

Computational Design

Stelian Coros

Schedule for presentations

February	3	5	10	12	17	19	24	26	
March	3	5	10	12	17	19	24	26	30
April	2	7	9	14	16	21	23	28	30

Send me:

ASAP: 3 choices for dates + approximate topic (scheduling)

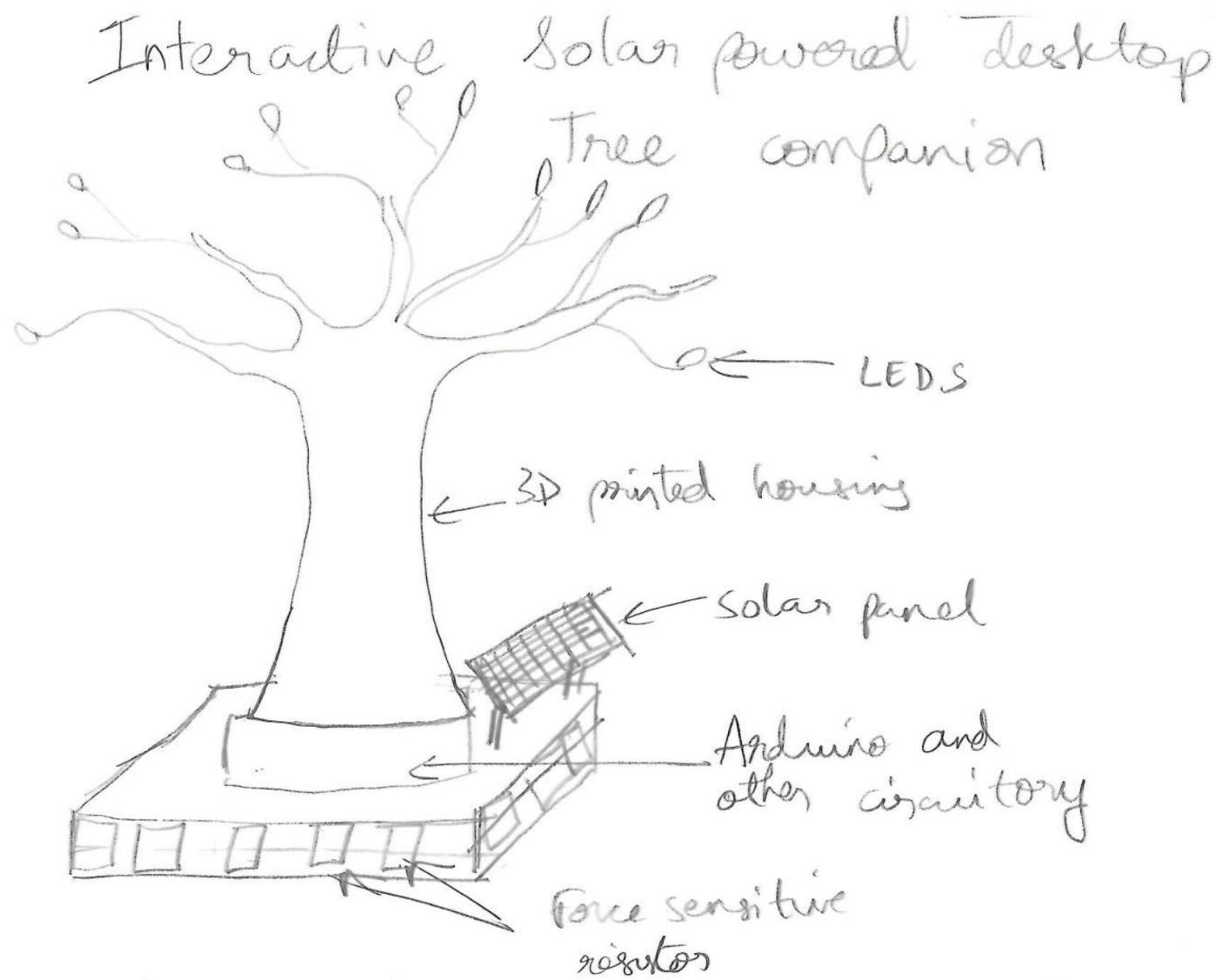
1-2 weeks before your presentation: list of papers you plan to talk about

Day before each presentation: 3 questions for one of the papers that will be discussed

Next class

- Visit the Digital Fabrication Lab

Mini-assignment



Computational Design

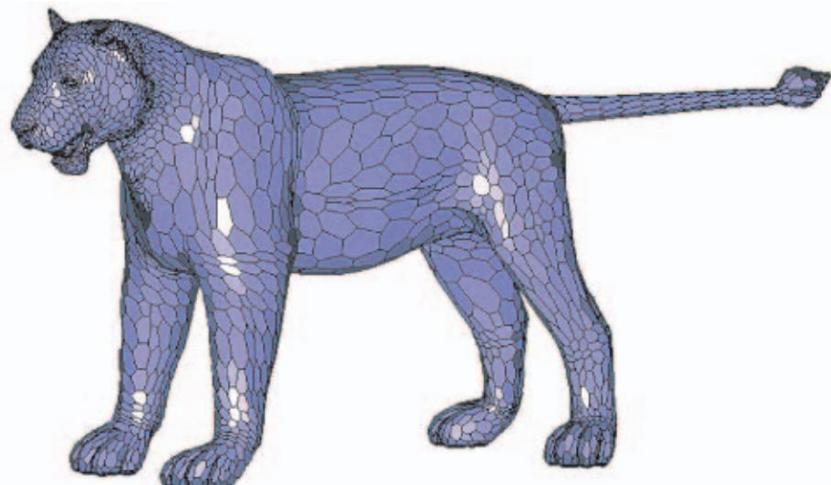
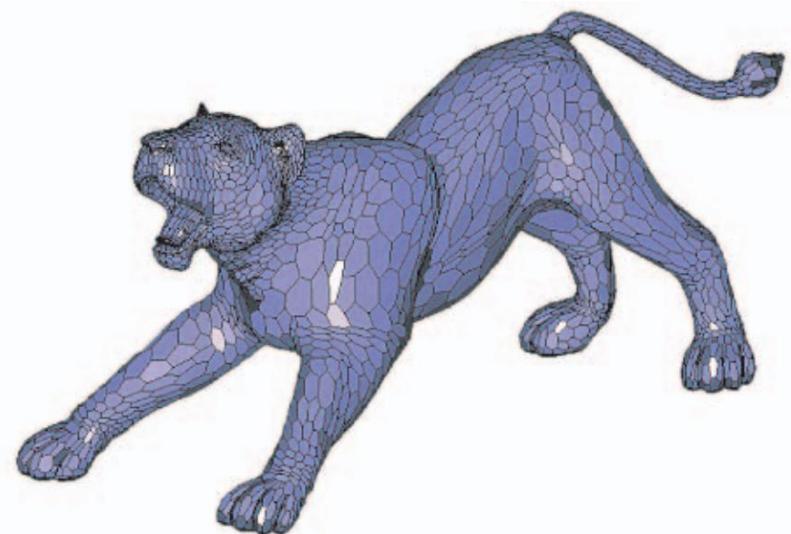
- Need a parameterized model
 - Mathematical formulation that predicts behavior of a system
 - Examples?
- CAD systems
 - Expose design parameters
 - Use mathematical model to preview outcome
 - What do you want from a CAD system?

Computational Design

- **Forward design:** direct manipulation of design parameters
 - Level of abstraction
 - Exploration of design spaces
- **Inverse design:** automatically infer design parameters from functional specifications
 - Optimization-based

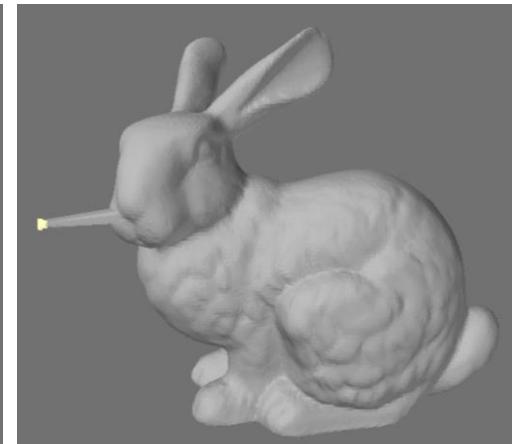
Forward Design

- Editing 3D Models as an example



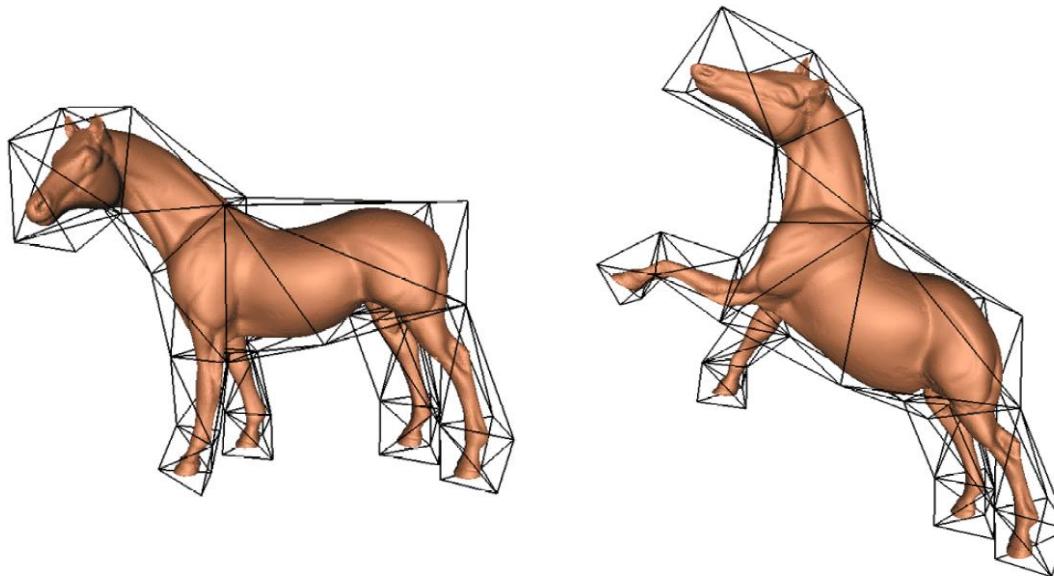
Editing 3D Models

- Options:
 - Directly edit mesh vertices
 - Finding the right level of abstraction is key!



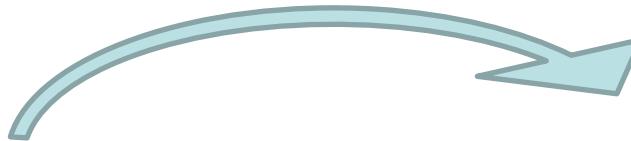
Editing 3D Models

- Options:
 - Directly edit mesh vertices
 - Finding the right level of abstraction is key!
 - Cage-based editing



Cage-based mesh editing

- Embed 3D model in a coarse mesh (cage)
- Edit cage vertices, deform model with it automatically



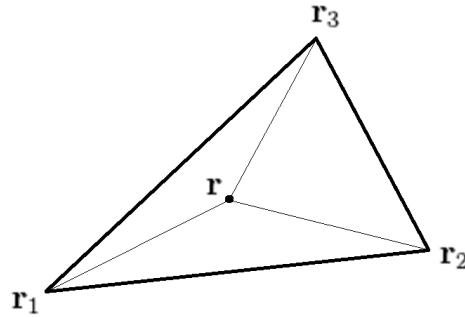
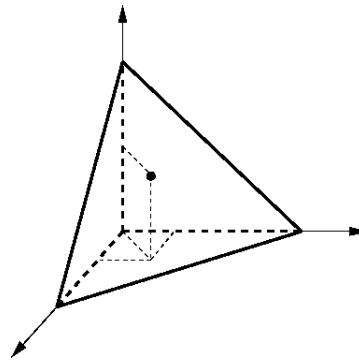
$$v = \sum_i w_i v_i$$

Cage-based mesh editing

- Computing Appropriate Weights
 - Harmonic coordinates, mean value coordinates, bounded biharmonic weights, etc.
 - Want:
 - Smoothness
 - Monotonicity
 - Non-negativity
 - Partition of unity
 - Locality and sparsity
- Simple approach: Barycentric coordinates (volumetric cages)

Barycentric coordinates

- Ratio of areas (volumes in 3D)



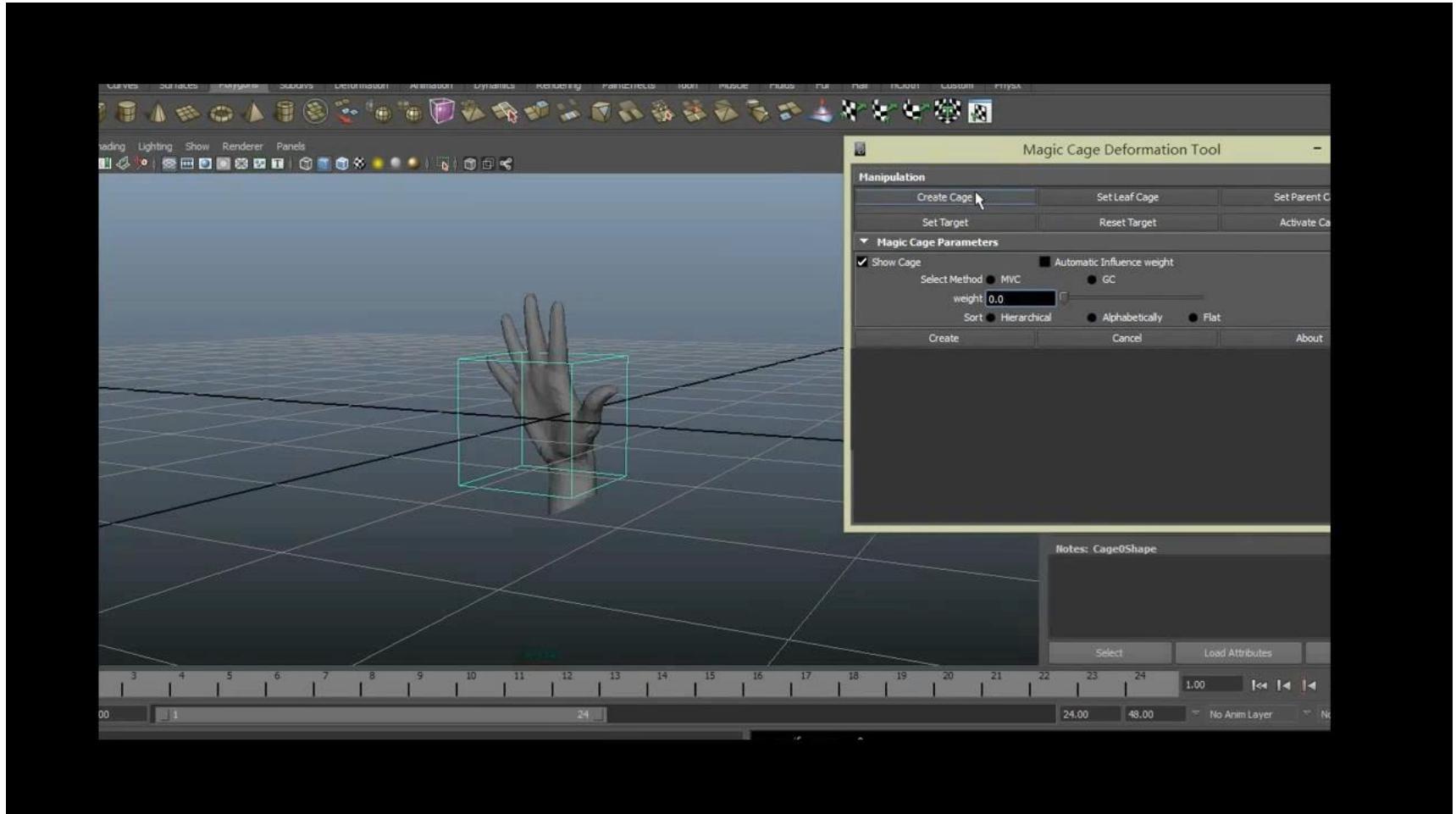
$$\mathbf{r} = \lambda_1 \mathbf{r}_1 + \lambda_2 \mathbf{r}_2 + \lambda_3 \mathbf{r}_3,$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \mathbf{T}^{-1}(\mathbf{r} - \mathbf{r}_3)$$

Conceptually the same
in higher dimensions

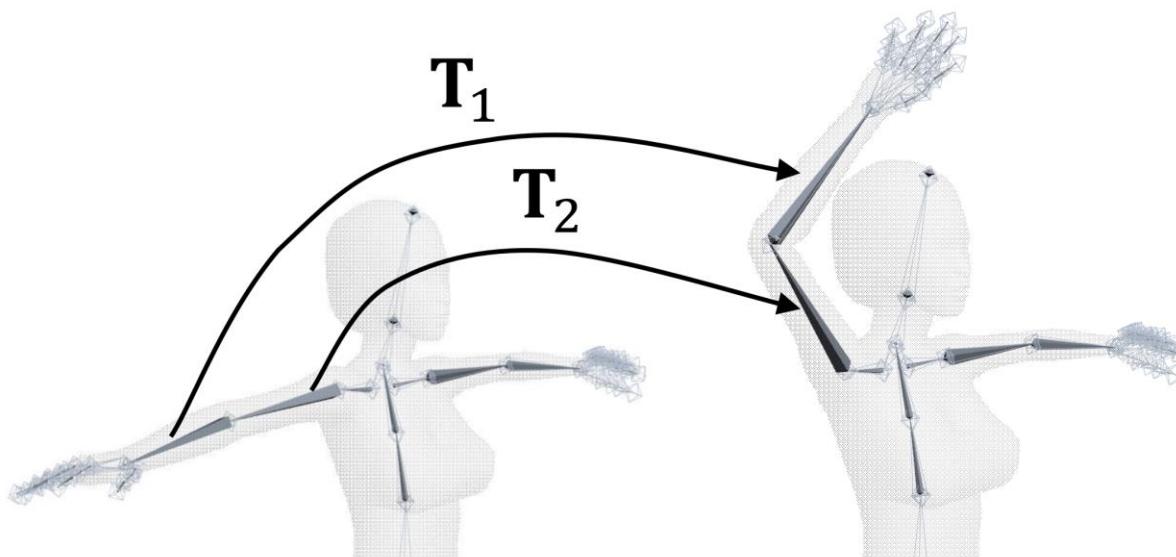
Cage-based mesh editing



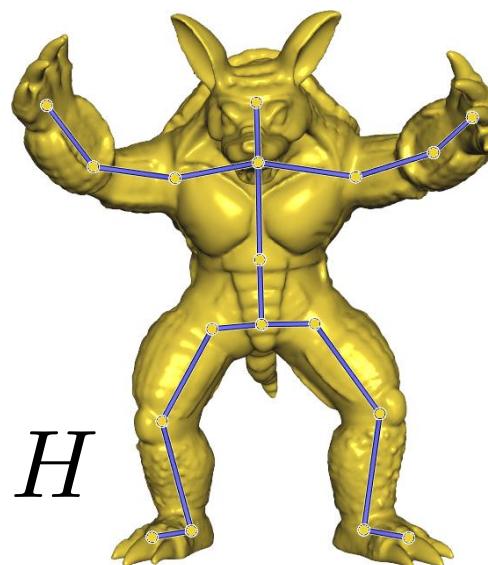
can't precisely control surface properties

Editing 3D Models

- Options:
 - Directly edit mesh vertices
 - Finding the right level of abstraction is key!
 - Cage-based editing
 - Skeletal Rigs



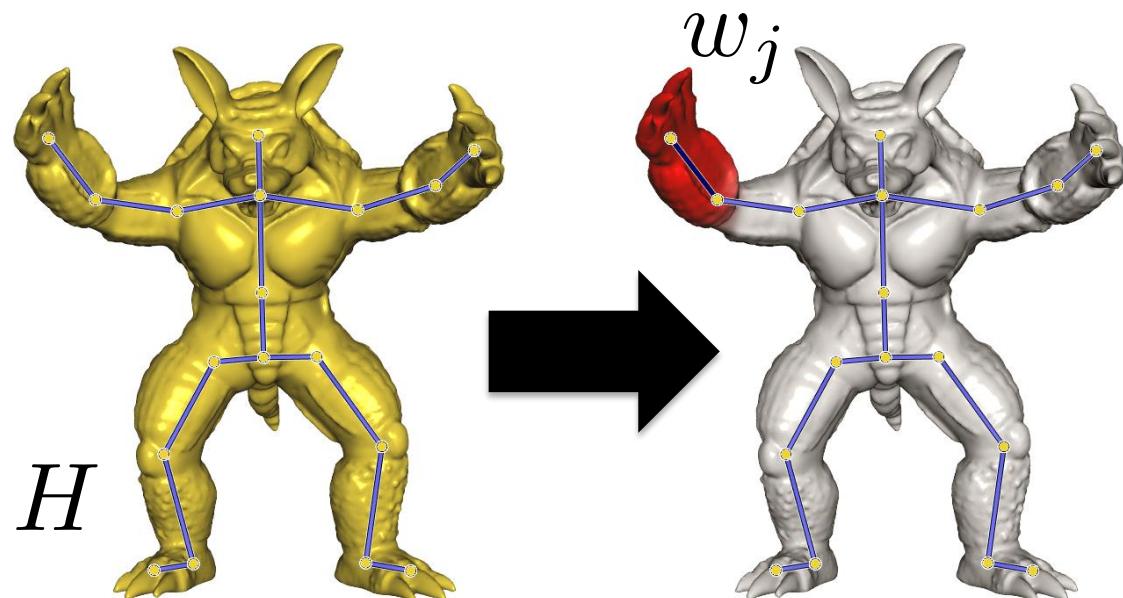
Skeletal Rigs



H

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

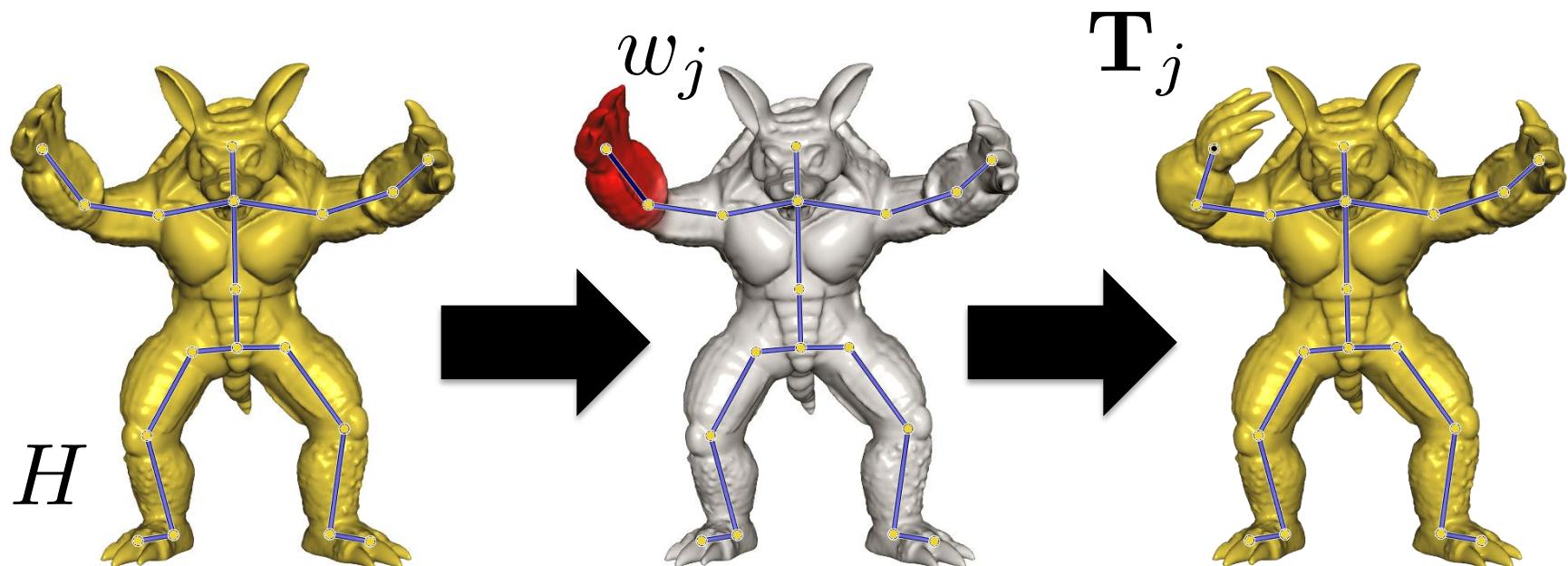
Skeletal Rigs



H

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Skeletal Rigs



H

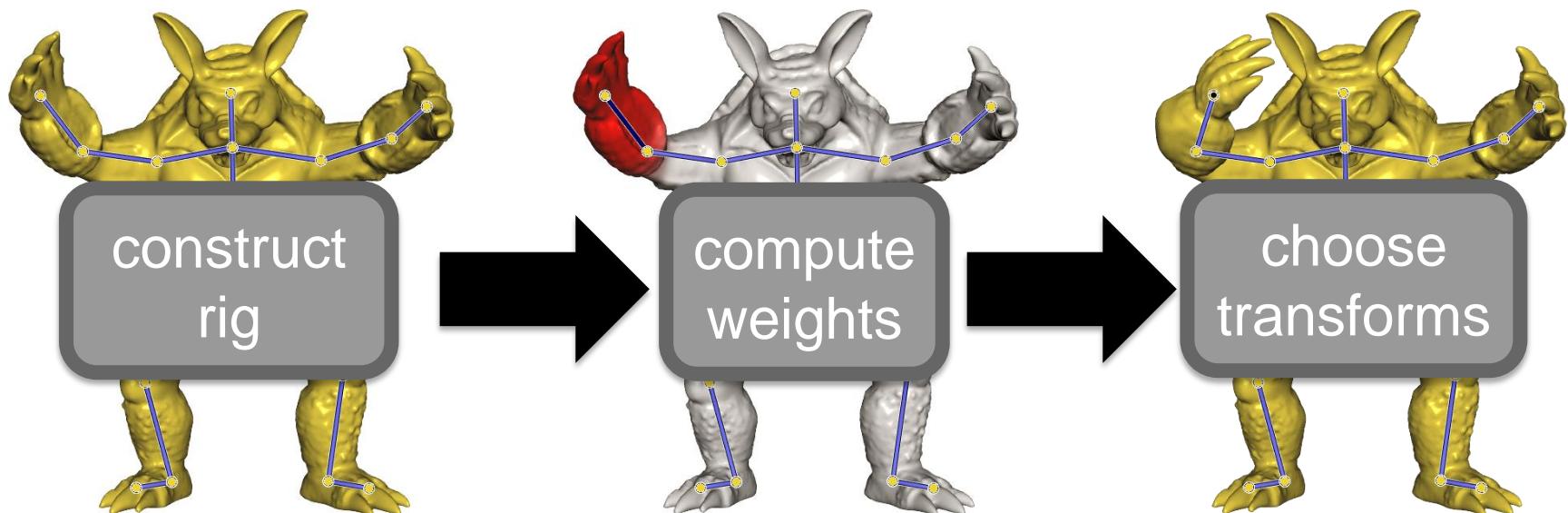
w_j

\mathbf{T}_j

$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Skeletal Rigs

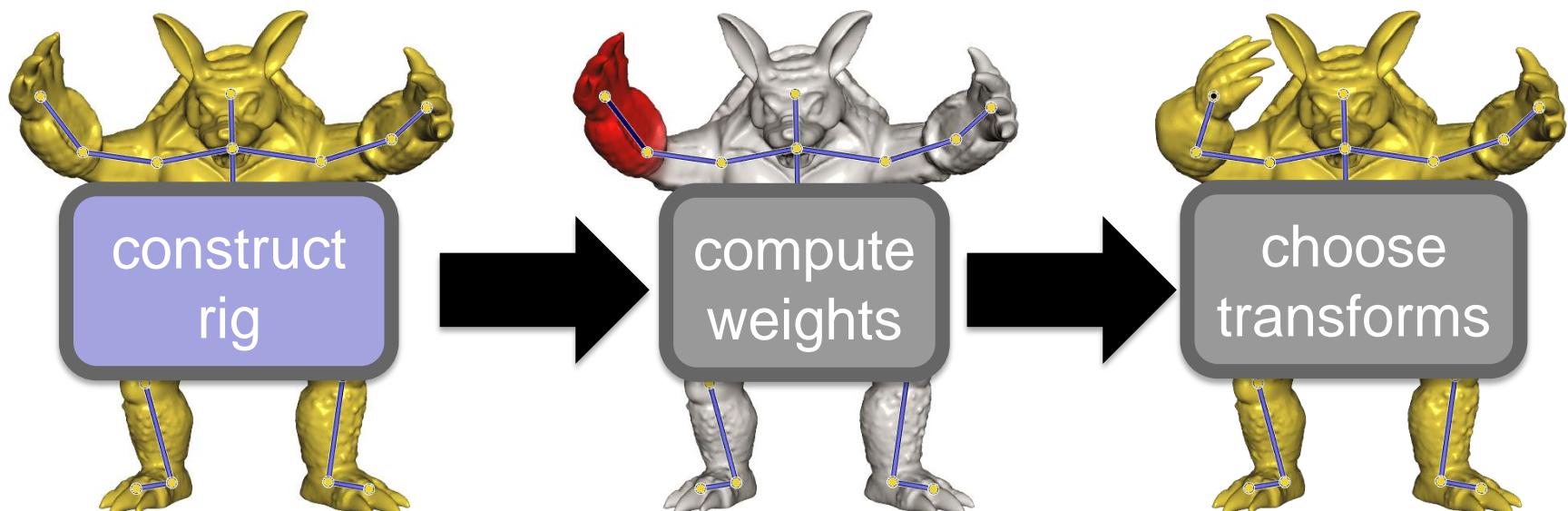
Recent research aims to automate each step



$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Skeletal Rigs

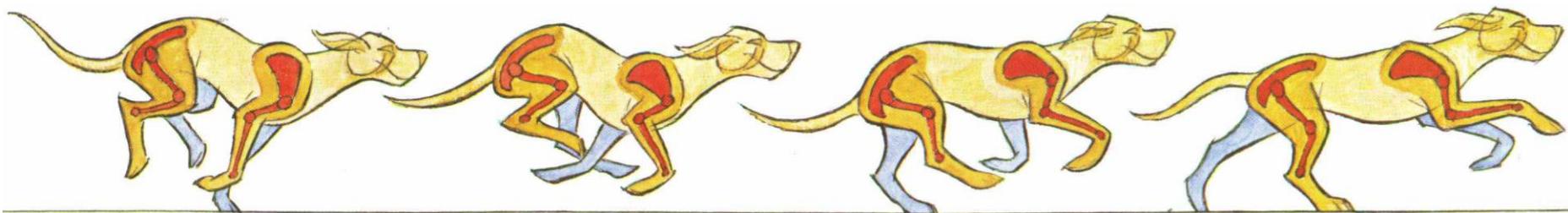
Recent research aims to automate each step



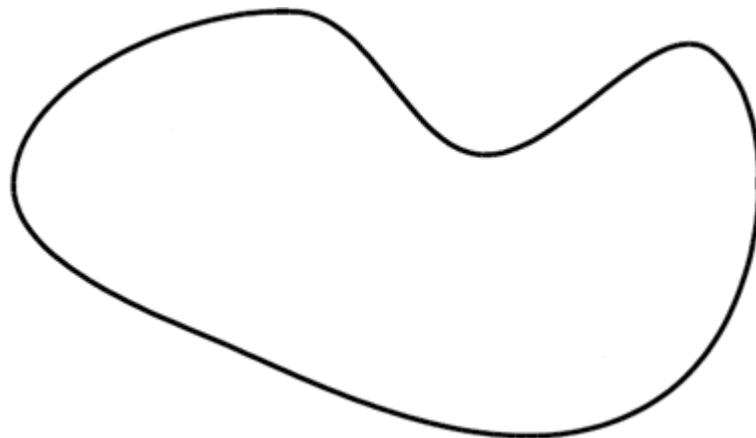
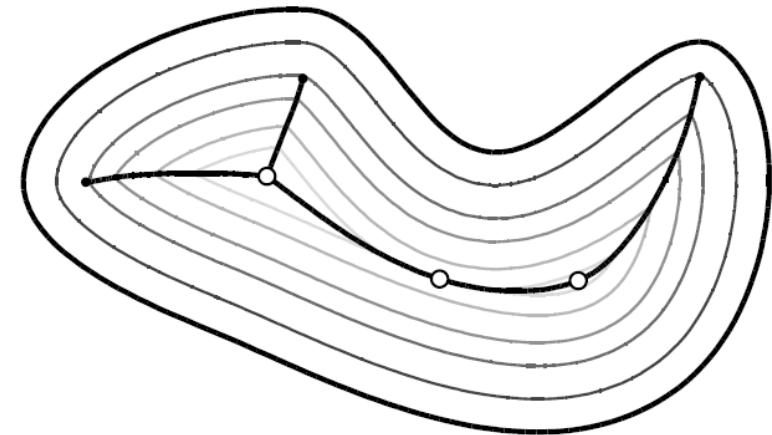
$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

From shape to skeleton

Skeleton implies shape...

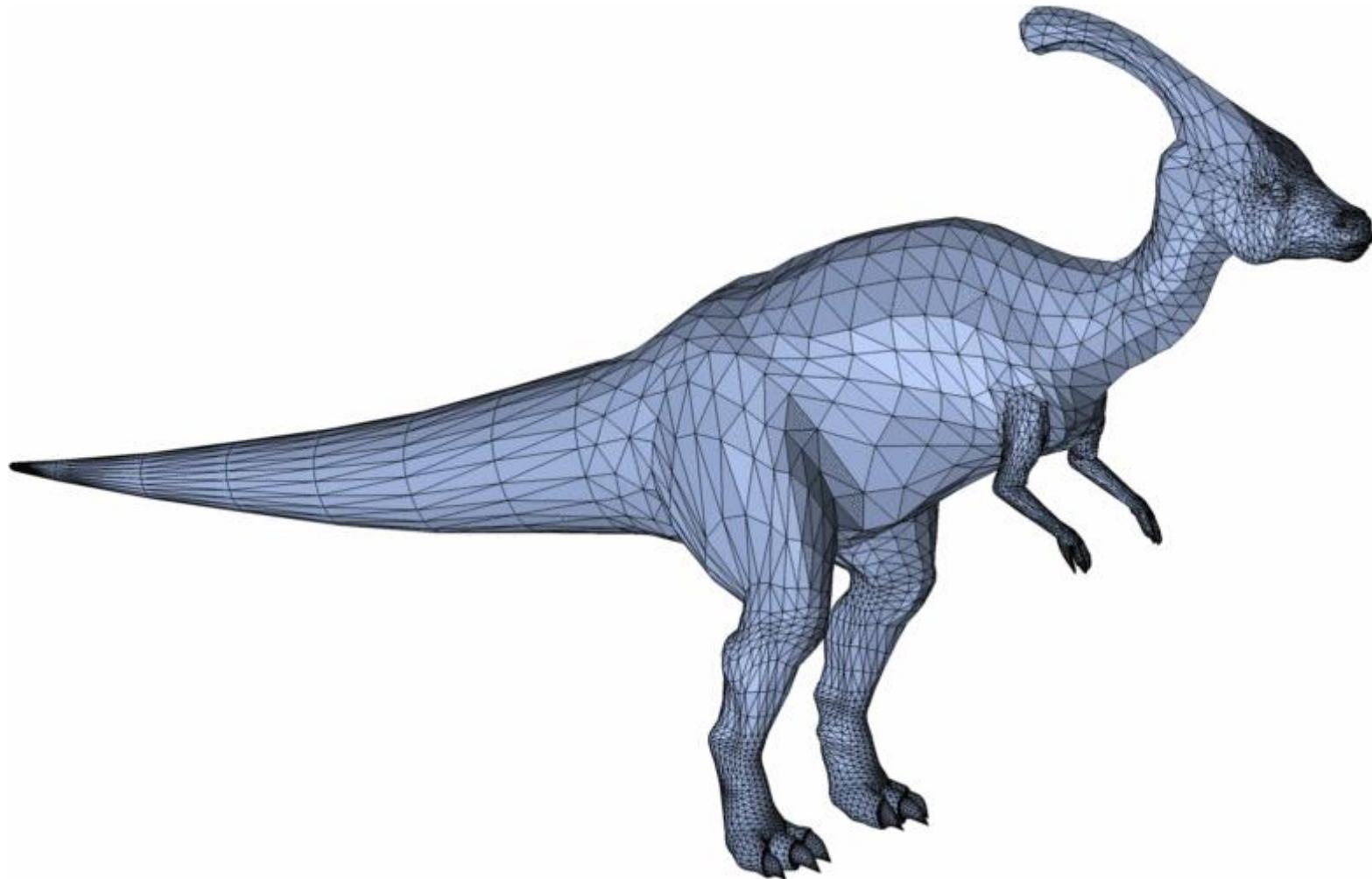


...and shape implies skeleton

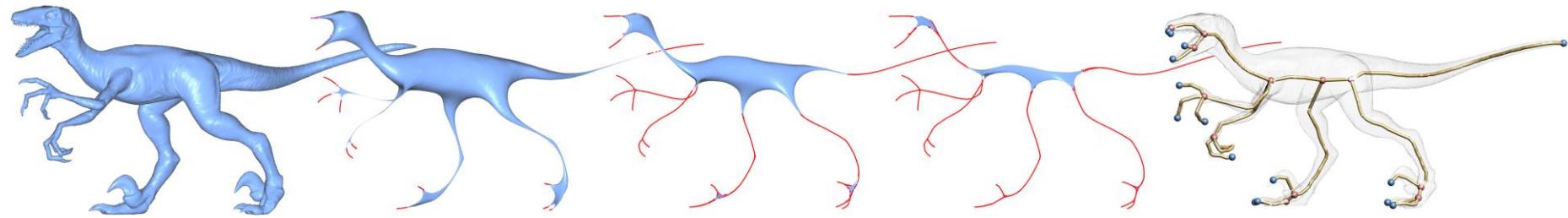


Medial Axis (topological skeleton)

Surface flow degenerates to skeleton
approximating medial axis



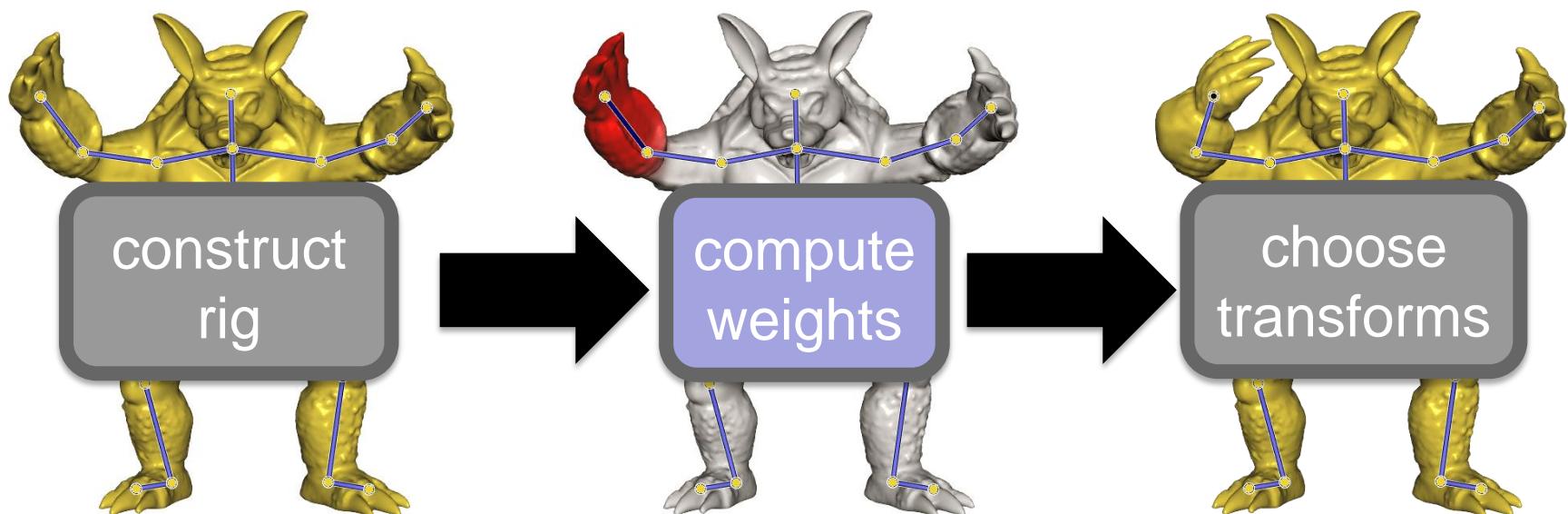
Medial axis



[Au et al. 2008]

Skeletal Rigs

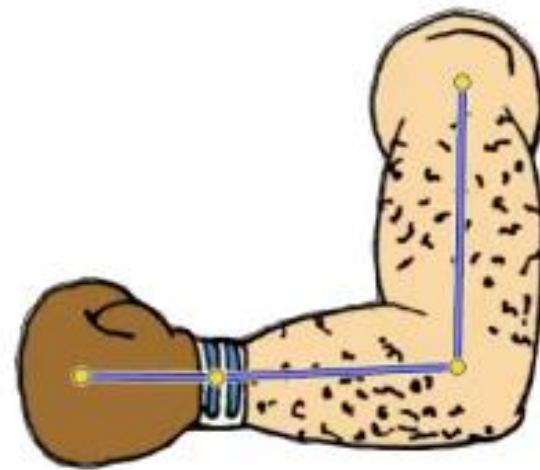
Recent research aims to automate each step



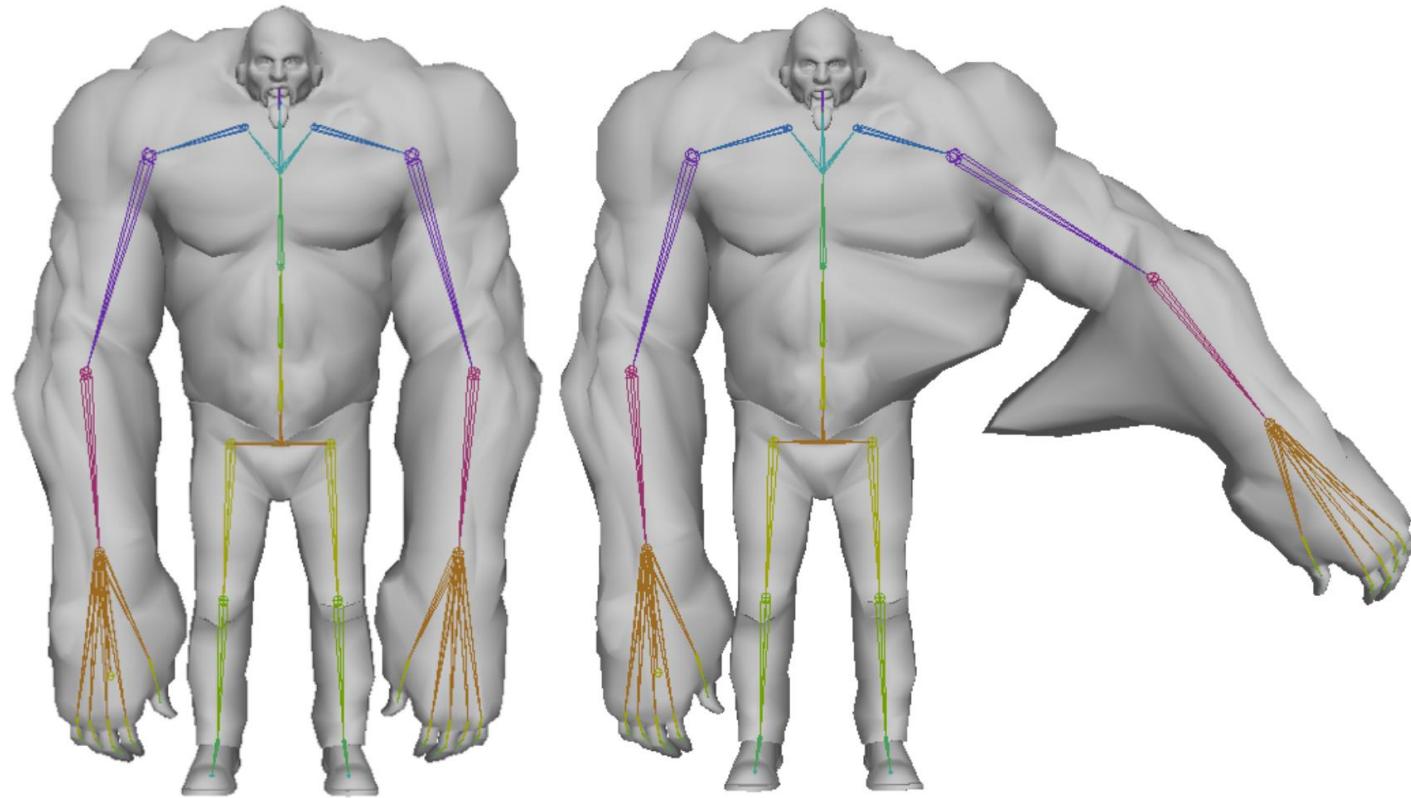
$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

Weight computation

The closer to a bone a vertex is, the larger the weight should be...

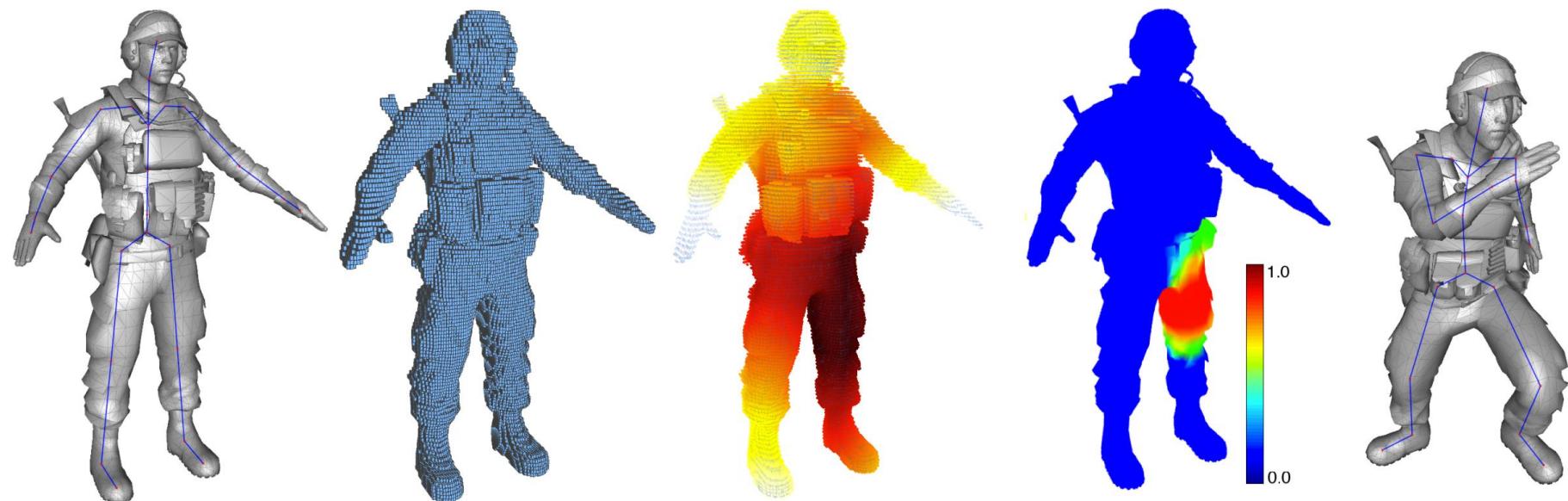


Weight computation

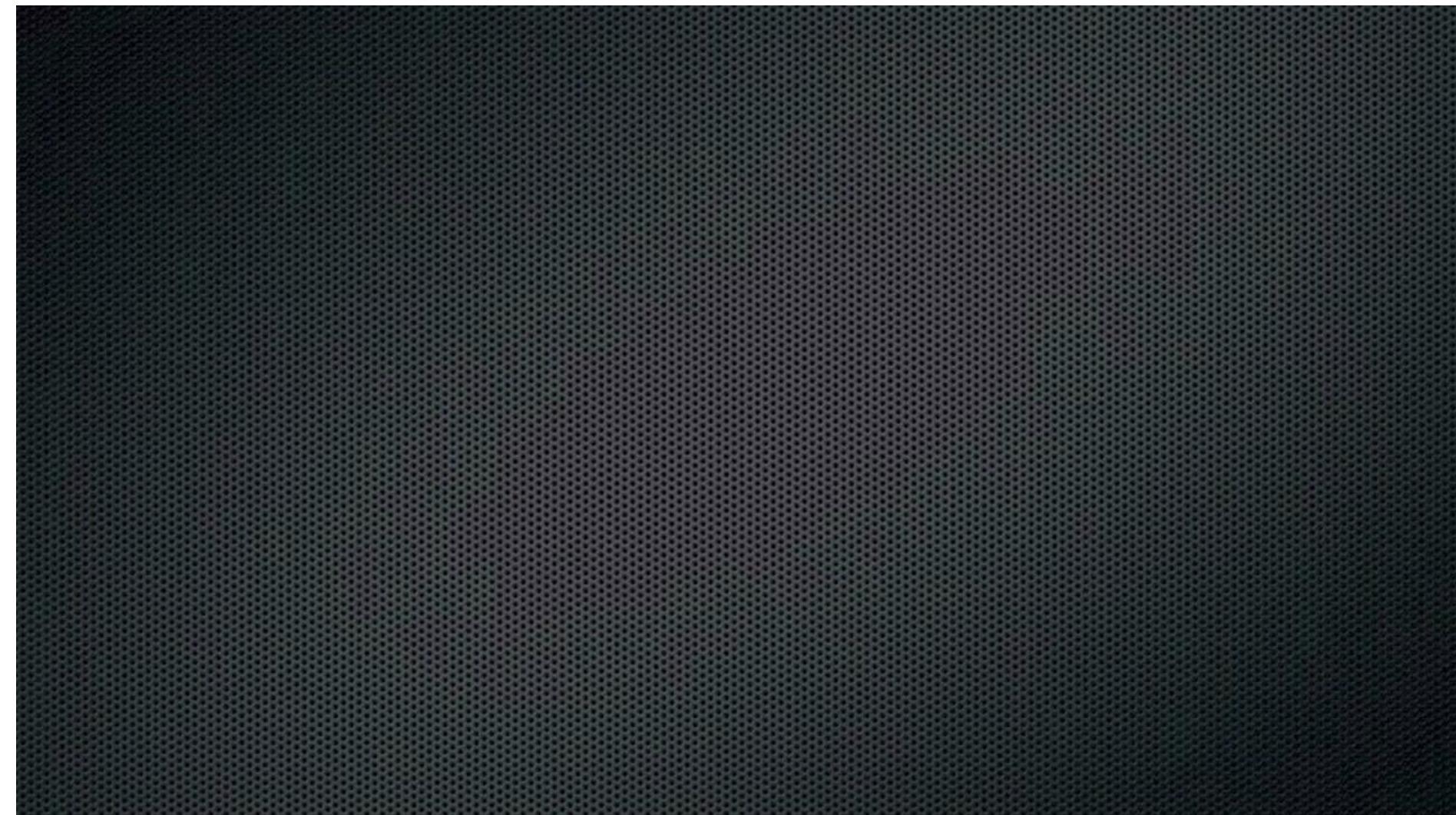


Weight computation

Want a measure of distance that is shape-aware!

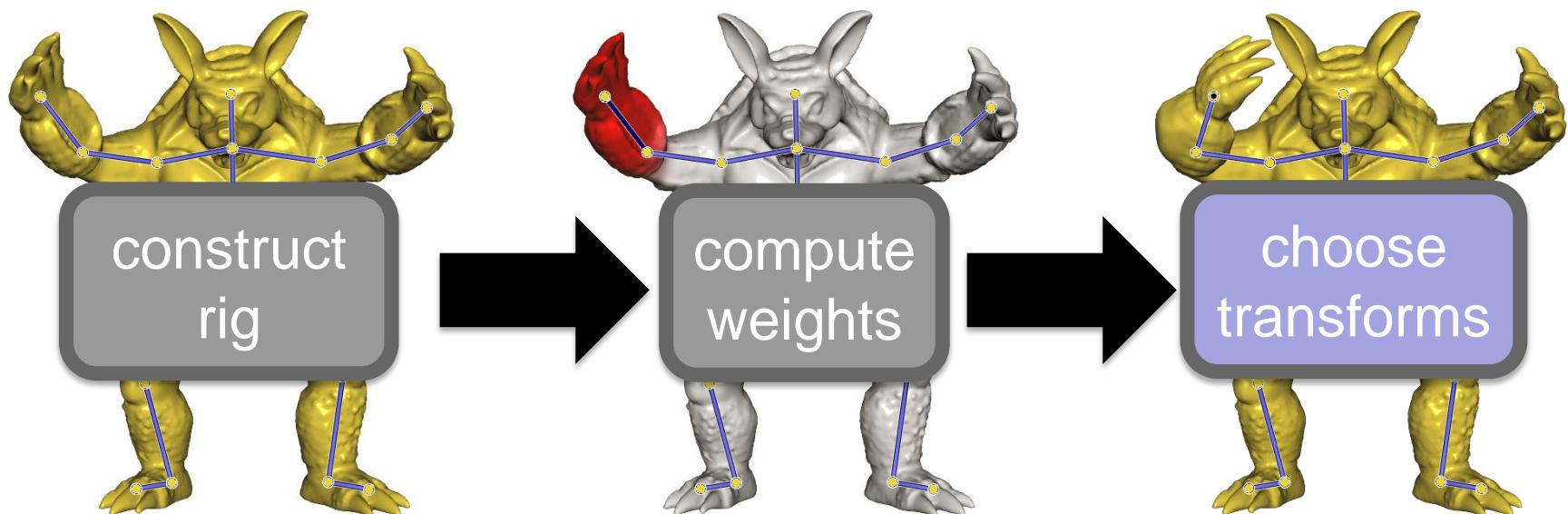


Weight computation



Skeletal Rigs

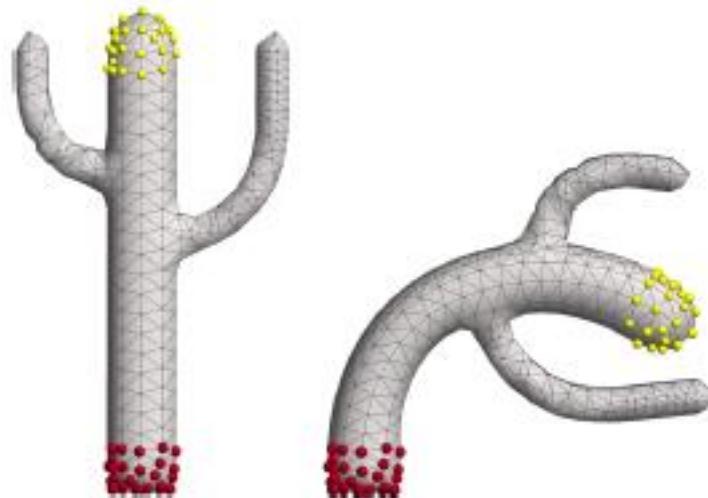
Recent research aims to automate each step



$$\mathbf{v}' = \sum_{j \in H} w_j(\mathbf{v}) \mathbf{T}_j \begin{pmatrix} \mathbf{v} \\ 1 \end{pmatrix}$$

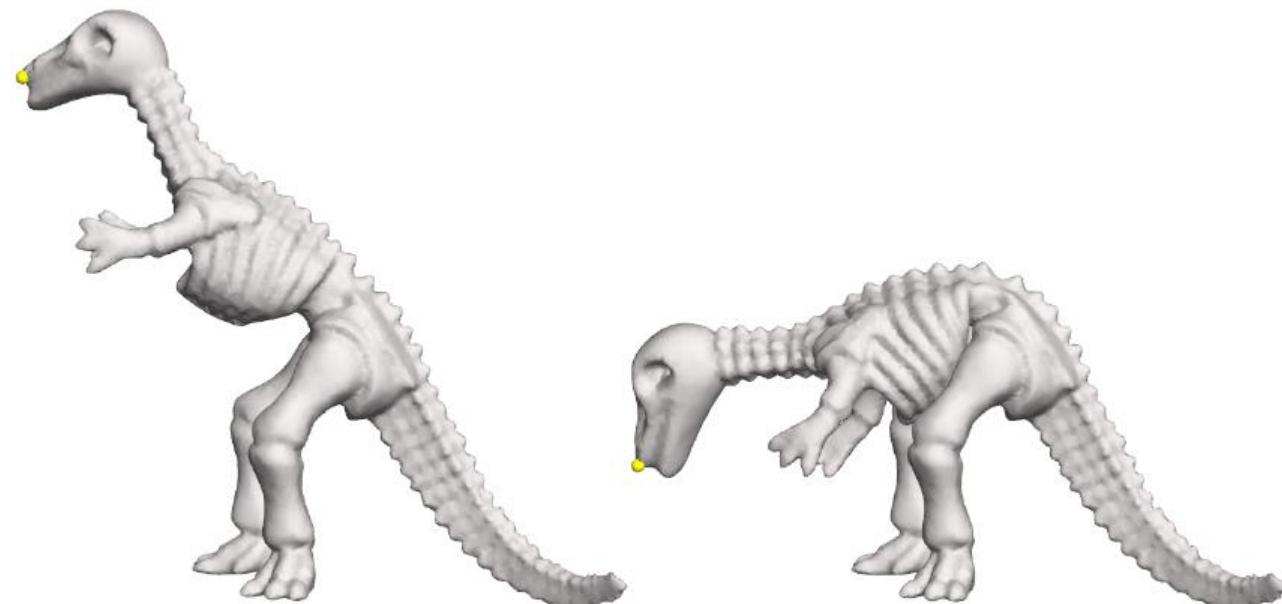
Editing 3D Models

- Options:
 - Directly edit mesh vertices
 - Finding the right level of abstraction is key!
 - Cage-based editing
 - Skeletal Rigs
 - High-level surface editing



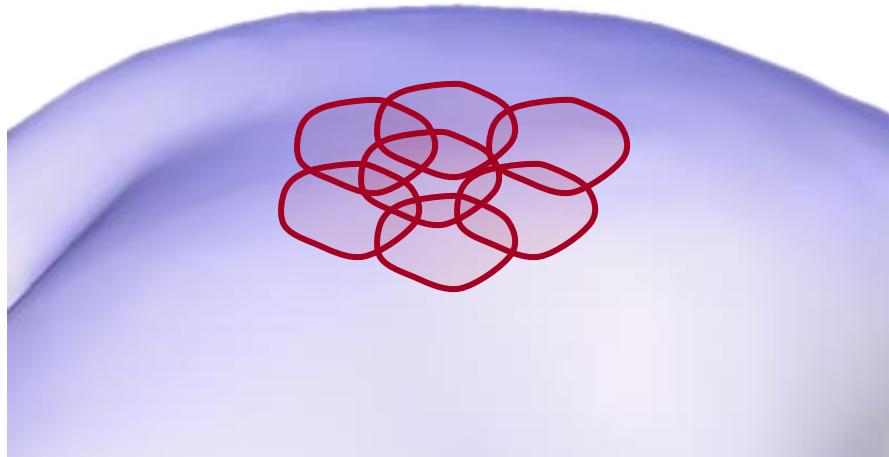
As-Rigid-As-Possible Surface Modeling (Sorkine & Alexa, 2007)

- What do we want?
 - Smooth deformations
 - Precise control over specific features
 - As-rigid-as-possible deformations for details
 - Ease of use



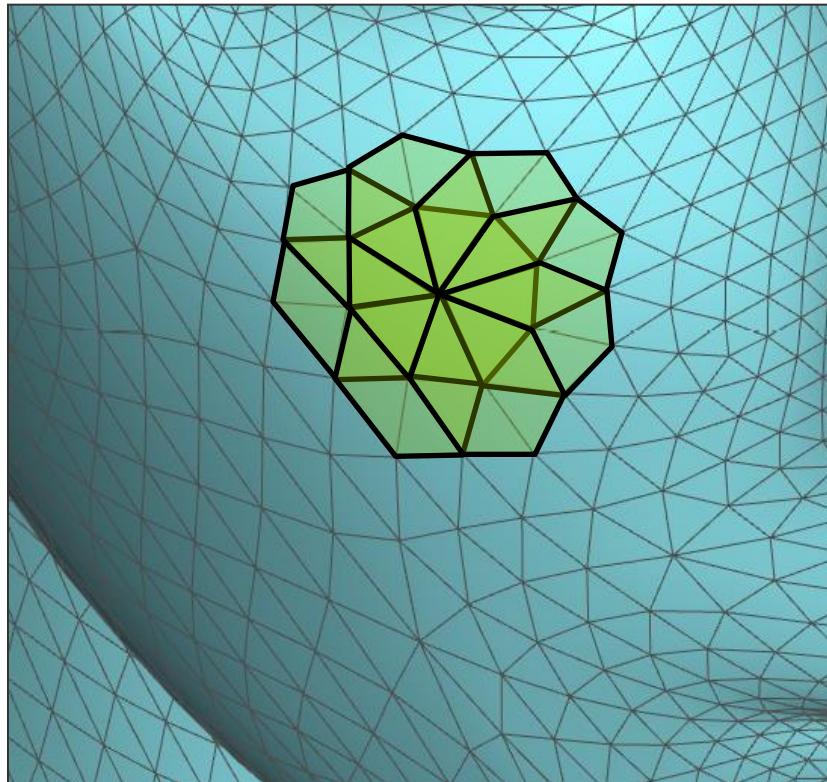
As-Rigid-As-Possible Surface Modeling (Sorkine & Alexa, 2007)

- Main idea:
 - Preserve shape of surface patches as much as possible (subject to user constraints)
 - Surface patches should overlap to prevent bending



As-Rigid-As-Possible Surface Modeling (Sorkine & Alexa, 2007)

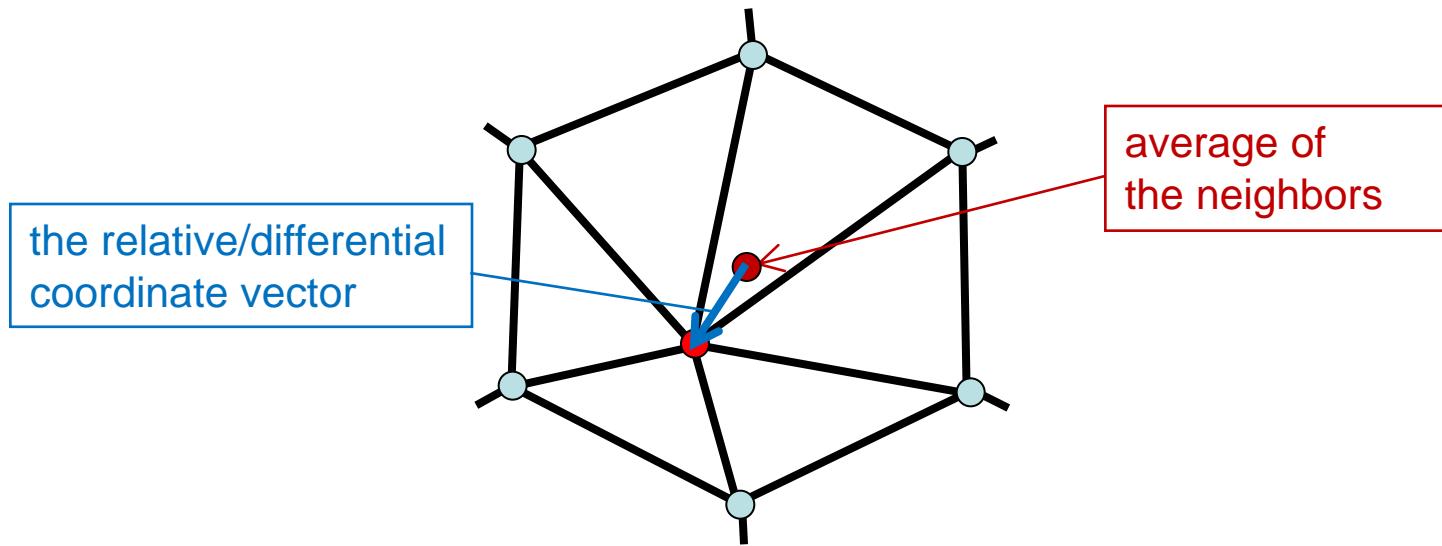
- Surface patches
 - 1 ring neighbor for each vertex



As-Rigid-As-Possible Deformations

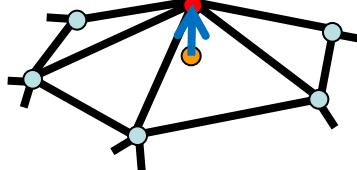
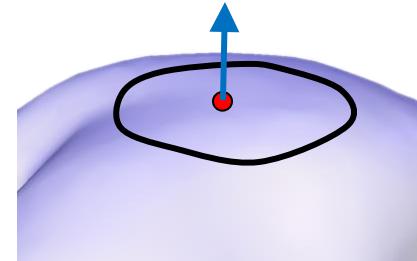
- Approach 1: differential coordinates

$$\delta_i = v_i - \frac{1}{d_i} \sum_{j \in N(i)} v_j$$



Why differential coordinates?

- They represent the local detail / local shape description
 - The direction approximates the normal
 - The size approximates the mean curvature



Reconstruction

- Reconstruct position of each vertex using differential coordinates and neighborhood positions:

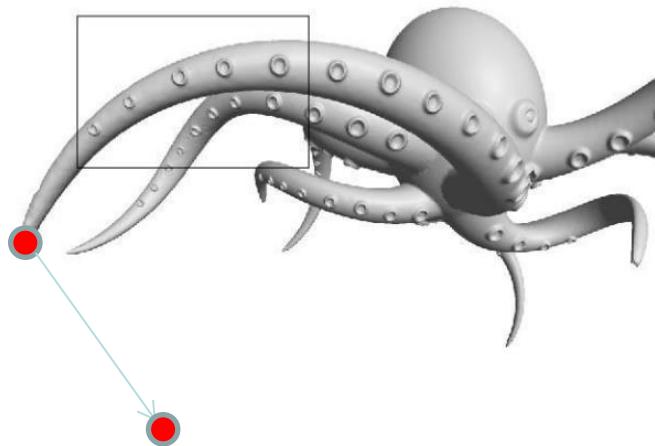
Find v_i such that $\frac{1}{d_i} \sum_{v \in N(i)} (v_i - v)$ as close as possible to δ_i

Reconstruction

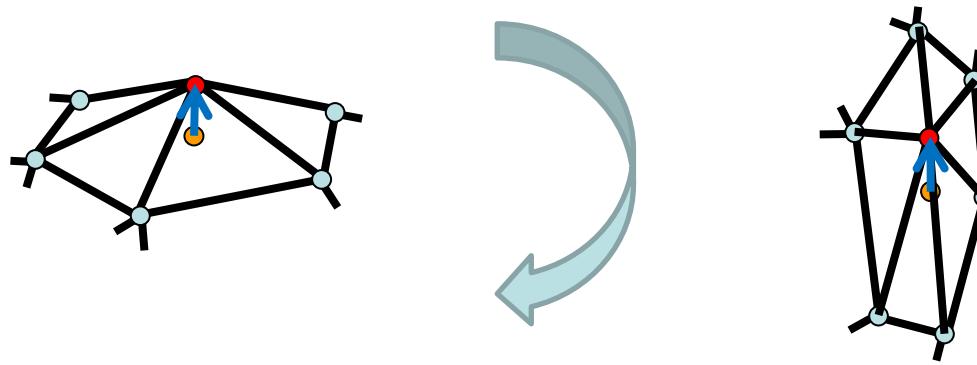
- Or, in matrix form:

$$\|M \cdot P - \delta\|^2$$

Reconstruction



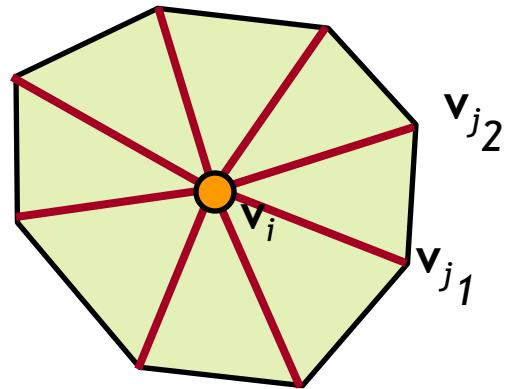
Problems?



Not rotation invariant!!! Can we do better?

Rotation-invariant deformation energy

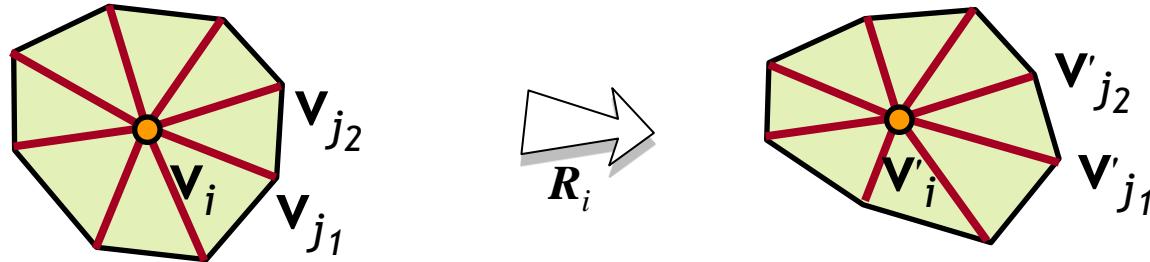
- Ask each 1-ring neighborhood to transform rigidly up to some rotation R



$$\min \sum_{j \in N(i)} \|(\mathbf{v}'_i - \mathbf{v}'_j) - R_i(\mathbf{v}_i - \mathbf{v}_j)\|^2$$

Deformations and Rotations

- If \mathbf{v}, \mathbf{v}' are known then R_i is uniquely defined



- Compute deformation gradient \mathbf{F} s.t. $\mathbf{V}' = \mathbf{F} \mathbf{V}$
- Polar Decomposition: $\mathbf{F} = \mathbf{R} \mathbf{D}$
 - $\mathbf{F} = \mathbf{U} \Sigma \mathbf{W}^T$; $\mathbf{R} = \mathbf{U} \mathbf{W}^T$

Positive semi-definite, symmetric matrix representing deformations (stretch, shear)

Energy formulation

- Can formulate overall energy as:

$$\min_{\mathbf{v}'} \sum_{i=1}^n \sum_{j \in N(i)} \|(\mathbf{v}'_i - \mathbf{v}'_j) - R_i(\mathbf{v}_i - \mathbf{v}_j)\|^2$$

$$s.t. \mathbf{v}'_j = \mathbf{c}_j, j \in C$$

- \mathbf{v}' and R treated as separate sets of variables

Iterative solver

- Alternating iterations

- Given initial guess \mathbf{v}'_0 , find optimal rotations R_i
 - Easy to parallelize
- Keep R_i fixed, minimize the energy by finding new \mathbf{v}'

$$\min_{\mathbf{v}'} \sum_{i=1}^n \sum_{j \in N(i)} \|(\mathbf{v}'_i - \mathbf{v}'_j) - R_i(\mathbf{v}_i - \mathbf{v}_j)\|^2$$

Iterative solver

- Alternating iterations
 - Given initial guess \mathbf{v}'_0 , find optimal rotations R_i
 - Easy to parallelize
 - Keep R_i fixed, minimize the energy by finding new \mathbf{v}'

$$L\mathbf{v}' = \mathbf{b}$$

Uniform mesh Laplacian

Iterative solver

- Each iteration decreases the energy (or at least guarantees not to increase it)
- The matrix L stays fixed
 - Precompute factorization
 - back-substitute in each iteration (+ the SVD computations)

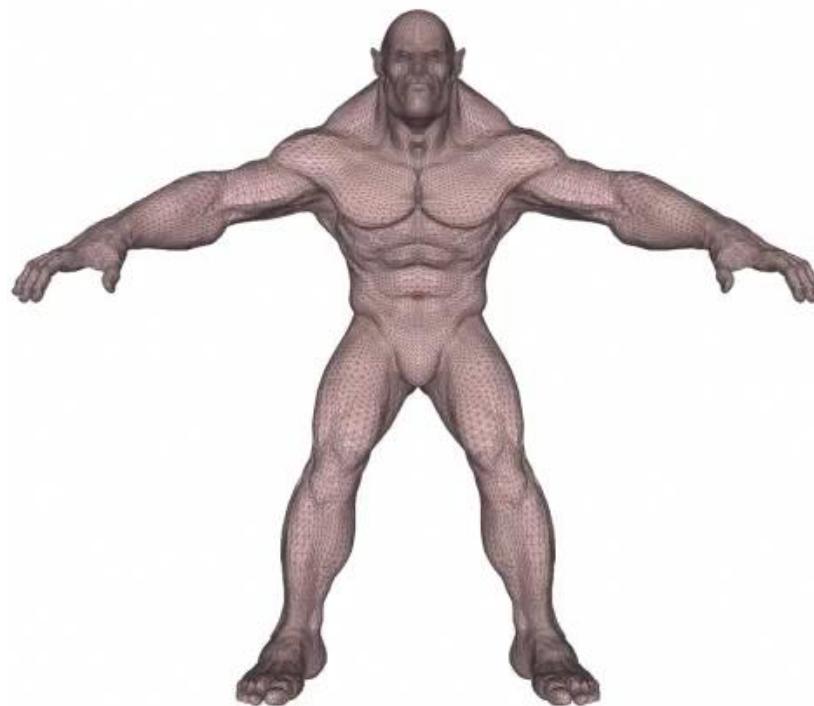
$$L\mathbf{v}' = \mathbf{b}$$

As-Rigid-As-Possible Surface Modeling

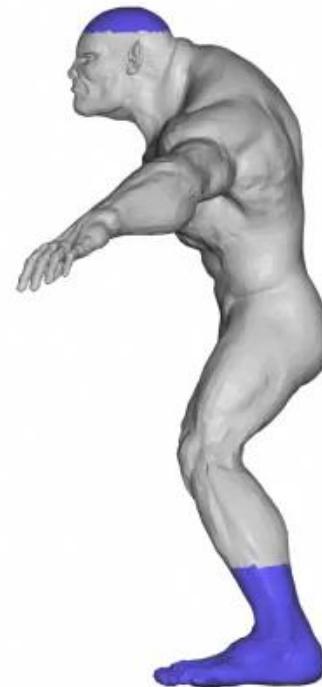
As-Rigid-As-Possible Surface Modeling

Olga Sorkine Marc Alexa
TU Berlin

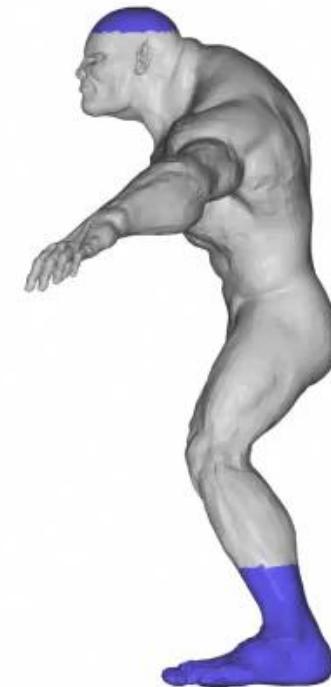
Surface vs volumetric models



Input triangle mesh



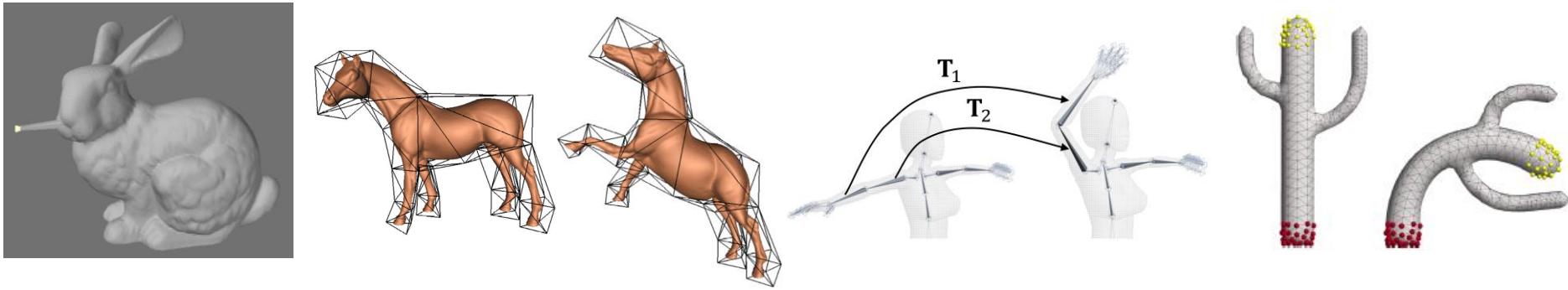
Surface-based



Volume-based

Editing 3D Models

- Options:
 - Directly edit mesh vertices
 - Finding the right level of abstraction is key!
 - Cage-based editing
 - Skeletal Rigs
 - High-level surface editing



Creating new models

Creating new models

SIMP • SYMM

procedural modeling algorithm

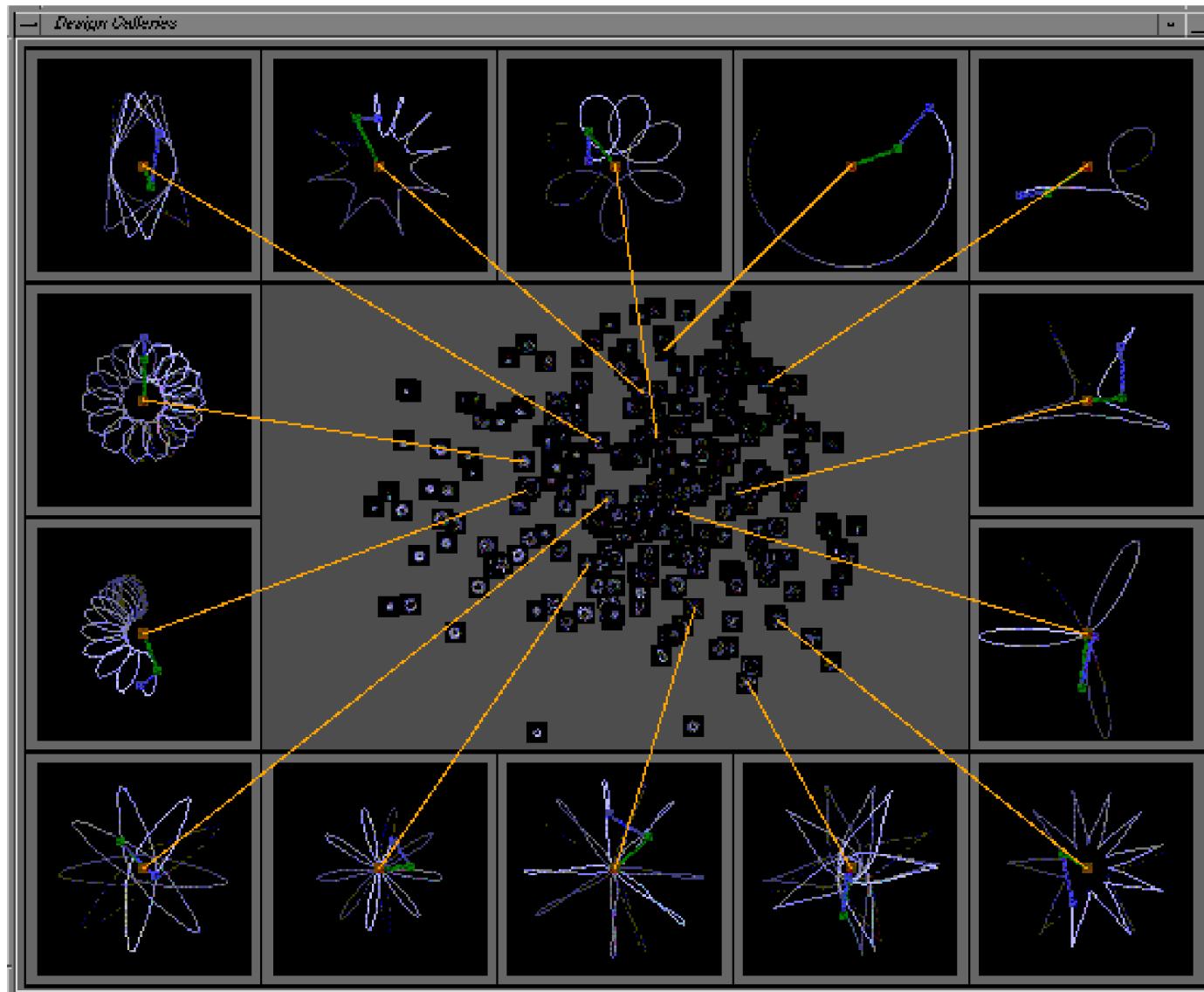
Hochschule
Ravensburg-Weingarten

Christoph Bader
& Dominik Kolb

Creating new models

- Finding the right level of abstraction is key
 - Restrict design space to some extent
 - Trade-off between flexibility and ease of use
- Alternatives?
 - Explore design space

Design Space Exploration

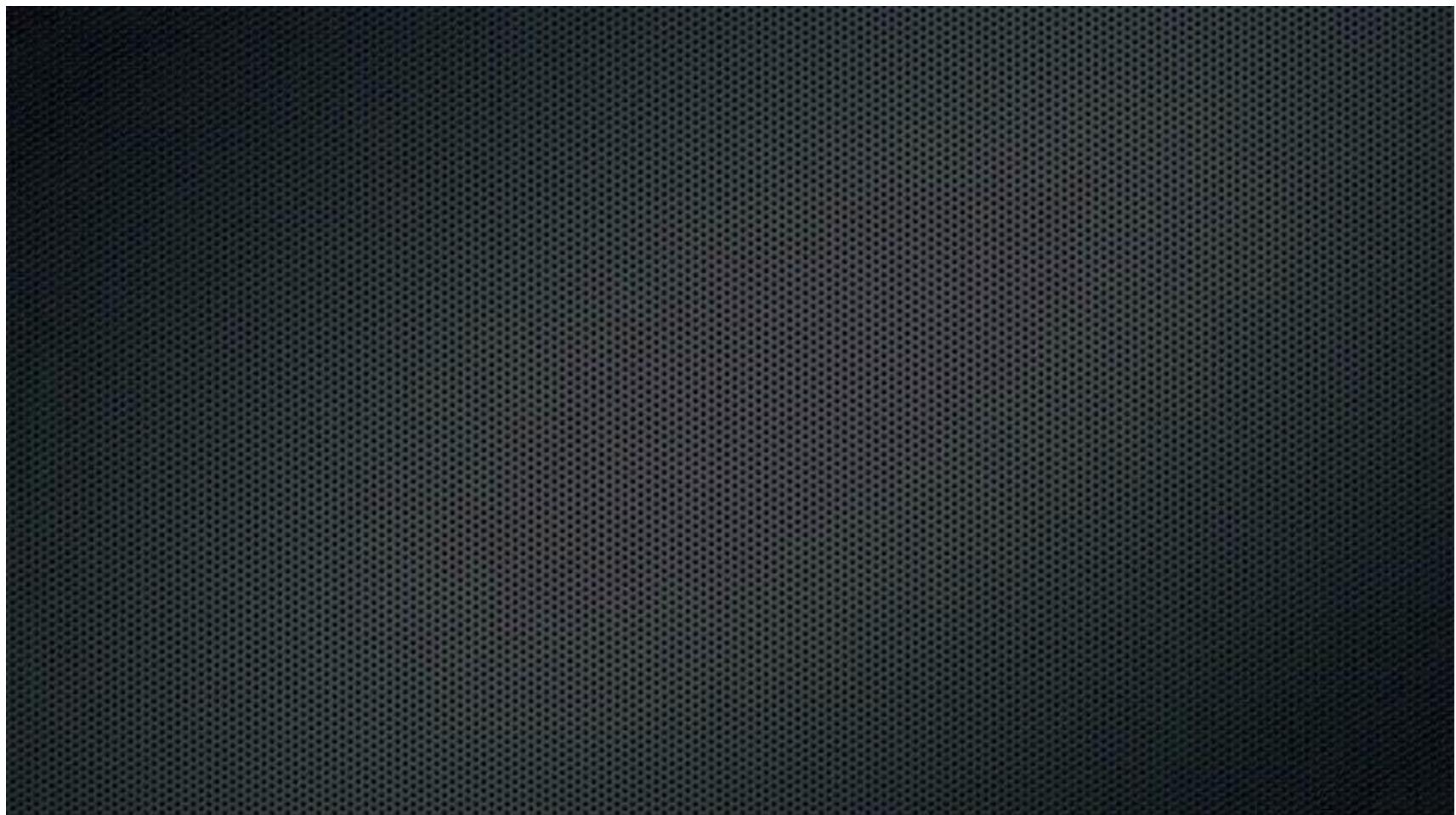


Design Space Exploration

- Sample parameter space
 - Poisson sampling
- Present design space in a manageable way
 - Cluster similar designs
 - Visualize designs exhibiting greatest variation
 - Hierarchical refinement

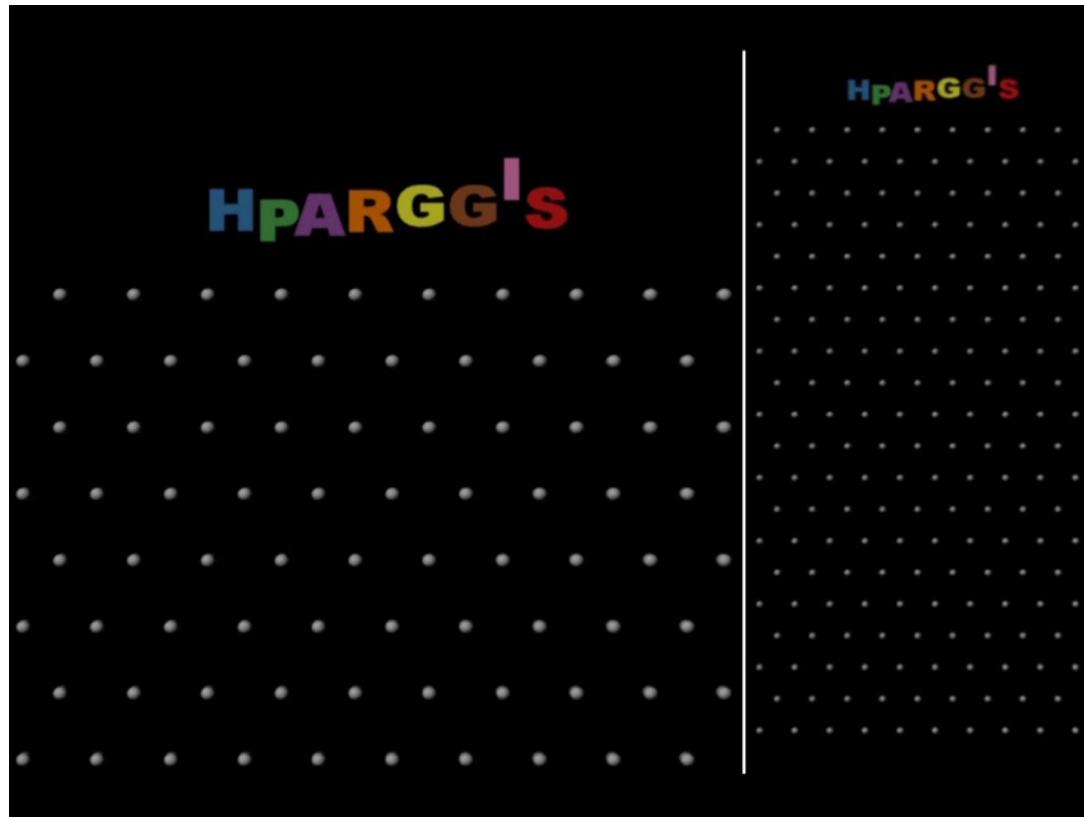
Design Space Exploration - Examples

Eric Brochu, Tyson Brochu and Nando de Freitas. *A Bayesian Interactive Optimization Approach to Procedural Animation Design*. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010



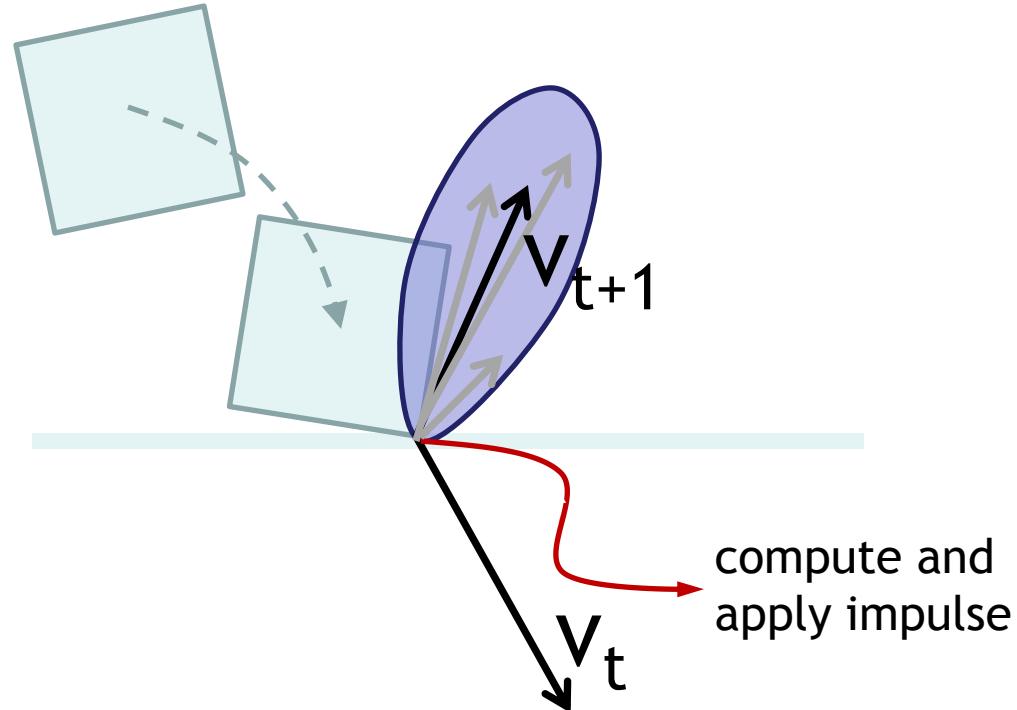
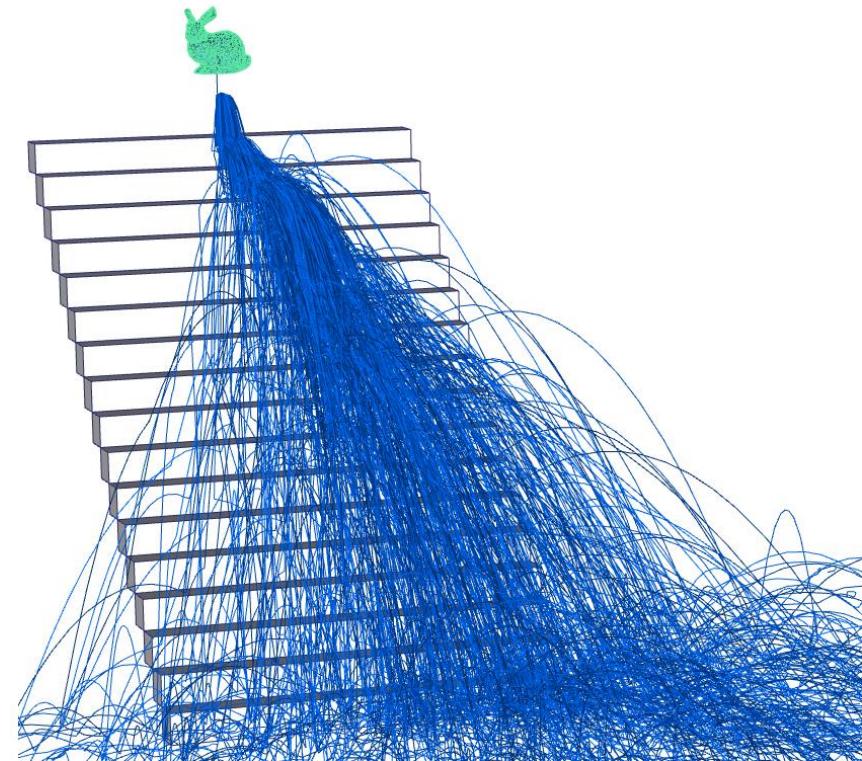
Design Space Exploration - Examples

Many-Worlds Browsing for Control of Multibody Dynamics Twigg and James,
SIGGRAPH 2007



Many Worlds Browsing

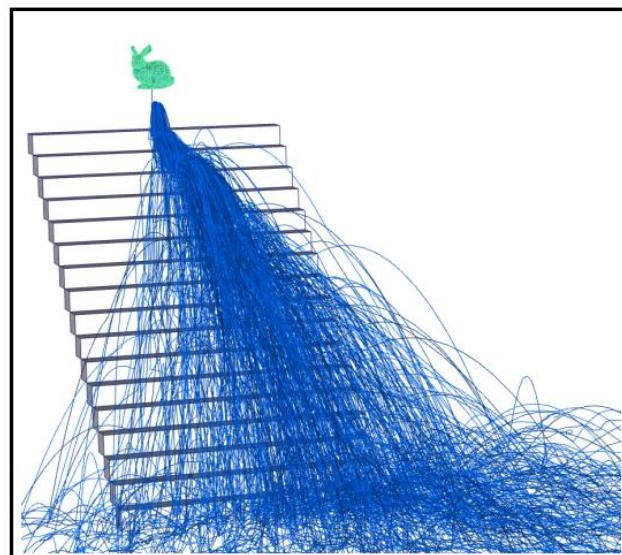
Sampling Plausible Worlds (parameter choices)



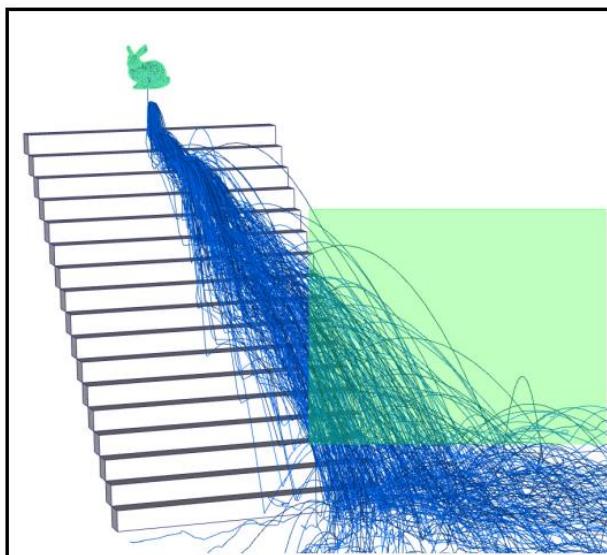
[O'Sullivan et al., 2003]

Many Worlds Browsing

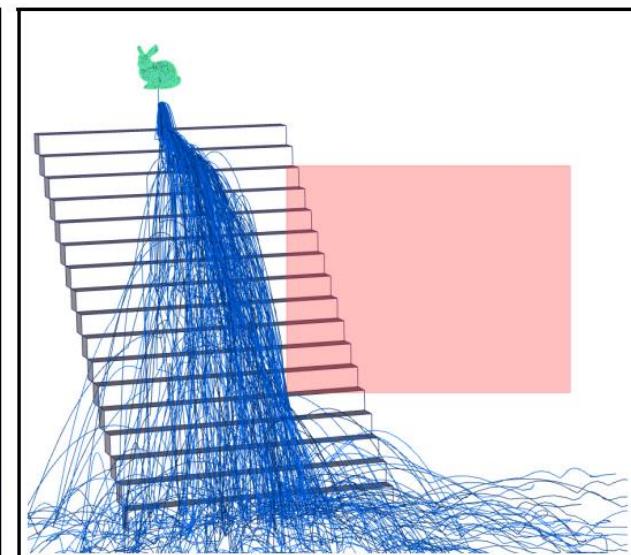
Interactive Browsing - various criteria



Input

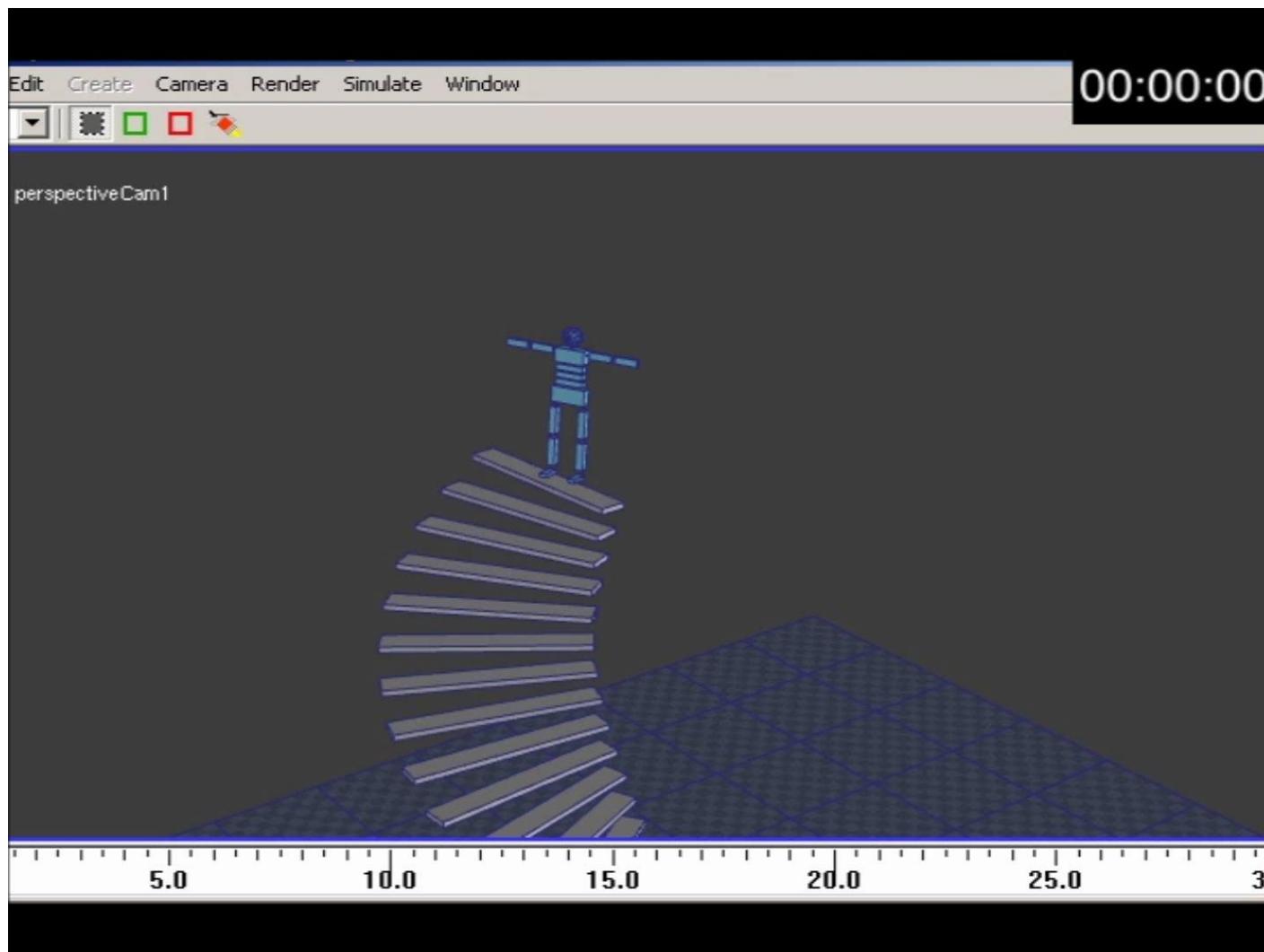


Positive



Negative

Many Worlds Browsing



Questions?