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ABSTRACT
Many scalable data mining tasks rely on active learning to
provide the most useful accurately labeled instances. How-
ever, what if there are multiple labeling sources (‘oracles’
or ‘experts’) with different but unknown reliabilities? With
the recent advent of inexpensive and scalable online annota-
tion tools, such as Amazon’s Mechanical Turk, the labeling
process has become more vulnerable to noise - and with-
out prior knowledge of the accuracy of each individual la-
beler. This paper addresses exactly such a challenge: how
to jointly learn the accuracy of labeling sources and obtain
the most informative labels for the active learning task at
hand minimizing total labeling effort. More specifically, we
present IEThresh (Interval Estimate Threshold) as a strat-
egy to intelligently select the expert(s) with the highest es-
timated labeling accuracy. IEThresh estimates a confidence
interval for the reliability of each expert and filters out the
one(s) whose estimated upper-bound confidence interval is
below a threshold - which jointly optimizes expected accu-
racy (mean) and need to better estimate the expert’s accu-
racy (variance). Our framework is flexible enough to work
with a wide range of different noise levels and outperforms
baselines such as asking all available experts and random
expert selection. In particular, IEThresh achieves a given
level of accuracy with less than half the queries issued by all-
experts labeling and less than a third the queries required by
random expert selection on datasets such as the UCI mush-
room one. The results show that our method naturally bal-
ances exploration and exploitation as it gains knowledge of
which experts to rely upon, and selects them with increasing
frequency.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; H.2.8 [Database Applica-
tions]: Data mining
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1. INTRODUCTION
In many data mining applications, obtaining labels for the

training data is an error-prone process. Brodley [2] notes
that class noise can occur for several reasons including sub-
jectivity, data-dependent error, inappropriate feature infor-
mation used for labeling, etc. Inductive learning algorithms
aim at maximizing the classification accuracy based on a set
of training instances. The maximum accuracy achieved de-
pends strongly on the quality of the labeling process. In the
case of multiple labelers (experts), class noise is typically a
common problem since the quality of annotations may not
be controlled. For instance, multiple experts might not agree
on the medical diagnosis of a clinical case, or on the primary
topic of a document, even if we hypothesize the existence of a
ground (or consensus) truth. In remote-sensing applications,
image analysis is often a manual process with subjective la-
beling by multiple labelers. In on-line labeling marketplaces
such as the Mechanical Turk (http://www.mturk.com), we
do not know a priori the reliability of individual labelers,
though a distribution is expected.

Sheng et al. [15] addresses multiple noisy labelers and
proposes repeated labeling (obtaining multiple labels from
multiple labelers for some or all data points) to improve la-
bel and model quality. Their work mainly focuses on tasks
where it is relatively cheap to obtain labels compared to
the cost of data gathering and preprocessing. They have
shown that repeated labeling can be preferable to single la-
beling in the presence of label noise, especially when the
cost of data preprocessing is non-negligible. Despite their
insightful analysis, the practical value of repeated labeling
varies greatly with different cost models and with different
labeler accuracies. For instance, they make the strong and
often unrealistic simplifying assumption that all labelers are
identical, with the same probability of making a labeling
mistake. As briefly noted by the authors [15], unknown dif-
fering qualities require more sophisticated strategies to deal
with noisy labelers in general. In real life, we face the prob-
lem of inferring individual labeler quality in the absence of
the gold standard labels. Estimating each labeler’s quality



can prove crucial to improve the overall labeling and help
mitigate considerably the effect of labeling noise.

In this paper, we address directly the challenge of active
labeling with multiple noisy labelers, each of which has un-
known labeling accuracy. The goal is to estimate each la-
beler’s accuracy and use the estimates to select the highest
quality labeler(s) for additional label acquisition. Labeler
accuracy estimation requires a degree of exploration as well
as exploitation in the form of single-labeling with the best
labeler(s). Hence, a sophisticated learner should acquire la-
beler and label knowledge through repeated trials, balancing
the exploration vs. exploitation tradeoff, by first favoring
the former and moving gradually to increasing exploitation.
We report on the first multi-labeler active learner with such
properties. We use the words ‘oracle’, ‘expert’ and external
‘labeler’ interchangably.

We adopt the Interval Estimation (IE) learning [5, 10] as
a building block for our framework. IE attempts to esti-
mate the confidence interval on the expected response of an
action and then selects the action with the highest upper
confidence interval. In our problem, taking an action cor-
responds to selecting an oracle to query for labeling and an
instance to label. We use the responses of the oracles them-
selves to evaluate the performance of each oracle. Therefore,
inclusion of inferior oracles can dramatically slow conver-
gence. To overcome this issue, we propose a thesholding
mechanism (IEThresh) - to filter out inferior oracles early
in the process. This helps to narrow down the set of po-
tentially good oracles and improves the estimation accuracy
with many fewer exploratory trials.

In order to apply IEThresh to our problem, we need to
define an appropriate reward function. The reward of each
labeler is directly related to whether the labeler makes a la-
beling mistake or not. Unfortunately, an exact calculation
of the reward function is impossible since the true label is
unknown. A natural way to estimate the true label is to take
the majority vote among the predicted labels from multiple
labelers. In this paper, we assume an individual labeler ac-
curacy is better than random guess, i.e. > 0.5 in the binary
case. Under this assumption, it is unlikely that all labelers
make a labeling mistake at the same time; hence, the ma-
jority label is a close approximation to the true label. The
method is robust to occasional errors by the majority vote
method as demonstrated on several benchmark datasets. We
report results on six (mostly UCI) datasets to which we add
random noise to simulate a set of labelers, and we also re-
port results on two datasets annotated with real labelers
[19]. For the simulated-error cases, we varied the labeler ac-
curacies to show that our method IEThresh can detect the
most accurate ones even among a uniform or skewed mix of
good and bad labelers. We compared our method IEThresh
to two baselines: asking all labelers (as in [15]) and select-
ing a random labeler for each instance. Section 4 details our
thorough comparison.

The rest of the paper is organised as follows: The next
section summarizes the relevant work in the literature. Sec-
tion 3 describes the Interval Estimate Threshold method.
The experimental evaluation is detailed in Section 4. Fi-
nally, we offer our conclusions and potential future directions
in Section 5.

2. RELATED WORK
Traditional active learning focuses on selecting data to be

labeled to improve the model performance. Thus far, tradi-
tional active learning assumed that there is a single oracle
(expert) that answers every query with the correct label;
hence, the label acquisition is a noise-free process. These
assumptions lack realism as also noted in our earlier work
[3]. We addressed fallible experts together with reluctant
and variable-cost ones in a setting called proactive learning
as an alternative to traditional active learning. That work
assumes two experts with differing costs: e.g. one is the
perfectly reliable expert whereas the other is a noisy expert
whose reliability is conditioned on the instances. They fur-
ther assume that the fallible expert provides a confidence
score together with the label. The confidence score is used
to assess the quality of the expert. The instance-conditional
reliability of the fallible expert is estimated via an explo-
ration phase where the most representative instances are
queried and the confidence is propagated through the neigh-
bors. The paper provides a decision-theoretic framework to
make the optimal instance-expert selection. This paper ad-
dresses limitations in that work, including generalizing from
two to multiple experts, eliminating the need that one ex-
pert be a perfect oracle, and eliminating the need for explicit
and reliable self-reporting of labeling confidence levels.

Furthermore, considering the cost factor in data mining
applications has recently become increasingly popular. Util-
ity based data mining [12] introduces a general economic
setting to formulate a strategy of maximum expected utility
data acquisition. Budgeted learning, active feature acquisi-
tion, etc. address the notion of costly data acquisition. In
budget-constrained learning, the total cost of data elicita-
tion is bounded, and label queries may have non-uniform
cost. The goal of the learner is to produce the most ac-
curate model under the budget constraints. Active feature
acquisition (AFA) considers data with missing feature val-
ues. AFA tries to optimize the improvement in model accu-
racy at minimum cost via selective feature acquisition [9, 14]
Cost-sensitive learning, on the other hand, generally deals
with the cost of misclassification but not the cost of label-
ing. This line of work is complementary to the methods and
results presented in this paper, and interesting future work
would entail a combined model.

Repeated labeling on the same data point has been con-
sidered by [15, 17, 18] because the labels may not be reliable,
without estimating reliability of specific points or regions of
the instance space or labelers. The focus of [17, 18] is to learn
from probabilistic labels in the absence of ground truth in an
image processing application. In their task, the domain ex-
perts examine an image and provide subjective class labels.
They provide a probabilistic framework to model the subjec-
tive labeling process and use EM to estimate the model pa-
rameters as maximizers of a likelihood function [18]. Sheng
et al. [15] relies on an active learning framework that uses
repeated labeling and provides conditions where repeated
labeling can be effective for improving data quality. Their
results point out that repeated labeling can give additional
benefit especially when the labeling quality is low. However,
their work assumes the same level of accuracy for each la-
beler. The method in this paper goes beyond their results
by relaxing the assumptions of identical labeling error rates
among experts and a priori knowledge of said error rates.
Moreover, our method is adaptive as it transitions grad-
ually from exploration-heavy to exploitation-heavy phases,
as knowledge of individual labeler accuracy accrues.



3. ESTIMATING LABELER ACCURACY
In this section, we describe our multi-expert active sam-

pling method, which we call IEThresh. It builds upon In-
terval Estimation (IE) learning [5, 10] which is useful for
addressing the exploration vs. exploitation tradeoff. IE has
been used extensively in reinforcement learning for action se-
lection and in stochastic optimization problems. We first ex-
plain IE and then discuss how we extend it to learn the best
oracle(s) to query, favoring exploration in the early phases
and exploitation (least error-prone oracle selection) with in-
creasing frequency.

3.1 Interval Estimation Learning
The goal of IE is to find the action a∗ yielding the highest

expected reward with as few samples as possible; i.e. a∗ =
arg max

a
E[r(a) | a]. The true expected reward is unknown

and must be estimated from observed samples. Before each
selection, IE estimates a standard upper confidence interval
for the mean reward of each action using the sample mean
and standard deviation of rewards received so far using that
action:

UI(a) = m(a) + t
(n−1)
α

2

s(a)√
n

(1)

where m(a) is the sample mean for a, s(a) is the sample
standard deviation for a, n is the number of samples ob-

served from a, and t
(n−1)
α

2

is the critical value for the Stu-

dent’s t-distribution with n − 1 degrees of freedom at the
α/2 confidence level.

IE then selects the action with the highest upper confi-
dence interval. The reason is that such an action has a high
expected reward and/or a large amount of uncertainty in the
reward. If an action has large uncertainty, it indicates that
the action has not been taken with sufficient frequency to
yield reliable estimates. Selecting this action performs ex-
ploration which will increase IE’s confidence in its estimate
and has the potential of identifying a high reward action. Se-
lecting an action with a high expected reward performs ex-
ploitation. Initially, the intervals are large due to the uncer-
tainty of the reward estimates and action choices tend to be
explorative. Over time, the intervals shrink and the choices
become more exploitative. IE automatically trades off these
two. α is a parameter that weights exploration more strongly
when it is small and exploitation more strongly when it is
large. α = 0.05 is a common reasonable choice.

3.2 Interval Estimate Threshold (IEThresh)
The IE algorithm described above can be adapted to work

with multiple noisy oracles. Taking an action corresponds
to selecting an oracle to ask for a label in our active learning
framework, assuming we have already selected an instance
to label. Our framework is flexible to work with any instance
selection strategy and any supervised learning method. For
simplicity, we select the instance to label via uncertainty
sampling [7] and adopt a logistic regression classifier to ob-
tain posterior class probabilities P (y | x). The most uncer-
tain instance is selected for labeling:

x∗ = arg max
x

(1 − max
y∈{1,0}

P (y | x)) (2)

One also needs to estimate a reward function for each ora-
cle based on the labels received. The reward of each oracle
should be related to the true label for the queried instance,

which is not known. Hence, we need a mechanism to esti-
mate the true label. We use a majority vote among multiple,
possibly noisy labelers to infer the true label – which will be
correct often, but not always. We propose the following re-
ward function r̂ : K → {0, 1} as a mapping from the set of
labelers K to a binary value. It is 1 if the labeler agrees
with the majority label ȳ, and 0 otherwise.

r̂(j) =

(

1 if yj = ȳ

0 otherwise
(3)

This reward estimate requires sampling some or all oracles
to take the majority vote. Its accuracy depends on how
well the majority vote represents the true label. When the
individual labeler quality is high, the majority vote is a close
estimate of the true label since it is unlikely that a majority
of the oracles make a mistake on the same instance. We
propose to adopt a threshold on the upper interval to 1)
filter out the less reliable oracles from the majority voting,
2) reduce the labeling cost and 3) compute the reliability
estimates more efficiently. Given k oracles, we select each
oracle a that has an upper bound UI(a) (Equation 1) larger
than some fraction of the maximum bound at time t:

St = {a|UI(a) >= ǫ ∗ max
a

UI(a)} (4)

where St is the set of selected oracles to be queried for label-
ing. 0 < ǫ < 1 is a parameter tuned on a separate dataset
that is not used in the experiments.1 We note that this may
result in choosing different number of oracles each time, bi-
asing towards the more reliable ones as the reward estimates
become more accurate. We smooth the confidence interval
estimates by initially giving each oracle a reward of 1 and
0. At the first iteration, they have the same upper bound
and all oracles are selected. As the bounds tighten, under-
performing oracles are filtered out and the reliable ones are
selected for labeling. The upper bound can be high because
there is either little information about the oracle (high vari-
ance) or the entire interval is high and the oracle is good
(high mean). It is possible that a previously filtered-out
oracle will be selected again if the upper bounds of the re-
maining oracles lower sufficiently. We give below an outline
of how IEThresh works:

1. Initialize samples for each oracle with rewards 1 and 0

2. Fit a logistic regression classifier to training data T

3. Pick the most uncertain unlabeled instance x∗ for la-
beling (Eqn. 2)

4. Compute the upper confidence interval for each oracle
(Eqn. 1)

5. Choose all oracles St within ǫ of the maximum upper
confidence interval (Eqn. 4)

6. Compute the majority vote ȳ of the selected oracles St

7. Update training data T = T ∪ {x∗, ȳ}

8. Add calculated rewards (Eqn. 3) to the samples for St

9. Repeat 2-8

1We note that a more sophisticated tuning could further
improve the results, but our experimental results indicate
that a reasonable threshold works quite effectively.



Our empirical evaluation indicates that IEThresh is very
effective in filtering out the less reliable oracles early in
the process and continues to sample the more reliable ones.
Next, we describe our experimental results in detail.

4. EXPERIMENTAL EVALUATION

4.1 Data and Settings
We conducted a thorough analysis on eight benchmark

datasets from [1, 13, 19]. Six of these datasets are classi-
fication problems with characteristics given in Table 1. If
the dataset was not originally binary, we converted it using
random partitioning into two classes as described in [13].
We partition each of these datasets into 70%/30% train/test
splits. For each dataset, the initial labeled set includes one
true positive and one true negative instance so that each
method has the same initial performance before active learn-
ing. The rest of the training set is used as the unlabeled pool.
We compared IEThresh with two baselines: asking all the
oracles (repeated labeling) as presented in [15] (we refer it
as Repeated), and asking a randomly chosen oracle (which
is referred as Random). Each time an unlabeled instance is
selected by the active learner, a label is generated according
to the true accuracy q of the selected oracles(s), i.e. the true
label y ∈ {1, 0} is assigned with probability q and 1 − y is
assigned with probability 1 − q. If more than one oracle is
chosen, then the majority vote is assigned as the label for
that instance (ties are broken randomly). We set the total
number of oracles to k = 10. After labeling, the instance is
added to the training set and the classifier is re-trained on
the enlarged set. The classifier is tested on the separate test
set every time a new instance is added, and the classification
error is reported. The results are averaged over 100 runs.

The remaining two datasets in our experiments are from
the natural language understanding tasks introduced in [19].
This collection was created using Amazon’s Mechanical Turk
(AMT) for data annotation. AMT is an online tool where
remote workers are paid to complete small labeling and an-
notation tasks. We selected two binary tasks from this col-
lection: the textual entailment recognition (RTE) and tem-
poral event recognition (TEMP) tasks. In the former task,
the annotator is presented with two sentences for each ques-
tion. He needs to decide whether the second sentence can be
inferred from the first. The original dataset contains 800 sen-
tence pairs with a total of 165 annotators who contributed to
the labeling effort. The latter task involves recognizing the
temporal relation in verb-event pairs. The annotator decides
whether the event described by the first verb occurs before
or after the second. The original dataset contains 462 pairs
with a total of 76 annotators. For both datasets, the quality
(accuracy) of annotators are measured by comparing their
annotations with the gold standard labels. Unfortunately,
most of the annotators completed only a handful of tasks.
Therefore, we selected a subset of these annotators for each
dataset such that each annotator has completed at least 100
tasks. They have differing accuracies ranging from as low as
0.44 to over 0.9. We note that this violates our assumption
of better-than-random labelers. This is a real-life dataset
that is not generated based on our assumptions; hence, it is
useful to test the robustness of our approach to these. Due
to the lack of a large amount of data, we selected only the
instances for which all annotators provided an answer, to en-
able our method to select one, several or all the annotators,
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Figure 3: Average classification error vs. total num-
ber of oracle queries on ringnorm dataset. For the top
figure, accuracy ∈ [.8, 1] for kgood = 5 labelers and ac-
curacy ∈ [.5, .7] for the remaining kbad = 5 labelers.
kgood decreases down to 1 and kbad increases up to 9
from top to bottom.
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Figure 1: Average classification error vs. total number of oracle queries on six benchmark datasets. Number
of oracles is k = 10 and the oracle accuracies are selected uniformly at random within the range [.5, 1]. The solid
curve indicates IEThresh in all graphs. The difference between IEThresh and each baseline is statistically
significant (p < 0.001) on all datasets based on a two-sided paired t-test at 95% confidence level.
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Figure 2: Number of times each oracle is queried vs. the true oracle accuracy. Each oracle corresponds to
a single bar. Each bar is multicolored where each color shows the relative contribution. Blue corresponds
to the first 10 iterations, green corresponds to an additional 40 iterations and red corresponds to another
additional 100 iterations. The bar height shows the total number of times an oracle is queried for labeling
by IEThresh during first 150 iterations.

Table 1: Properties of six datasets used in the ex-
periments. All are binary classification tasks with
varying sizes.

Dataset Size +/- Ratio Dimensions
image 2310 1.33 18

mushroom 8124 1.07 22
spambase 4601 0.65 57
phoneme 5404 0.41 5
ringnorm 7400 0.98 20
svmguide 3089 1.83 4

and to have consistent baselines. The annotator accuracies
and the size of each dataset is reported in Table 2.

We compared our method IEThresh against Repeated and
Random baselines on these two datasets. In contrast to the
UCI data experiment, there is no training of classifiers for
this experiment. Instead, the test set predictions are made
directly by AMT labelers. Hence, we randomly selected 50
instances from each dataset to be used by IEThresh to infer
estimates for the annotator accuracies. The remaining in-
stances are held out as the test set. The annotator with the
best estimated accuracy is evaluated on the test set. The
total number of queries are then calculated as a sum of the
number of queries issued during inference and the number of
queries issued to the chosen annotator during testing. Re-
peated and Random baselines do not need an inference phase
since they do not change their annotator selection mecha-
nism via learning. Hence, they are directly evaluated on the
test set. The total number of queries is assigned comparably
for IEThresh and Repeated; however, it is equal to the num-
ber of test instances for the Random baseline since it queries
a single labeler for each instance; thus, there can only be as
many queries as the number of test instances.

4.2 Results
Figure 1 compares three methods on six datasets with

simulated oracles. The true accuracy of each oracle in Fig-
ure 1 is drawn uniformly at random from within the range

Table 2: The size and the annotator accuracies for
each AMT dataset.

Data Size Annotator Accuracies
TEMP 190 0.44, 0.44, 0.54, 0.92, 0.92, 0.93
RTE 100 0.51, 0.51, 0.58, 0.85, 0.92

Table 3: Performance Comparison on RTE data.
The last column indicates the total number of
queries issued to labelers by each method. IEThresh
performs accurately with comparable labeling effort
to Repeated.

Method Accuracy # Queries
IEThresh 0.92 252
Repeated 0.6 250
Random 0.64 50

[.5, 1]. The figure reports the average classification error
with respect to the total number of oracle queries issued
by each method. IEThresh is the best performer in all six
datasets. In ringnorm and spambase datasets, IEThresh ini-
tially performs slightly worse than the other methods, indi-
cating that oracle reliability requires more sampling in these
two datasets. But, after the estimates are settled (which
happens in ∼ 200 queries), it outperforms the others, with
especially large margins in spambase dataset. The results
reported are statistically significant based on a two-sided
paired t-test, where each pair of points on the averaged re-
sults is compared.

We also analyzed the effect of filtering less reliable oracles.
An ideal filtering mechanism excludes the less accurate or-
acles early in the process and samples more from the more
accurate ones. In Figure 2, we report the number of times
each oracle is queried on image and phoneme datasets. The
x-axis shows the true accuracy of each oracle. We consider
the first 150 iterations of IEThresh and count the number
of times each oracle is selected. Each color corresponds to a
different time frame; i.e. blue, green and red correspond to
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Figure 4: Average classification error vs. total num-
ber of oracle queries on UCI mushroom dataset. For
the top figure, accuracy ∈ [.8, 1] for kgood = 5 labelers
and accuracy ∈ [.5, .7] for the remaining kbad = 5 la-
belers. kgood decreases down to 1 and kbad increases
up to 9 from top to bottom.

Table 4: Performance Comparison on TEMP data.
The last column indicates the total number of
queries issued to labelers by each method. Repeated
needs 840 queries in total to reach 0.95 accuracy to
be comparable with IEThresh.

Method Accuracy # Queries
IEThresh 0.92 265
Repeated 0.81 280
Random 0.71 140

0th − 10th, 10th − 50th and 50th − 150th iterations, respec-
tively. At first, each oracle is chosen almost equally since the
algorithm explores every possibility to improve its estimates.
Gradually, we see that less accurate oracles are sampled with
decreasing frequency, as reliance shifts to the more accurate
ones. The method continues to update its oracle estimates
until the estimates converge and become stable.

We further varied distribution of oracle accuracies to chal-
lenge IEThresh. Figures 3 and 4 show the resulting perfor-
mance of each method on ringnorm and mushroom datasets.
The top figure on each graph indicates the case with 5 highly
fallible oracles with accuracy level within [.5, .7], and 5 re-
liable ones with accuracies within [.8, 1] range. From the
top figure to the bottom, the set of oracles becomes more
skewed towards the fallible oracles. The results point out
that IEThresh generalizes to work with a wide range of or-
acle reliability distributions. Even in the challenging case
where there are only one or two reliable oracles, the al-
gorithm is able to detect the good ones. Figures 5 and 6
report a similar set of results from a different perspective.
The graphs show the total number of queries required to
achieve a target classification accuracy. IEThresh requires
the least number of queries for a given accuracy level for
most cases. Especially when the accuracy targets are high,
giving time for IEThresh to stabilize its oracle accuracy es-
timates, it can improve classification accuracy without the
intensive labeling effort required by the baselines. To test
the effectiveness of using upper confidence interval in IE
learning, we compare with a variant of IEThresh, which we
call IEMid, in Figure 6. IEMid considers only the sample
mean reward (m(a) in Eqn. 1) of each oracle and selects
the oracles whose average reward is larger than a threshold.
The results indicate that considering the variance in reward
estimates emphasizes better exploration, which is crucial es-
pecially when there are only a few good labelers available.

Lastly, we report the results on the RTE and TEMP
datasets that have real annotations from multiple less-than-
perfect labelers. Table 3 reports the accuracy of each method
on the test set for RTE data with the corresponding num-
ber of oracle queries issued. The accuracy of IEThresh is the
same as the accuracy of the single best labeler in this dataset
(See Table 2), indicating that IEThresh managed to detect
the best labeler during the inference phase. The Repeated
and Random baselines perform poorly in this dataset due to
the majority of highly unreliable labelers. Table 4 reports
the results on the test set for TEMP data. IEThresh is the
best performer in this dataset with a moderate labeling ef-
fort. The Repeated labeling baseline needs 840 queries in
total to reach 0.95 accuracy. Random baseline stops at 140
queries since this is the size of the test set and it queries a
single labeler per instance.



5. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper, we explored an algorithm for estimating
the accuracy of multiple noisy labelers and selecting the
best one(s) for active learning. Specifically, we proposed
IEThresh as an effective solution that naturally incorporates
the exploration vs. exploitation tradeoff. Filtering out the
less reliable labelers as early as possible boosts performance.
Our experimental evaluation indicates that estimating oracle
accuracy, and utilizing these estimates in the active learning
process is more effective than the naive counterparts such as
asking all labelers or asking a random labeler, which were
reported in the recent literature. Even under challenging
conditions where the number of reliable labelers is low or
some oracles are worse than random (perhaps the AMT la-
belers misunderstood the instructions), IEThresh is capable
of estimating the best labeler(s) through selective sampling
and updating oracle accuracy estimates.

There are several directions for expanding the research re-
ported here. One major direction is to track variable oracle
performance over time since it could change depending on
numerous reasons, e.g. oracle fatigue. For some problems,
the labeler quality might go down with extensive labeling
due to exhaustion and in some others it might increase with
learning. Hence, it is crucial to design methods that goes be-
yond consistent labeler quality. Another major direction is
to condition the probability of making a labeling mistake on
the data instance, or at least the region of the instance space
which contains the instance. Then, it is crucial to estimate
this probability for a representative subset of the input space
and generalize to the entire space. Another direction is to
relax the assumption that the noise generation is uncorre-
lated. It is possible that the labelers make correlated errors
as noted by [15]. This is a more challenging task since the
correlation parameters need to be estimated together with
the noise probabilities. Lastly, we assumed that the cost of
labeling is the same for each labeler in this paper. However,
it is likely that more accurate labelers cost more than the less
accurate ones. Furthermore, the cost of each instance might
differ according to the difficulty of labeling that instance. In
such cases a decision-theoretic utility model would be cen-
tral. These are interesting and challenging problems that
we began investigating under simpler scenarios and plan to
investigate in this challenging setting with multiple oracles
with a priori unknown labeling accuracies.
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[13] G. Rätsch, T. Onoda, and K. R. Muller. Soft margins
for adaboost. Machine Learning, 42(3):287–320, 2001.

[14] M. Saar-Tsechansky, P. Melville, and F. Provost.
Active feature-value acquisition. Management
Sciences, 2008.

[15] V. Sheng, F. Provost, and P. G. Ipeirotis. Get another
label? improving data quality and data mining using
multiple, noisy labelers. In Proceedings of the 14th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’08),
pages 614–622, 2008.

[16] B. W. Silverman. Some asymptotic properties of the
probabilistic teacher. IEEE Transactions on
Information Theory, 26:246–249, 1980.

[17] P. Smyth, U. Fayyad, M. Burl, P. Perona, and
P. Baldi. Inferring ground truth from subjective
labelling of venus images. In Advances in Neural
Information Processing Systems (NIPS ’94), pages
1085–1092, 1994.

[18] P. Smyth, U. Fayyad, M. Burl, P. Perona, and
P. Baldi. Learning with probabilistic supervision.
Computational Learning Theory and Natural Learning
Systems, 3, 1995.

[19] R. Snow, O’Connor, D. Jurafsky, and A. Ng. Cheap
and fast—but is it good? evaluating non-expert
annotations for natural language tasks. In Proc. of the
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2008.

[20] Z. Zheng and B. Padmanabhan. Selectively acquiring
customer information: A new data acquisition
problem and an active learning-based solution.
Management Science, 52.


