
Computational Aspects of Fabrication, Spring 2015

Assignment 1: Voxelization

Due February 6th at 11:59pm.

In this assignment you will implement a voxelizer. Your program will take as input a triangulated surface
mesh and the dimensions of the requested voxelization. As output, your program will generate a voxelization,
saved to an .obj file for display. Provided with this assignment is a code stub which can be compiled on Mac
OSX, Linux or Microsoft Windows.

This voxelizer will be based on ray casting. We will partition the space containing an input surface into
a regular grid of specified dimension. Each cubic cell in this grid is a potential voxel in the voxelization.
Your code will determine whether a voxel lies inside or outside the surface mesh. For each voxel in the grid
you will cast a ray. As discussed in class, counting the number of times this ray intersects the object surface
will suffice as an inside/outside test.

In this assignment you will be responsible for implementing the following components of
the voxelizer:

1. A loop over all voxels in the regular grid

2. A ray-triangle intersection test

3. An inside-outside test for all voxels, using a ray cast in a single direction

4. A slicing function - given an input layer number, you will output only the voxels on that layer (i.e.
turn all the others off).

5. A function to extract the contour of any selected layer.

The remainder of this document is organized as follows:

1. Getting Started

2. Starter Code and Implementation Notes

3. Extra Credit

4. Submission Instructions

1

1 Getting Started

1.1 Building Project Files (MAC OSX/Linux)

We use CMake to ensure that assignments can be built on multiple platforms. Here we outline how to use
CMake to generate platform specific build files. We use 〈WORKINGDIR〉 to refer to the root directory of
the assignment source code tree (i.e the directory that contains this PDF).

1. Download CMake from http://www.cmake.org

2. Open a terminal window and change directory to 〈WORKINGDIR〉

3. Create the directory 〈WORKINGDIR〉/build, change to the build directory

4. Run: 〈WORKINGDIR〉/build/cmake .. -G’Unix Makefiles’

5. Run: 〈WORKINGDIR〉/build/ccmake ..

6. Under CMAKE BUILD TYPE enter Debug

7. Press: ‘c’, then ‘g’

8. You should now have a generated makefile in 〈WORKINGDIR〉/build, type make to build the vox-
elizer

1.2 Building Project Files (Windows)

You can use Visual Studio - create a Win32 Console application.

1.3 Running the program

voxelizer ../../data/sphere/Sphere.obj ../../data/sphere/SphereVoxels.obj

To see the results open the output file in Meshlab(http://meshlab.sourceforge.net).

2 Starter Code and Implementation Notes

We provide starter code for the assignment. Critical sections of the code have been removed - they have
been labeled with /********* ASSIGNMENT *********/, followed by appropriate comments. The starter
code provides the following features

1. A Vec3 class with associated dot product, cross product, addition and subtraction operations (Comp-
Fab.h)

2. A Ray class (CompFab.h)

2

3. A Triangle class (CompFab.h)

4. A VoxelGrid class which contains an isInside method for labeling voxels (CompFab.h)

5. An input method for reading surface meshes stored as .obj files and an output method for saving your
voxelizations (main.cpp)

The starter code can load an object and will automatically initialize the VoxelGrid using the dimensions
you specify.

(a) (b)

Figure 1: Voxelizing a bunny mesh using the sample solution.

3 Extra Credit

There are two potential features to implement for extra credit:

1. Casting a ray in a single direction makes your voxelizer less robust to errors in meshing. Modify
your inside-outside test to cast rays in multiple directions. Sucessfully voxelize a mesh which is not
completely closed.

2. In the sample code you will first (naively) iterate over every triangle in the mesh when doing inside-
outside testing. Implement an acceleration structure (Kd-Tree, Bounding Volume Hierarchy) to speed
things up.

4 Submission Instructions

Please provide a report with your submission (PDF). The report should include the following:

• Images of voxelizations/slices of all example files at 32x32x32 resolution and 64x64x64 resolution.

• Were there any references (books, papers, websites, etc.) that you found particularly helpful for
completing your assignment? Please provide a list.

3

• Are there any known problems with your code? If so, please provide a list and, if possible, describe
what you think the cause is and how you might fix them if you had more time or motivation. This
is very important, as we’re much more likely to assign partial credit if you help us understand what’s
going on.

• Did you do any of the extra credit? If so, let us know how to use the additional features. If there was
a substantial amount of work involved, describe what how you did it. Provide at least one example for
each extra feature implemented.

• Got any comments about this assignment that you’d like to share?

Remember, these assignments are to be done on your own. Please do not share code or
implementation details with other students.

Submit your assignment (code + write up) to me by email.

• Your source code (instructions on how to compile and run).

• A compiled executable named a1.

• Any additional files that are necessary.

• The PDF file.

4

	Getting Started
	Building Project Files (MAC OSX/Linux)
	Building Project Files (Windows)
	Running the program

	Starter Code and Implementation Notes
	Extra Credit
	Submission Instructions

