates and returns an eq link from a to b .

new-not-eq (a b &key :iname :dummy :parent :context :english) [FUNCTION]
Make and return a new not-eq link with the specified elements on the a and b wires.

7.7 Has Links
Note: The details of the has-link and of quantification in general are under active review, and
probably will be changing very significantly in future releases of Scone.

Functions
new-has (a b &key :n :negate :dummy :iname :parent :context :english) [FUNCTION]

Make and return a new HAS-LINK with the specified elements on the A and B wires.
Optionally provide :PARENT and :CONTEXT. If :N is specified, that is the cardinality,
stored ont eh C-wire.

new-has-no (a b &key :iname :dummy :parent :context :english) [FUNCTION]
Make and return a new HAS-NO-LINK with the specified elements on the A and B wires.
Optionally provide :PARENT and :CONTEXT. This is equivalent to NEW-HAS with
the :NEGATE flag.

7.8 Cancel Links
Suppose the knowledge base has a {hates} statement from {elephant} to {snake} ,
indicating that elephants hate snakes – or, more precisely, that the typical elephant hates the
typical snake. Suppose that Clyde is an elephant, but an atypical one: he doesn't hate snakes.
We can represent this kind of exception using a cancel link from {Clyde} to the {hates}
statement inherited from {elephant} . The effect of the cancel link is to turn off the {hates}
statement – to render it inoperative – when Scone is considering the properties of {Clyde} .
The statement is still effective for other elephants.
We could also cancel snake-hating for an entire sub-class of elephants, such as {African
elephant} by connecting the cancel-link from that type-node to the hates statement. Or we

34
Copyright 2003-2014 by Scott E. Fahlman

could tie the cancel-link to a context: perhaps in {snake fantasy world} , everything is the
same as in {general} – the real-world context – except that elephants do not hate snakes.

Cancel links are intended to cancel non-transitive statements, but not class-memberships. For
that, use an is-not-a link.

Functions
new-cancel (a b &key :iname :dummy :parent :context :english) [FUNCTION]

Creates and returns a cancel link from a to b .

7.9 Relations
Scone allows the user to create new relations and then to instantiate these using statement links.
A relation element is similar in form to a link – it has A, B, and (sometimes) C wires – but it
doesn't really make an assertion of any kind. It is simply a definition or a template for statement
links that do make an assertion.
A relation has an internal name or iname such as {taller than} or {employs} , naming the
relation that holds from A to B.
The new-relation function creates a new relation-element whose wires are connected to the
specified :a , :b , and (optionally) :c arguments. The :a element represents the domain of the
relation, or rather the typical member of the domain set; the :b element represents the typical
member of the range; the :c element, if present, is some value that is a function of a specific A
and B. For example, a relation might represent the distance between A and B, with the C role
being the value.

A very common situation is that the caller of new-relation will want to create a new
individual with a specific parent to be used as the A element of the new relation. The most
convenient way to do this is to supply an :a-inst-of keyword followed by the parent
element, instead of the :a keyword. That indicates that the new-relation function should create a
new individual role node with the specified parent and attach this to the new relation’s a-wire.
The :b-inst-of and :c-inst-of keywords perform the same function for the relation’s
other wires.
So, for example the user might create a new relation as follows:
(new-relation {reports to} :a-inst-of {person} :b-inst-of {person})

This says that when we create a {reports to} statement, both the A and B elements must be
instances of {person} . But not every {person} is involved in a {reports to} relation.

The parent wire of the relation element may connect to a more general relation, forming a type
hierarchy of relations. For example, the parent of the {hates} relation might be {dislikes} ,
since we think of "hate" as a more specific kind of "dislike" – a particularly intense dislike.
Relations may be marked as transitive and/or symmetric, and these attributes are inherited by the
relation's subtypes and instances (statements). If we have a symmetric relation such as
{touches} , and we know that A touches B, it is not necessary to also state that B touches A.
Scone deduces that. Similarly, if we have a transitive relation, such as {taller than} , Scone
will deduce that if A is taller than B and B is taller than C, then A is taller than C.

35
Copyright 2003-2014 by Scott E. Fahlman

Functions
new-relation [FUNCTION]

 (iname &key :a :a-inst-of :a-type-of :b :b-inst-of :b-type-of :c :c-inst-of :c-type-of
 :parent :symmetric :transitive :english :inverse)
Define a new relation element that can be instantiated by a statement link. The iname is the
name of the relation from a to b . This relation may have another relation as a parent, or a
type-node. Normally the caller supplies elements as :a , :b , and :c arguments. However, for
the common case where you want to create a new generic node with a specified parent, you
can instead supply :a-inst-of or :a-type-of , and similarly for b and c . Optionally
provide a :parent element for the relation itself. Optionally set the :symmetric
and :transitive properties of the relation. (These properties refer to the relation from a to
b .) The :english argument, as usual, is the name of the relation (or list of names) in the
forward direction. The :inverse argument is similar in form, but in the reverse direction.

7.10 Statement Links
Once a relation has been defined, we can create statement links that instantiates that relation.

Functions
new-statement (a rel b &key :c :context :negate :dummy :iname :english) [FUNCTION]

Creates and returns a statement link representing the statement "a rel b". For example, we
might say something like this:

(new-statement {Clyde} {taller than} {Ernie})

The rel argument must be a relation element or another statement. The a and b arguments
must be compatible with the a and b elements of rel , respectively. If the superior rel has a
c-node, we can supply a :c argument to the statement.

new-not-statement (a rel b &key :c :context :iname :dummy :english) [FUNCTION]
Make and return a new not-statement with the specified elements on the a and b wires.

7.11 Split and Complete-Split Links
A split is a special kind of link: it can have any number of split-wires instead of individual A, B,
and C wires. The meaning is that the type nodes connected by the split wires are mutually
disjoint: no individual can be an instance of more than one of these types. If some of the
connected nodes are individuals, they are disjoint from one another and are not instances of any
types in the split. Scone has efficient machinery for determining whether a new or proposed link
causes a split to be violated.

So, for example, we might say
(new-split '({bird} {reptile} {mammal}))

36
Copyright 2003-2014 by Scott E. Fahlman

to indicate that these are disjoint types with no common members. However, there is no claim
that the split types exhaust all the possibilities. There may be other subtypes of {vertebrate}
that are not listed here.
A complete split is like a split, but it makes the additional claim that the split classes, taken
together, cover all the members of some supertype. Put another way, every member of the
supertype must belong to exactly one of the types in the complete split. So we might say
something like this:

(new-complete-split {vertebrate}
 '({fish} {amphibian} {reptile} {bird} {mammal})

A given type may have multiple splits and complete splits under it:
(new-complete-split {person} '({male} {female}))
(new-complete-split {person} '({child} {adolescent} {adult}))

Once a split is in place, and attempt to violate the split will be detected. However, it is possible
to use a cancel-link to turn off the split for a particular individual if, for example, we want to
create an individual who is both a male and a female. (However, if we do this, we may have to
use a number of additional cancellations to deal with conflicting properties of this hybrid entity.)

Functions
new-split (members &key :iname :dummy :parent :context :english) [FUNCTION]

The members argument is a list containing any number of elements, usually type and
individual nodes. Create and return a split element stating that all of the members are distinct
and disjoint.

new-complete-split [FUNCTION]
 (supertype members &key :iname :dummy :parent :context :english)
Like new-split, but also states that any instance of the supertype must belong to exactly
one of the members .

add-to-split (split new-item) [FUNCTION]
Add one new-item to the members of the specified split , which may be a complete split.

7.12 Functions to Create Multiple Nodes
These functions create multiple new subtypes or members in a given class.

In each case, the members argument is a list of items. An item may be an internal name for one
of the new elements in the group, or a list whose first element is the internal name; in that case,
the remainder of the list is treated as an :english argument for this new element. By default,
the iname becomes one of the English names for the element, with syntax-tag :noun . If the first
element of the English list is a syntax-tag, the iname gets that tag instead. If you don't want the
iname to be used as an English name at all, include :no-iname in the list.

37
Copyright 2003-2014 by Scott E. Fahlman

Functions
new-split-subtypes (parent members &key :iname :context :english) [FUNCTION]

Create a set of disjoint subtypes under parent . First we create a new split under parent .
The members argument is a list of internal names, one for each new type-node that is to be
created, as described above. Optionally, provide the :context , :iname , and :english
names for the new split element. Returns the new split element.

new-complete-split-subtypes (parent members &key :iname :context :english) [FUNCTION]
Like new-split-subtypes , but creates a complete split of the elements under parent .

new-members (parent members &key :iname :context :english) [FUNCTION]
Like new-split-subtypes , but the items become new proper individual nodes rather than
subtypes of parent . Creates and returns a split element stating that all these new indv-
nodes are distinct.

new-complete-members (parent members &key :iname :context :english) [FUNCTION]
Like new-complete-split-subtypes , but the items become new indv nodes rather than
subtypes of parent . In other words, this states that the items list contains all the individual
members of the parent set. Returns the new split element.

7.13 Roles

Roles are associated with type-nodes by the new-indv-role and new-type-role
functions. Once a role has been created for some type, other functions described in this section
can be used to attach roles and values to instances of that type.

Note: Quantification machinery (:n and :may-have arguments) for new-indv-role and
new-type-role is messed up, and will soon be replaced. For now, this correctly describes
what the code does.

new-indv-role [FUNCTION]
 (iname owner parent &key :may-have :transitive :symmetric :english :inverse)
Creates a new generic indv-node representing some role of the owner . Also creates a has
statement indicating that for every instance of owner , there exists one instance of this role.
The iname is the name of the role-node. The parent argument is the parent of the new
role-node. The :english argument is used to register English names for the role, with the
default syntax-type of :role . By default, the iname becomes one of the English names.

If :may-have is present and non-null, that indicates that not every instance of owner has
this role . In this case, we do not create the has-link.

The :symmetric and :transitive flags refer to the implicit relation created between the
owner and the role-node. The :english argument, as usual, is the name of the role (or set of
names) in the forward direction. The :inverse argument is similar in form, but in the
reverse direction.

38
Copyright 2003-2014 by Scott E. Fahlman

new-type-role [FUNCTION]
 (iname owner parent &key :n :may-have :transitive :symmetric :english :inverse)
Like new-indv-role , but this function creates a type-role. The value of :n is the number
of instances of this role that the owner typically has. If :may-have is present and non-null,
it indicates that not every instance of owner has this role, so we do not create the has-link.
Only one of :n and :may-have should be supplied.

x-is-the-y-of-z (x y z) [FUNCTION]
The function x-is-the-y-of-z finds or creates the node representing “the y of z”. Check
whether x can be equated to this node without causing any errors. If so, create an eq-link
between the role node and x . Return the new eq-link.

x-is-a-y-of-z (x y z) [FUNCTION]
The function x-is-a-y-of-z finds or creates the node representing "the y of z". This
should be a type-node. Check whether x can be of this type. If so, create and return an is-a
link from x to this node.

the-x-of-y-is-a-z (x y z) [FUNCTION]
The function the-x-of-y-is-a-z finds or creates the node representing "the x of y".
Check whether this node can be of type z . If so, create an is-a link from this node to type-
node z . Return the new is-a link.

x-is-not-the-y-of-z (x y z) [FUNCTION]
x-is-not-a-y-of-z (x y z) [FUNCTION]
the-x-of-y-is-not-a-z (x y z) [FUNCTION]

These functions are like their positive counterparts, but they create a not-eq or not-is-a link
that will over-ride any existing relationship and will prevent a new one from being formed
(unless this not-link is later cancelled).

39
Copyright 2003-2014 by Scott E. Fahlman

8. Removing Elements from the Scone KB.
Beware: Wholesale and random removal of elements can leave the knowledge base in a bad
state, with lots of dangling connections that could give rise to anomalous behavior. However, it
is sometimes necessary to remove a few elements to repair some error or problem in the
knowledge base. It is usually safe to remove the last N elements created, since these refer to
earlier elements but earlier elements usually don’t refer to them, except in rare cases where the
deferred-connection mechanism has been used.

Functions and Variables
remove-element (e) [FUNCTION]

Disconnect element e from the network and remove it.

remove-last-element nil [FUNCTION]
Remove the last element created.

remove-elements-after (e) [FUNCTION]
Given some element e , remove all elements added later than e , starting with the last one.

remove-last-loaded-file nil [FUNCTION]
Remove all the elements, starting with the last-created, until we have removed all elements
created by the last loaded file (plus any created interactively after that). Pops the last file off
LOADED-FILES and *LAST-LOADED-ELEMENTS*. Returns the number of elements
remaining in the KB.

remove-currently-loading-file nil [FUNCTION]
Remove all the elements, starting with the last-created, until we have removed all elements
created by the file that is currently being loaded. This is useful for backing out of a file-load if
an error aborts the load. Returns the number of elements remaining in the KB.

remove-context (c) [FUNCTION]
The c argument is an element representing a context. Remove c , all its sub-contexts, and all
their contents. Return the number of elements that remain in the KB after this operation.

40
Copyright 2003-2014 by Scott E. Fahlman

9. Queries and Predicates
9.1 Element-Type Predicate Functions
These functions all take a single argument e . They return t if e is an element of the specified
type, and nil otherwise. The indentation indicates a subtype relation. For example, if
number-node? is true of an element, primitive-node? , indv-node? , and node? will be
true as well.

node? (e)

indv-node? (e)
proper-indv-node? (e)
generic-indv-node? (e)
defined-indv-node? (e)
primitive-node? (e)

number-node? (e)
integer-node? (e)
ratio-node? (e)
float-node? (e)

string-node? (e)
function-node? (e)
struct-node? (e)

type-node? (e)
 defined-type-node?
map-node? (e)

indv-map-node? (e)
type-map-node? (e)

role-node? (e)
indv-role-node? (e)
type-role-node? (e)

link? (e)

is-a-link? (e)
is-not-a-link? (e)
eq-link? (e)
not-eq-link? (e)
has-link? (e)
has-no-link? (e)
cancel-link? (e)
statement? (e)
not-statement? (e)
split? (e)

complete-split? (e)

relation? (e)

The following predicates do not test the basic type of the element e , but test some other feature
of the element.

defined? (e) [FUNCTION]
This predicate tests whether e is an element (type-node or indv-node) with a specific
definition, rather than just a description.

derived? (e) [FUNCTION]
This predicate tests whether e is a derived element – that is, one created by the Scone engine
rather than specifically by the user.

killed? (e) [FUNCTION]
The killed flag on element e indicates that it is present but inoperative.

symmetric? (e) [FUNCTION]
The symmetric flag on a relation or statement indicates that the relation holds in both
directions.

41
Copyright 2003-2014 by Scott E. Fahlman

transitive? (e) [FUNCTION]
The transitive flag on a role or statement indicates that this is a transitive relation.

9.2 Predicates on the Is-A Hierarchy
These predicates test for subtype, instance, and equality relations in the is-a hierarchy.

Functions and Variables
is-x-a-y? (x y) [FUNCTION]

The x and y arguments are elements. This is a predicate to determine whether x is known to
be an instance or subtype of y in the current context. A return of :yes means x is definitely
a y . :no means that x is definitely not a y , and stating otherwise would cause an
error. :maybe means that we have no definite knowledge either way.

A :no response will return an element as second value. This is the particular split or negation
link that produces a conflict, or one of these elements if there are multiple conflicts.

simple-is-x-a-y? (x y) [FUNCTION]
The x and y arguments are elements. This is a predicate to determine whether x is definitely
known to be an instance or subtype of y in the current context. Returns T or NIL.

is-x-eq-y? (x y) [FUNCTION]
The x and y arguments are elements. This is a predicate to determine whether x is known to
be equivalent to y in the current context. A return of :yes means x is definitely equivalent to
y . :no means that x is definitely not equivalent to y , and stating otherwise would cause an
error. :maybe means that we have no definite knowledge either way.

A :no response will return an element as second value. This is the particular split or negation
link that produces a conflict, or one of these elements if there are multiple conflicts.

simple-is-x-eq-y? (x y) [FUNCTION]
The x and y arguments are elements. This is a predicate to determine whether x is definitely
known to be equivalent to y in the current context. Returns T or NIL.

9.3 Mark, List, and Show Functions
Most of these query functions have three versions: a mark version, which marks all the members
of some class (such as "instances of mammal") with a specified marker; a list version", which
returns a list of such elements, suitable for processing by an external Lisp function; and a show
version that prints the set of elements in a human-friendly format.
The "show" functions all take some additional keyword arguments that control the printing:

The :n argument, an integer, is the maximum number of items that will be printed. The default
is 100.

An :all argument of t over-rides the :n argument and forces printing of all the elements in
the result set. The default is nil .

42
Copyright 2003-2014 by Scott E. Fahlman

The :last argument, an integer, says to print the last n arguments in the set rather than the first
n .

Normally you call a show function with only one of :n , :all , or :last .

Functions and Variables
list-elements nil [FUNCTION]
show-elements (&key :n :all :last) [FUNCTION]

List or print all the elements in the KB, in the order in which the elements were defined.

list-marked (m) [FUNCTION]
show-marked (m &key :n :all :last :heading) [FUNCTION]

List or print all the elements marked with marker m , in the order in which the markers were
placed.

list-not-marked (m) [FUNCTION]
show-not-marked (m &key :n :all :last) [FUNCTION]

List or print all the elements not marked with marker m .

mark-supertypes (e m) [FUNCTION]
list-supertypes (e) [FUNCTION]
show-supertypes (e &key :n :all :last) [FUNCTION]

Mark/list/print all the types above e in the is-a hierarchy (in the current context).

mark-subtypes (e m) [FUNCTION]
list-subtypes (e) [FUNCTION]
show-subtypes (e &key :n :all :last) [FUNCTION]

Mark/list/print all the types below e in the is-a hierarchy (in the current context).

mark-instances (e m) [FUNCTION]
list-instances (e) [FUNCTION]
show-instances (e &key :n :all :last) [FUNCTION]

Mark/list/print all the instances (indv nodes) under e in the current context.

mark-parents (e m) [FUNCTION]
list-parents (e) [FUNCTION]
show-parents (e &key :n :all :last) [FUNCTION]

Mark/list/print the immediate superiors of element e in the is-a hierarchy (in the current
context).

mark-children (e m) [FUNCTION]
list-children (e) [FUNCTION]
show-children (e &key :n :all :last) [FUNCTION]

Mark/list/print the immediate descendants of element e in the is-a hierarchy (in the current
context).

43
Copyright 2003-2014 by Scott E. Fahlman

mark-superiors (e m) [FUNCTION]
list-superiors (e) [FUNCTION]
show-superiors (e &key :n :all :last) [FUNCTION]

Mark/list/print all the elements, regardless of type, above e in the is-a hierarchy (in the
current context).

mark-inferiors (e m) [FUNCTION]
list-inferiors (e) [FUNCTION]
show-inferiors (e &key :n :all :last) [FUNCTION]

Mark/list/print all the elements, regardless of type, below e in the is-a hierarchy (in the
current context).

mark-equals (e m) [FUNCTION]
list-equals (e) [FUNCTION]
show-equals (e &key :n :all :last) [FUNCTION]

Mark/list/print all the elements, regardless of type, that are equivalent to e (i.e. connected by
an EQ-link or chain of them) in the is-a hierarchy (in the current context).

mark-intersection (superiors m) [FUNCTION]
list-intersection (superiors) [FUNCTION]
show-intersection (superiors &key :n :all :last) [FUNCTION]

Given list of superiors , which should all be type-nodes, mark/list/print every element that
is in the intersection of all these superior types. Return the count.

mark-lowermost (m1 m2) [FUNCTION]
list-lowermost (m) [FUNCTION]
show-lowermost (m &key :n :all :last) [FUNCTION]

The mark-lowermost function examines the set of elements currently marked with m1 and
places m2 on the lowermost elements of that set – that is, on all elements marked with m1 that
do not have an immediate descendant that is also marked with m1 . The list-lowermost
and show-lowermost functions list/print the lowermost elements in the set marked with m .

mark-uppermost (m1 m2) [FUNCTION]
list-uppermost (m) [FUNCTION]
show-uppermost (m &key :n :all :last) [FUNCTION]

The mark-uppermost function examines the set of elements currently marked with m1 and
places m2 on the uppermost elements of that set – that is, on all elements marked with m1 that
do not have an immediate superior that is also marked with m1 . The list-
uppermostmost and show-uppermost functions list/print the uppermost elements in the
set marked with m .

mark-proper (m1 m2) [FUNCTION]
list-proper (m) [FUNCTION]
show-proper (m &key :n :all :last) [FUNCTION]

From the set of elements currently marked with M (or M1), mark/list/print any proper
individual nodes that are lowermost in the type hierarchy.

44
Copyright 2003-2014 by Scott E. Fahlman

mark-most-specific (m1 m2) [FUNCTION]
list-most-specific (m) [FUNCTION]
show-most-specific (m &key :n :all :last :heading) [FUNCTION]

The mark-most-specific function examines the set of elements currently marked with
m1 and places m2 on the most specific elements of that set – that is, any proper individual
nodes and, if none of those are present, the lowermost type or generic nodes.. The list-
most-specific and show-most-specific functions list/print the most specific
elements in the set marked with m .

acceptable-role-filler (m) [FUNCTION]
From the set of nodes currently marked with M, find the one that would serve best as an
answer for THE-X-OF-Y and similar functions. Currently we accept lowermost proper
individuals, types, and statements. If more than one exists, pick one at random; if none, return
NIL.

9.4 Query Functions for Roles and Relations
mark-role (role owner m &key :downscan :augment) [FUNCTION]

OWNER is any element. ROLE is a node that is a role of OWNER, directly or by inheritance.
Place marker M on all nodes X such that 'X is the ROLE of OWNER'. If :AUGMENT, don't
clear M before marking new nodes. Downscan the M markers unless :DOWNSCAN is
explicitly NIL. Returns the number of elements ultimately marked with M.

mark-role-inverse (role player m &key :downscan :augment) [FUNCTION]
Place marker M on all nodes X such that 'PLAYER is the ROLE of X'. If :AUGMENT, don't
clear M before marking new nodes. Downscan the M markers unless :DOWNSCAN is
explicitly NIL. Returns the number of elements ultimately marked with M.

mark-the-x-of-y (x y m) [FUNCTION]
Mark with M all elements E that collectively represent the X of Y. Do not propagate M down
to subtypes and instances of this role.

mark-all-x-of-y (x y m) [FUNCTION]
list-all-x-of-y (x y) [FUNCTION]
show-all-x-of-y (x y &key :n :all :last) [FUNCTION]

Print out all the X of Y.

the-x-of-y (x y) [FUNCTION]
Find the most specific proper node representing the X of Y, and return that node if it exists.
Else return NIL.

mark-the-x-inverse-of-y (x y m) [FUNCTION]
Mark with M all elements E such that the X of E is Y. Do not propagate M down to subtypes
and instances of this role.

45
Copyright 2003-2014 by Scott E. Fahlman

mark-all-x-inverse-of-y (x y m) [FUNCTION]
list-all-x-inverse-of-y (x y) [FUNCTION]
show-all-x-inverse-of-y (x y &key :n :all :last) [FUNCTION]

Mark with m , list, or print out all nodes e such that the x of e is y .

the-x-inverse-of-y (x y) [FUNCTION]
Find the most specific proper node E such that the X of E is Y. If no such E exists, return
NIL. If there are more than one E, return one of them.

mark-roles (e m) [FUNCTION]
list-roles (e) [FUNCTION]
show-roles (e &key :n :all :last) [FUNCTION]

Mark with m , list, or print out all the roles defined for element e in the current context,
whether or not those roles are filled.

the-x-role-of-y (x y) [FUNCTION]
Find and return the role-node or map-node directly representing the X-role of Y. If this does
not exist, create it.

can-x-have-a-y? (x y) [FUNCTION]
Predicate to determine whether element X can have a Y role in the current context. That is,
return T if Y is a role of X or some node above X, else NIL.

can-x-be-the-y-of-z? (x y z) [FUNCTION]
Predicate to determine whether it would be legal to state that X is the Y of Z. That is, would
any splits or other constraints be violated? If it is OK, return T. If it is not, return NIL with the
unhappy split or constraint as the second return value. If there are multiple problems, we just
return the first one we hit.

can-x-be-a-y-of-z? (x y z) [FUNCTION]
Predicate to determine whether it would be legal to state that X is a Y of Z. That is, would any
splits or other constraints be violated? If it is OK, return T. If it is not, return NIL with the
unhappy split or constraint as the second return value. If there are multiple problems, we just
return the first one we hit.

statement-true? (a rel b) [FUNCTION]
A predicate that tests whether "a rel b" is true in the current context. If so, the second
return value is the link that actually states this fact (if there is a single link that does this). The
third return value is that link’s c-node, if any. If the predicate is false, return only the single
value nil .

mark-rel (rel a m &key :downscan :augment :recursion-allowance) [FUNCTION]
list-rel (rel a) [FUNCTION]
show-rel (rel a &key :n :all :last) [FUNCTION]

In mark-rel , the a argument is an element. The rel argument is a relation-node. The

46
Copyright 2003-2014 by Scott E. Fahlman

mark-rel function places marker m on all elements b for which the statement "a rel b" is
known to be true in the current context. Then downscan marker m unless the :downscan
argument is explicitly nil . :recursion-allowance controls the number of levels of
descriptions we will explore. Returns the number of elements marked with m after this
operation. The list-rel and show-rel functions list and print the set of elements that
mark-rel would mark.

mark-rel-inverse (rel a m &key :downscan :augment :recursion-allowance) [FUNCTION]
list-rel-inverse (rel b) [FUNCTION]
show-rel-inverse (rel b &key :n :all :last) [FUNCTION]

Like mark-rel and friends, but here we cross the statement links in the opposite direction.
That is, we mark/list/print all elements a such that "a rel b".

9.5 Miscellaneous Show Functions
show-element-counts nil [FUNCTION]

Print a table showing the number of elements of each type.

show-marker-counts nil [FUNCTION]
Prints the number of elements marked with each marker.

show-ontology (&key :under :n) [FUNCTION]
Print every node in the ontology beneath start . This output is designed to be read by
humans, not programs. If the :under argument (a Scone element) is supplied, print only the
part of the ontology under this element. If :n is supplied, stop after N elements are printed.

47
Copyright 2003-2014 by Scott E. Fahlman

10. Marker Scans
The various marker scans are powerful and rather complex internal functions that perform the
pseudo-parallel search and inference in Scone. Once Scone is mature, users will seldom have to
deal directly with these scans, but for now they provide the means for writing any search and
inference functions that Scone does not supply.

Functions and Variables
upscan (start-element m &key :mode :m1 :augment :restrict-m) [FUNCTION]

Mark start-element with marker m . Propagate this marker upwards, across parent wires
and is-a links that are active in the current context, while respecting is-not-a links and
cancellations. Eq-links are crossed in both directions. Places the cancel-marker
corresponding to m on nodes that explicitly are not considered to be superiors of start-element.

Returns the number of elements marked with m after the upscan

Normally upscan clears the m marker and its cancel-marker before start-element is marked
and the scan is performed. However, if the :augment argument is t , we leave any pre-
existing m markers in place and they are propagated upward as well.

The mode argument is one of :cross-map , :gate-map , or :no-map . The default
is :cross-map . The others are specialized scan types with respect to propagating across
map connections. For some modes, we need an additional marker, which is supplied as :m1 .

The :restrict-m argument, if present, is a marker already present on some elements in
the network. In this scan we place m only on elements that already have restrict-m .
Returns the number of elements marked with m after the scan.
The operation of upscan and the other scans may be modified by the *one-step* ,
ignore-context , and *default-recursion-allowance* variables.

ignore-context [VARIABLE]
If t , marker-propagations pay no attention to whether or not the nodes and links are in an
active context. This variable is used for upscanning while activating a context, and may also
be useful finding whether some entity exists in any context.

one-step [VARIABLE]
If t , marker propagations go only one level in the desired direction. Used in functions such as
mark-parents , where you don't want the full transitive closure.

default-recursion-allowance [VARIABLE]
In functions such as mark-rel , we must individually activate and explore each description
instance in which the source node plays a role, and this process may recurse. This is the
default allowance for recursion depth that we will explore.

48
Copyright 2003-2014 by Scott E. Fahlman

downscan (start-element m &key :mode :m1 :augment :restrict-m) [FUNCTION]
Like upscan, but propagates marker m and its cancel-marker downward from start-
element . That is, the direction is from a type to its subtypes and instances.

eq-scan (start-element m &key :mode :m1 :augment :restrict-m) [FUNCTION]
Like upscan, but propagates marker m only to elements that are equivalent to start-
element . That is, this does not propagate upward or downward in the type hierarchy, but
only crosses eq links.

lowermost? (e m) [FUNCTION]
Assume element e is marked with marker m . Determine whether e is one of the lowermost
nodes in this marked set – that is, it has no immediate children also marked with m .

uppermost? (e m) [FUNCTION]
Like lowermost? , but determines whether e is an uppermost member of the set marked
with m .

splits-ok? (m) [FUNCTION]
Some set of elements has been marked with m and upscanned. Look for splits that have m on
more than one of the disjoint items. If there are none, return t , meaning OK. If we find an
unhappy split, return nil , returning the unhappy split element (or one of them, if there are
more than one) as the second return value.

which-split-member? (e split) [FUNCTION]
Given an element e and a split-node split , finds which of the split type nodes e is an
inferior of. If none of the types is a supertype of e , returned nil .

49
Copyright 2003-2014 by Scott E. Fahlman

11. Miscellaneous Functions and Variables
11.1 Commentary, Printing, and Naming
commentary (&rest args) [FUNCTION]

This function is identical in form to the Common Lisp format function, but without a stream
argument. The commentary function prints to *commentary-stream* , which may or
may not be equivalent to *standard-output* . If that variable is nil , then
commentary doesn't print at all.

The intent is that commentary should be used to inform the user when the system has done
something interesting, but with the capability to turn off all such comments in non-interactive
situations or if the user doesn’t want to see all this information.

commentary-stream [VARIABLE]
Stream to which commentary prints its output.

print-namespace-in-elements [VARIABLE]
If t , always include the namespace, followed by a colon, in element inames. This ensures that
what we print can be read back in without any namespace ambiguity. If nil , do not include
the namespace. This is better for human readabilty. If :maybe , print the namespace if it
differs from the current *namespace* . This is usually safe.

generate-long-element-names [VARIABLE]
If t , generate long names for certain element types. For example, a statement link will have
an internal name that is an English description of arguments and the relation. This is good for
development, but significantly increases the storage requirement for large knowledge bases.

print-keylist [VARIABLE]
If t , dumping an element pattern includes the list of keyword/value pairs as part of the
pattern. That is necessary if we want to read that pattern back in, but we set this to nil for
some human-readable dumps.

show-ontology-indent [VARIABLE]
An integer, the number of spaces to indent each level in show-ontology .

show-stream [VARIABLE]
Stream to which we print the output of show functions. If nil , don't print these at all.

11.2 Variables Linking to Essential Scone Elements
There are a number of elements set up in the bootstrap.lisp KB file that are referred to by
code in the Scone engine. For convenience, we store each of these elements in a global variable
so that it is easy for engine and user code to reference these elements. So, for example, a pointer
to the element {thing} is stored in the variable *thing* .

50
Copyright 2003-2014 by Scott E. Fahlman

thing

The uppermost node in the is-a hierarchy.

universal

The pre-defined {universal} context.

general

The pre-defined {general} context.

set
empty-set
non-empty-set

Pre-defined type nodes related to the concept of {set} .

cardinality

The {cardinality} role for the {set} node.

zero
one
two

Some pre-defined number nodes.

number
integer
ratio
float
string
function
struct
relation
is-a-link
is-not-a-link
eq-link
not-eq-link
cancel-link
has-link
has-no-link
split
complete-split
statement-link
not-statement-link

These type-nodes represent the various element-types built into Scone.

51
Copyright 2003-2014 by Scott E. Fahlman

12. Structure-Creation Functions from the Core KB
These commonly-used functions for creating new network structure are not defined in the Scone
engine file, but instead are defined in the files contained in the “core” knowledge base. They
must be defined as part of the knowledge base because they build upon element structures
created as the KB files are being loaded.

Functions and Variables
new-measure (magnitude unit) [FUNCTION]

This function, defined in the “units” file, creates and returns an individual of type
{measure} , which is the combination of a magnitude (i.e. a number) and a unit , which
should be an instance of {unit} . So the measure represents something like “16.0 ton”. The
magnitude may be an integer, ratio, or a float, or a Scone object of type {number}. A
specific sub-type of {measure} is chosen based on the type of unit .

Note that the unit should be a singular form: "ton" rather than “tons” . Scone does not
yet have the machinery to deal smoothly with plurals and other natural-language morphology.

new-quantity (magnitude unit stuff) [FUNCTION]
This is like new-measure , but takes a third argument stuff, which should be a
subtype of the type {stuff} , which is defined in the “units” file. It creates and returns
an element representing something like “16.0 ton of coal” or “10 megabytes of census-data”.
Note that {stuff} represents any quality measurable by a unit, and not necessarily a
physical substance, which in Scone is a {material} .

52
Copyright 2003-2014 by Scott E. Fahlman

13. Alphabetical Index of Functions and Variables

	

activation-­‐cancel-­‐marker	
 	
 26	

activation-­‐marker	
 	
 26	

cancel-­‐link	
 ...	
 50	

cardinality	
 ...	
 50	

check-­‐defined-­‐types	
 	
 9	

commentary-­‐stream	
 	
 49	

comment-­‐on-­‐defined-­‐types	
 	
 9	

comment-­‐on-­‐element-­‐creation	
 	
 9	

complete-­‐split	
 	
 50	

context	
 ..	
 26	

context-­‐cancel-­‐marker	
 	
 26	

context-­‐marker	
 	
 26	

create-­‐undefined-­‐elements	
 	
 9	

currently-­‐loading-­‐files	
 	
 8	

deduce-­‐owner-­‐type-­‐from-­‐role	
 	
 9	

default-­‐kb-­‐pathname	
 	
 8	

default-­‐recursion-­‐allowance	
 	
 47	

deferred-­‐connections	
 	
 10	

defer-­‐unknown-­‐connections	
 	
 10	

disambiguate-­‐policy	
 	
 9	

empty-­‐set	
 ...	
 50	

eq-­‐link	
 ...	
 50	

first-­‐element	
 ...	
 13	

float	
 ..	
 50	

function	
 ..	
 50	

general	
 ..	
 50	

generate-­‐long-­‐element-­‐names	
 	
 49	

has-­‐link	
 ...	
 50	

has-­‐no-­‐link	
 ..	
 50	

ignore-­‐context	
 	
 47	

integer	
 ..	
 50	

is-­‐a-­‐link	
 ...	
 50	

is-­‐not-­‐a-­‐link	
 ...	
 50	

last-­‐element	
 ...	
 13	

legal-­‐syntax-­‐tags	
 	
 20	

loaded-­‐files	
 ...	
 8	

loading-­‐kb-­‐file	
 ...	
 8	

namespace	
 ...	
 18	

namespaces	
 ..	
 18	

n-­‐available-­‐markers	
 	
 25	

n-­‐elements	
 ..	
 13	

no-­‐kb-­‐error-­‐checking	
 	
 9	

non-­‐empty-­‐set	
 	
 50	

not-­‐eq-­‐link	
 ...	
 50	

not-­‐statement-­‐link	
 	
 50	

number	
 ..	
 50	

one	
 ..	
 50	

one-­‐step	
 ..	
 47	

print-­‐keylist	
 ...	
 49	

print-­‐namespace-­‐in-­‐elements	
 	
 49	

ratio	
 ...	
 50	

relation	
 ..	
 50	

reloading-­‐kb-­‐file	
 	
 9	

set	
 ..	
 50	

show-­‐ontology-­‐indent	
 	
 49	

show-­‐stream	
 ...	
 49	

split	
 ..	
 50	

statement-­‐link	
 	
 50	

string	
 ...	
 50	

struct	
 ...	
 50	

thing	
 ..	
 50	

two	
 ..	
 50	

universal	
 ..	
 50	

verbose-­‐loading	
 	
 8	

zero	
 ..	
 50	

	

acceptable-­‐role-­‐filler	
 	
 44	

add-­‐to-­‐split	
 ..	
 36	

a-­‐element	
 ..	
 14	

	

b-­‐element	
 ..	
 14	

	

cancel-­‐link?	
 ..	
 40	

can-­‐x-­‐be-­‐a-­‐y-­‐of-­‐z?	
 	
 45	

can-­‐x-­‐be-­‐the-­‐y-­‐of-­‐z?	
 	
 45	

can-­‐x-­‐have-­‐a-­‐y?	
 ...	
 45	

c-­‐element	
 ..	
 14	

check-­‐legal-­‐marker	
 	
 23	

check-­‐legal-­‐marker-­‐pair	
 	
 23	

53
Copyright 2003-2014 by Scott E. Fahlman

check-­‐loaded-­‐files	
 	
 11	

checkpoint-­‐kb	
 ...	
 11	

checkpoint-­‐new	
 ..	
 11	

clear-­‐all-­‐markers	
 	
 24	

clear-­‐element-­‐property	
 	
 15	

clear-­‐marker	
 ...	
 24	

clear-­‐marker-­‐pair	
 	
 24	

commentary	
 ...	
 49	

complete-­‐split?	
 ...	
 40	

context-­‐element	
 	
 14	

convert-­‐marker	
 ...	
 25	

convert-­‐parent-­‐wire-­‐to-­‐link	
 	
 14	

	

defined?	
 ..	
 40	

defined-­‐indv-­‐node?	
 	
 40	

derived?	
 ..	
 40	

disambiguate	
 ..	
 21	

do-­‐elements	
 ...	
 13	

do-­‐marked	
 ..	
 24	

downscan	
 ...	
 48	

	

english	
 ..	
 20	

eq-­‐link?	
 ...	
 40	

eq-­‐scan	
 ...	
 48	

	

free-­‐marker	
 ..	
 25	

free-­‐markers	
 ...	
 25	

function-­‐node?	
 ...	
 40	

	

generic-­‐indv-­‐node?	
 	
 40	

get-­‐cancel-­‐marker	
 	
 23	

get-­‐element-­‐property	
 	
 15	

get-­‐english-­‐names	
 	
 21	

get-­‐marker	
 ..	
 25	

get-­‐set-­‐node	
 ...	
 31	

get-­‐type-­‐node	
 ...	
 31	

	

has-­‐link?	
 ...	
 40	

has-­‐no-­‐link?	
 ..	
 40	

	

incoming-­‐a-­‐elements	
 	
 14	

incoming-­‐b-­‐elements	
 	
 14	

incoming-­‐c-­‐elements	
 	
 14	

incoming-­‐context-­‐elements	
 	
 14	

incoming-­‐parent-­‐elements	
 	
 14	

incoming-­‐split-­‐elements	
 	
 14	

in-­‐context	
 ..	
 26	

indv-­‐map-­‐node?	
 ..	
 40	

indv-­‐node?	
 ..	
 40	

indv-­‐role-­‐node?	
 ...	
 40	

in-­‐namespace	
 ..	
 18	

integer-­‐node?	
 ..	
 40	

is-­‐a-­‐link?	
 ..	
 40	

is-­‐not-­‐a-­‐link?	
 ...	
 40	

is-­‐x-­‐a-­‐y?	
 ...	
 41	

	

killed?	
 ..	
 40	

	

legal-­‐marker?	
 ..	
 23	

legal-­‐marker-­‐pair?	
 	
 23	

link?	
 ...	
 40	

list-­‐all-­‐x-­‐inverse-­‐of-­‐y	
 	
 45	

list-­‐all-­‐x-­‐of-­‐y	
 ..	
 44	

list-­‐children	
 ...	
 42	

list-­‐dictionary-­‐entries	
 	
 21	

list-­‐elements	
 ..	
 42	

list-­‐equals	
 ..	
 43	

list-­‐inferiors	
 ...	
 43	

list-­‐instances	
 ..	
 42	

list-­‐intersection	
 ...	
 43	

list-­‐lowermost	
 ...	
 43	

list-­‐marked	
 ..	
 42	

list-­‐most-­‐specific	
 	
 44	

list-­‐namespaces	
 ...	
 18	

list-­‐not-­‐marked	
 ..	
 42	

list-­‐parents	
 ..	
 42	

list-­‐proper	
 ..	
 43	

list-­‐rel	
 ..	
 45	

list-­‐rel-­‐inverse	
 ...	
 46	

list-­‐roles	
 ...	
 45	

list-­‐subtypes	
 ..	
 42	

list-­‐superiors	
 ..	
 43	

list-­‐supertypes	
 ...	
 42	

list-­‐synonyms	
 ..	
 21	

list-­‐uppermost	
 ...	
 43	

load-­‐kb	
 ..	
 8	

lookup-­‐definitions	
 	
 20	

lookup-­‐element	
 ...	
 18	

lookup-­‐element-­‐or-­‐defer	
 	
 18	

54
Copyright 2003-2014 by Scott E. Fahlman

lookup-­‐element-­‐test	
 	
 18	

lowermost?	
 ...	
 48	

	

map-­‐node?	
 ...	
 40	

mark	
 ...	
 23	

mark-­‐all-­‐x-­‐inverse-­‐of-­‐y	
 	
 45	

mark-­‐all-­‐x-­‐of-­‐y	
 ..	
 44	

mark-­‐boolean	
 ...	
 24	

mark-­‐children	
 ...	
 42	

mark-­‐equals	
 ..	
 43	

marker-­‐bit	
 ...	
 23	

marker-­‐count	
 ..	
 23	

marker-­‐off?	
 ...	
 24	

marker-­‐on?	
 ...	
 24	

mark-­‐inferiors	
 ...	
 43	

mark-­‐instances	
 ...	
 42	

mark-­‐intersection	
 	
 43	

mark-­‐lowermost	
 	
 43	

mark-­‐most-­‐specific	
 	
 44	

mark-­‐named-­‐elements	
 	
 21	

mark-­‐parents	
 ..	
 42	

mark-­‐proper	
 ...	
 43	

mark-­‐rel	
 ..	
 45	

mark-­‐rel-­‐inverse	
 	
 46	

mark-­‐role	
 ..	
 44	

mark-­‐role-­‐inverse	
 	
 44	

mark-­‐roles	
 ..	
 45	

mark-­‐subtypes	
 ..	
 42	

mark-­‐superiors	
 ...	
 43	

mark-­‐supertypes	
 	
 42	

mark-­‐the-­‐x-­‐inverse-­‐of-­‐y	
 	
 44	

mark-­‐the-­‐x-­‐of-­‐y	
 ..	
 44	

mark-­‐uppermost	
 	
 43	

	

new-­‐cancel	
 ...	
 34	

new-­‐complete-­‐members	
 	
 37	

new-­‐complete-­‐split	
 	
 36	

new-­‐complete-­‐split-­‐subtypes	
 	
 37	

new-­‐context	
 ...	
 26	

new-­‐defined-­‐type	
 	
 31	

new-­‐eq	
 ..	
 33	

new-­‐float	
 ..	
 30	

new-­‐function	
 ..	
 30	

new-­‐indv	
 ...	
 29	

new-­‐indv-­‐role	
 ..	
 37	

new-­‐integer	
 ...	
 30	

new-­‐intersection-­‐type	
 	
 32	

new-­‐is-­‐a	
 ...	
 32	

new-­‐is-­‐not-­‐a	
 ..	
 33	

new-­‐map	
 ...	
 32	

new-­‐measure	
 ..	
 51	

new-­‐members	
 ...	
 37	

new-­‐not-­‐statement	
 	
 35	

new-­‐number	
 ..	
 30	

new-­‐quantity	
 ...	
 51	

new-­‐ratio	
 ...	
 30	

new-­‐relation	
 ..	
 35	

new-­‐split	
 ..	
 36	

new-­‐split-­‐subtypes	
 	
 37	

new-­‐statement	
 ..	
 35	

new-­‐string	
 ...	
 30	

new-­‐struct	
 ...	
 30	

new-­‐type	
 ...	
 31	

new-­‐type-­‐role	
 ..	
 38	

new-­‐union-­‐type	
 ...	
 32	

next-­‐element	
 ...	
 14	

n-­‐marker-­‐pairs	
 ...	
 23	

n-­‐markers	
 ..	
 23	

node?	
 ..	
 40	

node-­‐value	
 ..	
 30	

not-­‐eq-­‐link?	
 ...	
 40	

not-­‐statement?	
 ...	
 40	

number-­‐node?	
 ..	
 40	

	

parent-­‐element	
 ...	
 14	

previous-­‐element	
 	
 14	

primitive-­‐node?	
 ...	
 40	

process-­‐deferred-­‐connections	
 	
 10	

proper-­‐indv-­‐node?	
 	
 40	

push-­‐element-­‐property	
 	
 15	

	

ratio-­‐node?	
 ..	
 40	

refresh-­‐context	
 ..	
 26	

relation?	
 ..	
 40	

remove-­‐context	
 ...	
 39	

remove-­‐currently-­‐loading-­‐file	
 	
 39	

remove-­‐element	
 ..	
 39	

remove-­‐elements-­‐after	
 	
 39	

55
Copyright 2003-2014 by Scott E. Fahlman

remove-­‐last-­‐element	
 	
 39	

remove-­‐last-­‐loaded-­‐file	
 	
 39	

role-­‐node?	
 ..	
 40	

	

set-­‐element-­‐property	
 	
 15	

show-­‐all-­‐x-­‐inverse-­‐of-­‐y	
 	
 45	

show-­‐all-­‐x-­‐of-­‐y	
 ..	
 44	

show-­‐children	
 ...	
 42	

show-­‐element-­‐counts...............................	
 46	

show-­‐elements	
 ...	
 42	

show-­‐equals	
 ...	
 43	

show-­‐inferiors	
 ..	
 43	

show-­‐instances	
 ...	
 42	

show-­‐intersection	
 	
 43	

show-­‐lowermost	
 	
 43	

show-­‐marked	
 ..	
 42	

show-­‐marker-­‐counts	
 	
 46	

show-­‐most-­‐specific	
 	
 44	

show-­‐not-­‐marked	
 	
 42	

show-­‐ontology	
 ..	
 46	

show-­‐parents	
 ..	
 42	

show-­‐proper	
 ...	
 43	

show-­‐rel	
 ..	
 45	

show-­‐rel-­‐inverse	
 	
 46	

show-­‐roles	
 ..	
 45	

show-­‐subtypes	
 ...	
 42	

show-­‐superiors	
 ...	
 43	

show-­‐supertypes	
 	
 42	

show-­‐synonyms	
 ..	
 21	

show-­‐uppermost	
 	
 43	

simple-­‐is-­‐x-­‐a-­‐y?	
 ...	
 41	

simple-­‐is-­‐x-­‐eq-­‐y?	
 	
 41	

split?	
 ..	
 40	

split-­‐elements	
 ..	
 14	

splits-­‐ok?	
 ...	
 48	

statement?	
 ..	
 40	

statement-­‐true?	
 ..	
 45	

string-­‐node?	
 ..	
 40	

struct-­‐node?	
 ..	
 40	

symmetric?	
 ..	
 40	

	

the-­‐x-­‐inverse-­‐of-­‐y	
 	
 45	

the-­‐x-­‐of-­‐y	
 ...	
 44	

the-­‐x-­‐of-­‐y-­‐is-­‐a-­‐z	
 ...	
 38	

the-­‐x-­‐of-­‐y-­‐is-­‐not-­‐a-­‐z	
 	
 38	

the-­‐x-­‐role-­‐of-­‐y	
 ...	
 45	

transitive?	
 ..	
 41	

type-­‐map-­‐node?	
 ..	
 40	

type-­‐node?	
 ..	
 40	

type-­‐role-­‐node?	
 ..	
 40	

	

unmark	
 ..	
 23	

unmark-­‐boolean	
 ..	
 24	

uppermost?	
 ...	
 48	

upscan	
 ...	
 47	

	

which-­‐split-­‐member?	
 	
 48	

with-­‐markers	
 ...	
 25	

	

x-­‐is-­‐a-­‐y-­‐of-­‐z	
 ..	
 38	

x-­‐is-­‐not-­‐a-­‐y-­‐of-­‐z	
 ...	
 38	

x-­‐is-­‐not-­‐the-­‐y-­‐of-­‐z	
 	
 38	

x-­‐is-­‐the-­‐y-­‐of-­‐z	
 ..	
 38	

