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Abstract. In this paper we describe Imogen, a theorem prover for intuitionistic
propositional logic using the focused inverse method. We represent fine-grained
control of the search behavior by polarizing the input formula. In manipulating
the polarity of atoms and subformulas, we can often improve the search time by
several orders of magnitude. We tested our method against seven other systems
on the propositional fragment of the ILTP library. We found that our prover out-
performs all other provers on a substantial subset of the library.

1 Introduction

Imogen is a theorem prover for intuitionistic propositional logic (IPL) based on a fo-
cused inverse method with explicit polarities. The inverse method [15, 7] uses forward
saturation, generalizing resolution to non-classical logics. Focusing [1, 14] reduces the
search space in a sequent calculus by restricting the application of inference rules based
on the polarities of the connectives and atomic formulas. One of the novel aspects of
Imogen is that it exploits inherent flexibility in the assignment of polarities to subformu-
las to optimize proof search. Different assignments of polarities can yield dramatically
different performance.

Raths and Otten [18] compare seven systems on the ILTP library [19], a collection
of challenge problems for intuitionistic logic provers. In contrast to Imogen, all these
use backward search in a contraction-free sequent calculus. This difference in basic
approach is reflected in a unique performance profile. Imogen clearly outperforms the
other provers on an interesting subset of the benchmark problems, with a tendency to
do better on non-theorems. Some problems that appear difficult for backward search
are solved almost instantaneously by Imogen, and vice versa. We therefore consider
Imogen an interesting and viable alternative for intuitionistic theorem proving.

In this system description we give an overview of the basic principles underlying
Imogen, its implementation, and analyze its performance compared to other provers for
IPL. The theoretical foundations for Imogen are mostly contained in published papers
cited in this description; we therefore do not explicitly state or prove any metathe-
orems. The source code for Imogen is available at http://www.cs.cmu.edu/
˜seanmcl/Imogen.



2 The Polarized Inverse Method

In this section we sketch the main principles underlying Imogen and their interaction:
focusing, polarization, and the inverse method.

2.1 Focusing

Focusing is a method to restrict the space of possible proofs in a cut-free sequent cal-
culus without affecting provability. It was originally developed for backward search in
classical linear logic [1], but has been applied to other non-classical logics [11, 14] as
well as forward search [5].

Focusing is based on two observations about the properties of connectives. The first
is that certain connectives can always be eagerly decomposed during backward proof
search without losing completeness. For example, the goal of proving A ⊃ B can
always be decomposed to proving B under additional assumption A. Such connectives
are said to have negative polarity. As long as the top-level connective stays negative,
we can continue the decomposition eagerly without considering any other possibilities.
In contrast, for a formula such as A ∨ B, we have to make a choice whether to try to
prove A or B. Such connectives are said to have positive polarity. Surprisingly, as long
as the top-level connective stays positive, we can continue the decomposition eagerly,
making a choice at each step. Moreover, we can arbitrarily assign positive or negative
polarity to atomic formulas and restrict the use of atoms in initial sequents.

Proofs that satisfy all three restrictions are called focused. Imogen restricts its for-
ward search to focused proofs, in a manner explained in the next two sections, drasti-
cally reducing its search space when compared to the usual sequent calculus.

2.2 Polarized Formulas

In linear logic, the polarity of each connective is uniquely determined. This is not true
for intuitionistic logic where conjunction and truth are inherently ambiguous. We there-
fore assign polarities to formulas in a preprocessing phase. It is convenient to represent
the result as a polarized formula [12] where immediately nested formulas always have
the same polarity, unless an explicit polarity-shifting connective ↑ or ↓ is encountered.
These coercions are called shifts.

Implication has slightly special status, in that its left-hand side has opposite polarity
from its right-hand side. This is because in the sequent calculus for intuitionistic logic,
the focusing behavior of connectives on the left-hand side is the opposite of their behav-
ior on the right-hand side. (Here the meta-variable P ranges over atomic propositions.)

Positive formulas A+ ::= P+ | A+ ∨A+ | ⊥ | A+ ∧A+ | > | ↓A−

Negative formulas A− ::= P− | A+ ⊃ A− | A− Z A− |
−
> | ↑A+

The translation A− of an (unpolarized) formula F in IPL is nondeterministic, subject
only to the constraint that the translation |A−| = F .
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|A+ ∨B+| = |A+| ∨ |B+| |⊥| = ⊥ |P+| = P
|A+ ∧B+| = |A+| ∧ |B+| |>| = > |↓A−| = |A−|
|A− Z B−| = |A−| ∧ |B−| |

−
> | = > |P−| = P

|A+ ⊃ B−| = |A+| ⊃ |B−| |↑A+| = |A+|

For example, the formula ((A∨C)∧(B ⊃ C)) ⊃ (A ⊃ B) ⊃ C can be interpreted
as any of the following polarized formulas (among others):

((↓A− ∨ ↓C−) ∧ ↓(↓B− ⊃ C−)) ⊃ (↓(↓A− ⊃ B−) ⊃ C−)

↓↑((↓A− ∨ ↓C−) ∧ ↓(↓B− ⊃ C−)) ⊃ (↓↑↓(↓A− ⊃ B−) ⊃ C−)

↓(↑(A+ ∨ C+) Z (B+ ⊃ ↑C+)) ⊃ (↓(A+ ⊃ ↑B+) ⊃ ↑C+)

Shift operators have highest binding precedence in our presentation of the examples.
As we will see, the choice of translation determines the search behavior on the resulting
polarized formula. Different choices can lead to search spaces with radically different
structure [6].

2.3 From Focused Proofs to Big-Step Inferences

A sequent of intuitionistic logic has the form Γ =⇒ A, where Γ is a set or multiset of
formulas. For purposes of Imogen it is convenient to always maintain Γ as a set, without
duplicates. Since we can always eagerly decompose negative connectives on the right
of a sequent and positive connectives on the left, the only sequents in our polarized
calculus we need to consider have negative formulas on the left or positive formulas on
the right, in addition to atoms which can appear with either polarity on either side. The
right-hand side could also be empty if we are deriving a contradiction. We call such
sequents stable.

Stable Hypotheses Γ ::= · | Γ,A− | Γ, P+

Stable Conclusions γ ::= A+ | P− | ·
Stable Sequents Γ =⇒ γ

We exploit focusing on polarized formulas to derive big-step rules that go from sta-
ble sequents as premises to stable sequents as conclusions. Completeness of focusing
tells us that these derived rules, by themselves, are sufficient to prove all valid stable se-
quents. Rather than formally specify this rule generation (see, for example, Andreoli [2]
for the linear case), we only illustrate the process, continuing with the example above.

((↓A− ∨ ↓C−) ∧ ↓(↓B− ⊃ C−)) ⊃ (↓(↓A− ⊃ B−) ⊃ C−)

The input formula is always translated to a negative formula, which we break down to
a set of stable sequents by applying invertible rules. Here we obtain the two sequents

A, ↓B ⊃ C, ↓A ⊃ B =⇒ C

C, ↓B ⊃ C, ↓A ⊃ B =⇒ C
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We search for proofs of these two stable sequents independently. For each stable se-
quent, we focus on each constituent formula in turn, and decompose it until we reach
all stable sequents as premises. Each possibility yields a new big-step inference rule.
We continue to analyze its premises recursively in the same manner. As an example, we
show the process for the first goal above.

Focusing on A yields the initial sequent A =⇒ A. Focusing on ↓B ⊃ C and
↓A ⊃ B yield the big-step rules

Γ =⇒ B
Γ, ↓B ⊃ C =⇒ C

Γ =⇒ A
Γ, ↓A ⊃ B =⇒ B

2.4 The Inverse Method with Big-Step Rules

The usual (small-step) inverse method applies sequent calculus rules in the forward
direction so that each derived formula is a subformula of the original goal. The subfor-
mula property is already built into the generation of the rules, so all we need to do now
is to apply the big-step rules to saturation in the forward direction. To start the process,
each derived rule with no premises is considered as an initial sequent.

To prove the first stable sequent in our example, we begin with the initial sequent
A =⇒ A. We only have two inference rules, of which only the second applies. The ap-
plication of this rule derives the new fact A, ↓A ⊃ B =⇒ B. Once again, we have
only one choice: applying the first rule to this new sequent. The application yields
A, ↓A ⊃ B, ↓B ⊃ C =⇒ C which is our goal.

In general, forward inference may only generate a strengthened form of the goal
sequent, so we need check if any derived sequents subsume the goal. Γ =⇒ γ subsumes
Γ ′ =⇒ γ′ if Γ ⊆ Γ ′ and γ ⊆ γ′. The inference process saturates if any new sequent
we can derive is already subsumed by a previously derived sequent. If none of these
subsume the goal sequent, the goal is not provable and we explicitly fail. In this case,
the saturated database may be considered a kind of countermodel for the goal sequent.
If the goal sequent is found, Imogen can reconstruct a natural deduction proof term as
a witness to the formula’s validity.

3 Optimizations and Heuristics

A problem with focusing becomes apparent when considering formulas such as

A = (A1 ∨B1) ∧ (A2 ∨B2) ∧ · · · ∧ (An ∨Bn)

Focusing on A on the right will produce 2n inference rules. Inverting F on the left will
produce a single rule with 2n premises. To avoid exponential behavior such as this, we
can change the polarities of the subformulas by adding double shifts, ↓↑ and ↑↓:

A′ = ↓↑(A1 ∨B1) ∧ ↓↑(A2 ∨B2) ∧ · · · ∧ ↓↑(An ∨Bn).

The double shifts break the focusing and inversion phases respectively, leading to a
linear number of rules and premises at the expense of an increased number of inverse
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method deductions. In the extreme, if we insert double shifts before every subformula,
we can emulate the inverse method for the ordinary sequent calculus. Imogen currently
uses heuristics to insert double shifts for avoiding an exponential explosion.

Imogen first translates to polarized form by a simple method that inserts the fewest
shifts, making the choice of conjunction accordingly. Using additional heuristics, Imo-
gen may modify this decision, adding shifts and swapping conjunction and atom po-
larities to improve the search behavior. Sometimes this leads to a very different search
space for problems that are syntactically very similar1. Roughly, we count the number
of rules and premises that will result from focusing. If such numbers are very large with
respect to the input formula, we insert double shifts at a subformula of the goal that is
causing a part of the explosion and check the number of rules and premises on the new
formula. We continue in this way until a “reasonable” number of premises and rules is
reached.

We maintain the hypotheses as sets. Thus, contraction is handled automatically by
the application of multi-premise rules.

Formulas which appear in a stable goal sequent will appear in every sequent which
backward search could construct and are therefore redundant. We omit such global
assumptions from all sequents. Another helpful optimization is backward subsump-
tion. When a new sequent is derived, we remove all sequents that it subsumes from the
database. These effects are quantified in section 5.

4 Inference Engine

Imogen’s saturation algorithm is based on the Otter loop [16]. It maintains Otter’s two
distinct databases for active sequents2, those sequents that have had all inference rules
applied to them, and kept sequents that have not yet been considered for inferences.
New rules are generated when a multiple premise rule is matched against an active
sequent. This method of matching multi-premise rules incrementally is called partially
applied rule generation.

The algorithm proceeds as follows. It first polarizes the input formula and runs an
initial stabilization pass to determine the stable sequents to prove. The initial sequents
and derived rules are then generated using focusing. As an optimization, subformulas
are given unique labels to allow fast formula comparison. The final step before search
is to initialize the kept sequent database with the initial sequents.

At this stage, Imogen begins the forward search. It selects a kept sequent based on
some fair strategy. The sequent is matched against the first premise of all current rules.
The matching process will produce new sequents that are put into the kept database, as
well as new partially applied rules. The new rules are recursively matched against the
active database, and the resulting sequents are put into the kept database. This process
repeats until either the kept database becomes empty, in which case the search space is
saturated and the formula is invalid, or until the goal sequent is subsumed by a derived
sequent.

1 This effect can be seen in the erratic results of problem class SYJ206 in section 5.
2 sometimes called the “set of support”
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5 Evaluation

We evaluated our prover on the propositional fragment of the ILTP [19, version 1.1.2]
library of problems for intuitionistic theorem provers. The 274 problems are divided
into 12 families of difficult problems such as the pigeonhole principle, labeled SYJ201
to SYJ212. For each family, there are 20 instances of increasing size. There are also
34 miscellaneous problems. The provers that are currently evaluated are ft-C [20, ver-
sion 1.23], ft-Prolog [20, version 1.23], LJT [8], PITP [3, version 3.0], PITPINV [3,
version 3.0], and STRIP [13, version 1.1]. These provers represent a number of differ-
ent methods of theorem proving in IPL, yet forward reasoning is conspicuously absent.
Imogen solved 255 of the problems. PITPINV was the only prover to solve more. Some
illustrative examples of difficult problems are shown in the following table:

Prover ft-Prolog ft-C LJT PITP PITPINV IPTP STRIP Imogen

Solved (out of 274) 188 199 175 238 262 209 205 261

SYN007+1.014 -0.01 -0.01 stack large large large alloc -0.1

SYJ201+1.018 0.28 0.04 0.4 0.01 0.01 2.31 0.23 25.5
SYJ201+1.019 0.36 0.04 0.47 0.01 0.01 2.82 0.32 28.0
SYJ201+1.020 0.37 0.05 0.55 0.01 0.01 3.47 0.34 28.35

SYJ202+1.007 516.55 76.3 memory 0.34 0.31 13.38 268.59 64.6
SYJ202+1.008 time time memory 3.85 3.47 97.33 time time
SYJ202+1.009 time time memory 50.25 42.68 time time time
SYJ202+1.010 time time memory time time time time time

SYJ205+1.018 time time 0.01 0.01 7.49 0.09 time 0.01
SYJ205+1.019 time time 0.01 0.01 15.89 0.09 time 0.01
SYJ205+1.020 time time 0.01 0.01 33.45 0.1 time 0.01

SYJ206+1.018 time time memory 1.01 0.96 9.01 8.18 56.2
SYJ206+1.019 time time memory 1.95 1.93 18.22 14.58 394.14
SYJ206+1.020 time time memory 3.92 3.89 36.35 33.24 42.7

SYJ207+1.018 time time time time -68.71 time time -42.6
SYJ207+1.019 time time time time -145.85 time time -63.6
SYJ207+1.020 time time time time -305.21 time time -97.25

SYJ208+1.018 time time memory -0.99 -0.95 time time -184.14
SYJ208+1.019 time time memory -1.36 -1.35 memory mem -314.31
SYJ208+1.020 time time memory -1.76 -1.80 memory mem -506.02

SYJ209+1.018 time time time time -13.44 time time -0.01
SYJ209+1.019 time time time time -28.68 time time -0.01
SYJ209+1.020 time time time time -60.54 time time -0.02

SYJ211+1.018 time time time -43.65 -31.51 time time -0.02
SYJ211+1.019 time time time -91.75 -66.58 time time -0.02
SYJ211+1.020 time time time -191.57 -139.67 time time -0.02

SYJ212+1.018 -0.01 -0.01 memory -1.31 -1.37 time -8.5 -0.02
SYJ212+1.019 -0.01 -0.01 memory -2.7 -2.75 time -17.41 -0.03
SYJ212+1.020 -0.01 -0.01 memory -5.51 -5.51 time -38.94 -0.04

The table uses the notation of [18]. All times are in seconds. The entry “memory”
indicates that the prover process ran out of memory. A “time” entry indicates that the
prover was unable to solve the problem within the ten minute time limit. A negative
number indicates the time to ascertain that a formula is not valid. All statistics except
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for those of Imogen were executed on a 3.4 GHz Xeon processor running Linux [18].
The Imogen statistics are a 2.4 GHz Intel Core 2 Duo on Mac OS X. Thus the Imogen
statistics are conservative.

6 Conclusion

The most closely related system to Imogen is Linprover [4], which is an inverse method
prover for intuitionistic linear logic exploiting focusing, but not polarization. We do not
explicitly compare our results to Linprover, which incurs additional overhead due to
the necessary maintenance of linearity constraints. We are also aware of two provers
for first-order intuitionistic logic based on the inverse method, Gandalf [21] and Sand-
storm [9], both of which partially exploit focusing. We do not compare Imogen to these
either, since they incur substantial overhead due to unification, contraction, and more
complex subsumption.

Imogen could be improved in a number of ways. Selecting sequents from the kept
database for rule application could be improved by a more intelligent ordering of for-
mulas. Better heuristics for assigning polarities to subformulas, especially atoms, seem
to offer the biggest source of performance gains. Experimenting with double shifts and
atom polarities by hand greatly increased performance, but as yet we have no sophisti-
cated methods for determining more optimal assignments of polarities.

We implemented Imogen with the eventual goal to generalize the system to first-
order intuitionistic logic and logical frameworks and were somewhat surprised that
even a relatively straightforward implementation in a high-level language is not only
competitive with previous provers based on backward search, but clearly better on a
significant portion of accepted benchmark problems. We plan to begin experiments us-
ing the polarized inverse method for LF [10] and M2, the metalogic of Twelf [17].

One of Imogen’s strengths is its ability to do redundancy elimination. The databases
can grow large, making deriving further inferences slower. Yet when a strong sequent
is derived, it is not uncommon for half or more of the database to be subsumed and
eliminated with backward subsumption, thus allowing Imogen to continue making de-
ductions at a much higher rate. We believe that this will be important in solving difficult
problems in more complex logics.

Our experience with Imogen, in addition to the evidence provided by the provers
cited above, adds strength to our thesis that the polarized inverse method works well on
non-classical logics of different kinds.
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13. D. Larchey-Wendling, D. Méry, and D. Galmiche. STRIP: Structural sharing for efficient
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