
Cooperating Theorem Provers: A Case Study

Combining HOL-Light and CVC Lite

Sean McLaughlin1, Clark Barrett2, and Yeting Ge2

1 Department of Computer Science, Carnegie Mellon University
seanmcl@cmu.edu

2 Department of Computer Science, New York University
[barrett,yeting]@cs.nyu.edu

Abstract. This paper is a case study in combining theorem provers. We
define a derived rule in HOL-Light, CVC PROVE, which calls CVC Lite and
translates the resulting proof object back to HOL-Light. This technique
fundamentally expands the capabilities of HOL-Light while preserving
soundness.

1 Introduction and History

It is generally difficult to share results between different theorem provers.
There are projects underway to address these issues. One example is the
nascent Logosphere project [1]. This promises to be a database of the-
orems in varying formats with a systematic translation mechanism be-
tween the various logics [12]. Another example is Intel’s Forte3 system
[2] which uses various technologies including a theorem prover similar to
HOL-Light, a model checker, and CVC Lite, to produce proofs of mi-
croprocessor correctness. Yet another example is the Ωmega system [3]
that can import proofs of some other systems (eg. TPS) and uses other
theorem provers for proof search in certain domains (eg. Otter [4] for first
order logic).

In the hope of encouraging further progress along these lines, this
paper describes a case study in which proof terms generated by the auto-
matic theorem prover CVC Lite are translated into corresponding proofs
in the interactive theorem prover HOL-Light. We give an example of a
class of problems that were solved with CVC PROVE but were unsolvable
otherwise. Other less successful examples are given for comparison. We
then add an array theory to HOL-Light with the help of CVC Lite. Fi-
nally, we discuss potential applications and future work.



1.1 Previous Work

The technique described in this paper is not new. It can be classified as
a “skeptic’s” approach to using external oracles with interactive theorem
provers. One example of a similar project is described by Harrison and
Théry [16] combining HOL and Maple. Decision procedures that produce
checkable certificates are especially interesting. Examples include linear
and semidefinite programming [17].

There has also been an attempt to provide automatic support for the
theory of finite maps in HOL as a set of packaged tactics. This has been
described in [20] and [9]

1.2 HOL-Light

HOL-Light [13] is an interactive theorem prover descended from the LCF
projects [10, 18] and the HOL4 theorem prover [5]. All the theorems are
created by a core set of 10 primitive inference rules such as modus po-
nens and reflexivity. These inference rules are realized as functions in the
OCaml language. Other rules of inference (called derived rules) are con-
servatively derived from these primitive rules. They are conservative in
the sense that they consist only of increasingly sophisticated applications
of the primitive rules, and thus do not expand the power of the system.
Using OCaml, the user may program new rules (e.g., decision procedures)
without compromising the soundness of the system. The core consists of
just about 1500 lines of OCaml. HOL-Light has been used extensively
by its author to verify hardware designs at Intel [14]. A large body of
mathematics has been formalized in the system, from the construction of
the real numbers to basic results in transfinite set theory and real and
complex analysis.

1.3 CVC Lite

CVC Lite [7] is an automatic proof-producing theorem prover for decid-
able first order theories. It is derived from the SVC and CVC projects at
Stanford University [8, 19]. The logical core differs in many ways from the
HOL-Light kernel. For example, as speed is a design goal of the system,
there are many more primitive inference rules in CVC Lite. In fact, there
are over one hundred rules alone for the theory of real linear arithmetic.
(Contrast this number with the 10 total inference rules of HOL-Light,
where the reals are constructed from the axiom of infinity.) The trusted
code base is correspondingly larger, over 3000 lines being used to solve
problems of linear real arithmetic.



2 Implementation

Proofs are represented in CVC Lite as tree-like data structures3. Nodes
are labelled with the name of an inference rule and the arguments to that
rule. These arguments can be types, terms, or other proof objects. We
implement a HOL-Light derived rule for each CVC Lite inference rule
and translate the proof tree depth first, calling the corresponding HOL-
Light rule as each CVC Lite rule is encountered. (An example follows.)
Thus, a bug in CVC Lite would not compromise the HOL-Light system.
A false proof generated by CVC Lite would simply fail to translate into
HOL-Light. The implementation code can be found at ???XXX???.

2.1 Translating Types and Terms

Given that the CVC Lite logic is close to a subset of the HOL-Light logic,
translating types and terms is straightforward. Each system has a notion
of a boolean and real types. Terms in CVC are first order, a sublanguage
of HOL-Light’s higher order object language. Thus translating terms is
easy as well.

2.2 Translating Proofs

Translating proofs formed the heart of this experiment. A proof in CVC
Lite is a proof term in the sense of the Curry-Howard Isomorphism [15].
There are two advantages to the CVC Lite approach. First, it hides the
proof search process, so that details of the search procedure (e.g., back-
jumping, clause-conflict generation) are irrelevant. Second, the proof itself
corresponds directly to a simple functional program. The translation pro-
cess can be seen as executing this “program” in HOL-Light.

As an illustration, we demonstrate a proof of the proposition ’x=x’ in
CVC Lite.

(iff–mp true (= x x)
(proof–by–contradiction true

(let–p ((assump1 (not true)))
(iff–mp (not true) false assump1 (rewrite–not–true)))

(iff -symm (= x x) true (rewrite–eq–reflx))))

3 The only complication being variable binding.



The inference rules act as follows4

Γ ` rewrite–eq–reflx : (x = x) = true

Γ ` rewrite–not–true : not true = false

Γ ` M : t1 = t2 ∆ ` N : t1
Γ ∪ ∆ ` iff–mp t1 t2 M N : t2

Γ ` M : t1 = t2
Γ ` iff -symm t1 t2 M : t2 = t1

not t ` M : false
Γ ` proof–by–contradiction t M : t

Then rewrite–eq–reflx : (x = x) = true, so

(iff -symm (= x x) true (rewrite–eq–reflx)))) : true = (x = x).

Assuming the middle portion corresponds to a verbose proof of true, then
by considering its inference rule, the outer iff–mp term can be seen to
correspond to a proof of x = x.

In order to translate these proof terms to HOL-Light, we have a HOL-
Light derived rule for each CVC Lite rule encountered in the proof tree.
Thus, translation corresponds to function application. As an example, to
translate the step labelled proof–by–contradiction, we must define5

a HOL-Light derived rule (an OCaml function) which, given a proof of
false from the term ¬t, a proof of t is produced. That is, we implement
the CVC rule proof–by–contradiction in HOL Light, appealing to its
own primitive rules. Thus, we not only do typechecking of the CVC Proof
term, we prove that each CVC rule application is valid in the HOL-Light
context.

let CCONTR =

let P = ‘P:bool‘ in

let pth = TAUT ‘(~P ==> F) ==> P‘ in

fun tm th ->

try let tm’ = mk_neg tm in

MP (INST [tm,P] pth) (DISCH tm’ th)

with Failure _ -> failwith "CCONTR";;

4 As usual, the expression below the bar represents the conclusion, the expressions
above the bar represent antecedents, and the judgment A : τ means, A has type (is
a proof of) τ

5 The rule CCONTR was written by John Harrison and is a part of the HOL-Light
system. The actual rules we defined are longer and less instructive.



If the reader is unfamiliar with the HOL-Light style, the crucial point
is that we can define the rule in terms of previously defined rules of
inference (here MP, INST, TAUT, DISCH). The rule CONTR is then an ML
function which takes a term tm and a theorem th of type tm ==> F. It
then combines the previously defined rules to return the theorem tm.

We have a similar rule for every inference rule in CVC Lite. We then
combine these rules in a recursive procedure that translates the proofs
in a depth first traversal of the proof tree. If there were no errors, the
translation of the root proof node yields the desired HOL-Light theorem.

3 Results

HOL-Light and CVC Lite have two overlapping theories, those of real
arithmetic and boolean satisfiability. These are the realms at which we
aimed our translation mechanism in order to determine its relative effec-
tiveness.

3.1 Satisfiability

Consider the following class of problems. You are given n − 1 sets of n

pigeon-holes, arranged in n rows of n− 1 columns. Given that no column
can contain more than one pigeon, find a contradiction to the assertion
that each row can contain a pigeon. For instance, this translates, for n = 3
as

((¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x5) ∧

(¬x3 ∨ ¬x5) ∧ (¬x2 ∨ ¬x4) ∧

(¬x2 ∨ ¬x6) ∧ (¬x4 ∨ ¬x6) ∧

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6)) → false .

This is a notoriously difficult class of problems for typical boolean
satisfiability methods. The following table6 gives times for CVC Lite run-
ning alone (but still producing proofs), HOL-Light running alone, and
HOL-Light using CVC Lite and performing the translation.

6 All times are in seconds, running on a 1GH Pentium III running FreeBSD 5.2



n CVC Lite HOL-Light CVC PROVE

2 0.10 4.5 1.75
3 0.18 13 10
4 0.90 34 43
5 2.9 * 210
6 19 * 980
7 238 * 4308

The empty entries under “HOL Light” are intractable in that sys-
tem. Even the example with n = 5 ran for over 4 hours before we killed
the process. We thus expand the power of HOL-Light using the external
system CVC Lite.

3.2 Real Arithmetic

The first problems we investigated with the translation process were terms
of real linear arithmetic. The HOL-Light decision procedure REAL ARITH

was, at the time, very slow. Using CVC PROVE on such problems tended
to produce good speed improvement, typically 2 to 3 times as fast as
the unaided REAL ARITH. John Harrison, the author of HOL-Light, later
optimized REAL ARITH. With the new arithmetic procedure, CVC PROVE is
around six times slower. This was a case where optimizing the original
decision procedure was more effective than using an external tool.

4 The Theory of Arrays

The experiments documented above arise from theories that exist in both
theorem provers. A more interesting application of translation is to the-
ories for which decision procedures do not yet exist in one of the provers.
For instance, CVC Lite has a well developed theory of arrays. This the-
ory does not exist in the current HOL-Light version. As an alternative to
implementing a decision procedure for arrays in HOL-Light we extended
the current translation mechanism to handle the CVC Lite array infer-
ence rules. The total HOL-Light code needed to use the CVC Lite theory
is eight lines of definitions and two new theorems. This gives us all the
power of a HOL-Light array theory with minimal effort.

4.1 Theory

The theory is a simple extensional theory of arrays, as found in [6].
Roughly, an array is a polymorphic type with two type variables, one



corresponding to the indexing type, and the other corresponding to the
value type. There are two constants, read and write. There are two ax-
ioms in the theory. One, the axiom of extensionality for arrays, saying
that two arrays are equal if and only if they have the same elements. The
second is a read over write axiom, giving a simple term reduction.

4.2 Results

Consider the following HOL-Light term, where S1 and S2 are arrays
where both type variables are instantiated by the real type:

(S1 = S2) ⇒ (write S1 i (read S2 i) = S1)

Given the axioms, the built-in HOL-Light first order reasoner can
solve this problem in 56 seconds. CVC PROVE takes .015 seconds.

Even slightly more difficult problems such as the following are in-
tractable for HOL-Light. By contrast, CVC PROVE solved it in 7.6 seconds.

((write S1 i v = write S2 j w) ∧ (read S1 i = v) ∧ (read S2 j = w) ⇒

((S1 = S2) ∧ ((i = j) ⇒ (v = w)) ∧ ((i 6= j) ⇒ read S1 j = w))

5 Future Research

5.1 Proof Size Reduction

There is an extensive proof theoretic literature on proof compaction. None
of this is currently applied to the CVC Lite proofs.

5.2 Increased Interaction

Observe that there is really no exchange of information between the two
theorem provers except in examining the proof term. One possibility is to
allow the HOL-Light decision procedures to call CVC Lite automatically
when trying to solve subgoals during proof search.

6 Conclusion

This work demonstrates several benefits that can be derived from com-
bining theorem provers. We presented concrete examples of a qualitative
increase in the power of HOL-Light by translating proofs from CVC Lite.



On the other hand, we also found an example where optimizing a decision
procedure directly in HOL Light was superior to importing proofs from
CVC Lite. Thus, we are forced to consider weather the gain in power
which comes from using other tools is worth the effort.

In the boolean satisfiability case, the combination is an unquestionable
success. A good deal of the effort in improving SAT solvers has been ex-
ploiting data locality and other “nonlogical” hardware-related heuristics.
Imitating that kind of optimization in a system like HOL Light, written
in a language without even the capability for managing memory layout,
is impractical if not impossible.

In the case of real arithmetic, where the actual algorithm is very
similar, optimizing directly in HOL Light was a better solution.

In the case of arrays, a theory which did not exist in HOL Light, the
existence of a decision procedure in CVC Lite was easy and immediately
useful.

As we see it, the goal of combining theorem provers, of which this
paper is just a tiny exercise, is primarily to avoid the duplication of human
effort. This was amply demonstrated by the first and third examples.
Accordingly, we feel that this type of work has a very real value to the
theorem proving community.

7 Acknowledgments

We’d like to thank New York University, the University of Pittsburgh,
Carnegie Mellon University, and the National Science Foundation (CCR-
ITR-0325808) for their support of this work. We’d also like to thank the
referees for their helpful comments.

References

1. http://www.logosphere.org.
2. http://www.intel.com/software/products/opensource/tools1/verification.
3. http://www.ags.uni-sb.de/%7Eomega/.
4. http://www-unix.mcs.anl.gov/AR/otter/.
5. http://hol.sourceforge.net/.
6. Clark W. Barrett Aaron Stump, David L. Dill and Jeremy Levitt. A Decision

Procedure for an Extensional Theory of Arrays. In IEEE Symposium on Logic in
Computer Science, volume 16. IEEE Computer Society, 2001.

7. Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of the Co-
operating Validity Checker. In CAV, 2004. To appear.

8. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity Checking for
Combinations of Theories with Equality. In Mandayam Srivas and Albert Camil-
leri, editors, Formal Methods In Computer-Aided Design (FMCAD), volume 1166



of Lecture Notes in Computer Science, pages 187–201. Springer-Verlag, November
1996. Palo Alto, California.

9. A. D. Gordon and D. Syme. Automating type soundness proofs via decision pro-
cedures and guided reductions. In 9th International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning, volume 2514 of LNCS, pages 418–
434. Springer, 1998.

10. M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation. In Lecture Notes in Computer Science, volume 78. Springer-
Verlag, 1979.

11. Thomas Hales. http://www.math.pitt.edu/thales/kepler98.
12. Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for Defining Log-

ics. In Journal of the Association for Computing Machinery (JACM), volume 40,
pages 143–184, January 1993.

13. John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of Lec-
ture Notes in Computer Science, pages 265–269. Springer-Verlag, 1996. see
http://www.cl.cam.ac.uk/users/jrh/hol-light.

14. John Harrison. Formal verification of floating point trigonometric functions. In
Warren A. Hunt and Steven D. Johnson, editors, Formal Methods in Computer-
Aided Design: Third International Conference FMCAD 2000, volume 1954 of Lec-
ture Notes in Computer Science, pages 217–233. Springer-Verlag, 2000.

15. W. A. Howard. The formulae-as-types notion of construction. pages 479–490.
16. Laaurent Théry John Harrison. A Sceptic’s Approach to Combining HOL and

Maple. Journal of Automated Reasoning, 21:279–294, 1998.
17. Stephen Obua.
18. L. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. In

Cambridge Tracts in Theoretical Computer Science, volume 2. Cambridge Univer-
sity Press, 1987.

19. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating Validity
Checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th International
Conference on Computer Aided Verification (CAV), volume 2404 of Lecture Notes
in Computer Science, pages 500–504. Springer-Verlag, 2002. Copenhagen, Den-
mark.

20. Don Syme. Declarative Theorem Proving for Operation Semantics. PhD thesis, U.
of Cambridge, 1998.


