
An Impact Criterion for Active Graph Search

Xuezhi Wang
Carnegie Mellon University
xuezhiw@cs.cmu.edu

Roman Garnett
Carnegie Mellon University

rgarnett@andrew.cmu.edu

Jeff Schneider
Carnegie Mellon University
schneide@cs.cmu.edu

1 Introduction

It is often cheap to collect a large amount of unlabeled data, but much more expensive to get labels
for it. This has led to increasing interest in active learning algorithms that iteratively choose which
labels to query with a goal of optimizing some prediction accuracy criterion based on only a subset
of the labels. In this paper, we focus instead on the active search problem, where we seek records
belonging to a certain positive class. Although we will still build a predictive model and may request
labels to improve it, our algorithm will ultimately be scored only on how many positives it finds.

Although active search applications appear with many different types of data, we restrict our atten-
tion to graph data where the graph structure is known and we are interested in labels on the nodes
that are expensive to collect. A typical model will use the graph link structure and the labels al-
ready collected to make predictions about unlabeled nodes. There are many interesting applications
include fraud detection in a financial network, and relevant paper discovery in a citation graph.

One might expect active learning algorithms to be appropriate for active search as well since they
will produce a good model that can be used to find positives. However, in active search a good
algorithm must trade off the need to exploit (use the current model to collect positives) against the
need to explore (develop a better model to more accurately guess the positives in future selections).
A traditional active learning method would focus entirely on exploring and only collect positives
by accident. The exploration/exploitation feature of the problem might lead one to consider ban-
dit algorithms for active searching, which, however, are hard to adapt since we will never choose
the same node more than once. As with active learning and bandit problems, the optimal active
learning solution usually requires an intractable look ahead search over an exponential number of
possible future queries and label outcomes. Algorithms based on evaluating the expected utility over
a truncated look ahead have been proposed and good empirical results have been obtained by using
a smart pruning strategy that reduces the cost by orders of magnitude and makes longer look aheads
possible [1]. In the same work, it was proven that arbitrarily better performance is always possible
with one further step of look ahead. In empirical examples, it seems that much better performance
is available from looking ahead much further than is possible even with smart pruning.

Many successful algorithms for active learning and bandit problems do a myopic or 1-step evalua-
tion of a well-crafted surrogate objective rather than directly optimizing expected utility. Inspired
by their successes, we propose such a method for active search in graphs. We begin by introducing
a soft-label model for graphs, which attaches a pseudo node to each original node and holds the
observed labels. As the selection criterion, we propose the probability of a positive (the exploita-
tion) plus a measure of impact based on the number of additional positives likely to be identified
(the exploration). Both the model and the impact factor can be efficiently computed using incre-
mental updates to the model matrices. We compare our method to uncertainty sampling, a modified
UCB algorithm, and a previously proposed model for graphs. On citation and wikipedia graphs our
method outperforms all the others.

1

2 Related Work

There has been much research on achieving good classification with partially labeled data. In [2],
the authors propose a Markov random walk based algorithm to classify unlabeled points using the
information of labeled ones as well as the graph structure. In [3], the authors propose a semi-
supervised label learning method which is based on the Gaussian random field model. In [4], the
authors adopt a relational active learning model to improve both model estimation and prediction
after acquiring a node’s label.

Active graph search involves an exploration and exploitation dilemma, where the Upper Confidence
Bound (UCB) algorithm [5][6] is a popular method of addressing this issue. The basic idea of UCB
in multiarmed bandit problems is to sum the current estimate about the reward of each arm (exploita-
tion) and the uncertainty about that arm (exploration). UCB is appealing due to its regret bounds but
the setting is too confined to be used in the active search problem. UCB intends to repeatedly select
good arms while the active graph search problem does not allow repeated selections.

There is a more subtle issue as well. Ideally, the exploration component of an algorithm would
optimize some measure of information gained from a label. In a traditional independent-arm bandit
problem this is easily replaced by the uncertainty for a particular arm because the information gain
is confined to that arm. When a Gaussian process model is used, information is spread throughout
the model. However, because of the symmetric and homogeneous properties of typical kernels, the
information gain for sampling at a point can again be substituted with the current model uncertainty
at that point. Good graph models offer no such easy way out. The potential information to be gained
by choosing a hub can be much larger than that of choosing a disconnected singleton even if the
latter is much more uncertain. This property motivates the impact factor in our proposed method.

3 Approach

3.1 Problem Description and the Soft-Label Model

Here we formally define a binary graph active search problem. We are given a finite set of n nodes,
indexed {1, ..., n}, the weight matrix W = [wij], and an unknown set of labels Y = {y1, ..., yn}
where yi ∈ {0, 1} and we want to identify the nodes for which yi = 1. Initially all nodes belong
to the unlabeled set, U . At each iteration we choose a node i, find out yi, and move node i to the
labeled set, L. Our performance after k iterations is the sum of the yi in L.

We begin by considering models for predicting the unknown values of Y . In [3], the authors propose
a harmonic function f = D−1Wf (W is the weight matrix and D is the diagonal matrix with
Dii =

∑
jWij), with each entry fi in the harmonic function as an indicator of the probability that

a random walk starting from node i will hit a label 1 before it hits a label 0. However, this model
has some problems, especially for active search. Suppose we first discover the hub node i of a star
structure with label yi = 0, which is connected to many nodes with label yj = 1 in its immediate
neighborhood. Discovering any number of nodes with label yj = 1 in Ni will never increase any
remaining element of fu from Ni since a random walk will always stop at the 0 label of node i.

Following the idea about dongle nodes in [3], we propose a soft-label model, which attaches a
pseudo node to each labeled original node i to hold its label. The edge between the pseudo node
and the original node adjusts the probability of (1) hitting a labeled node and stopping versus (2)
ignoring the label and continuing the random walk. Leaving f as the estimate of the original nodes
and letting xl represent the labeled pseudo nodes (with entry 0 for unlabeled nodes), we get: f =

D−1∗ [W Dl] [f xl]
T , where W is the weight matrix, and Dl is an n × n diagonal matrix

with Dl(ii) = η
1−η

∑
j wij for all i ∈ L and Dl(ii) = 0 for all i ∈ U , which indicates that there

is a transition probability η from a labeled node i to its labeled pseudo node. D∗ is also a diagonal
matrix with D∗(ii) =

∑
j wij +Dl(ii) = 1

1−η
∑
j wij for i ∈ L, acting as a row normalizing factor.

It is often useful to include prior information on labels and we can attach a pseudo node to the
unlabeled original nodes for this purpose. We set the pseudo node label to be the value of the prior.
The weight of the attached edge represents the strength of the prior. We set the weight of node i to
be ω0Dii, where ω0 is the strength, and Dii is the degree of node i. By a similar derivation as above
and absorbing the row normalizing factor we get: f = [A D′] [f x]

T which leads to f =

2

(I − A)−1D′x , where Aij =

{
(1− η)(D−1W)ij i ∈ L

1
1+ω0

(D−1W)ij i ∈ U and D′ii =

{
η i ∈ L
ω0

1+ω0
i ∈ U .

Here x is a vector with labels in the entries corresponding to labeled nodes, and a value π for the
prior in the entries corresponding to unlabeled ones. f will be a vector with fi = P (yi = 1|L) for
all the nodes, but we only care about those entries i with i ∈ U .

3.2 The Selection Criterion

We propose the selection criterion with the following form: score(t)i = f
(t)
i + α × IM (t)

i , where
f
(t)
i indicates the model’s prediction for node i after seeing t labels, IM (t)

i is the expected impact
on future positives found by choosing node i now, and α is a parameter trading off exploration and
exploitation. We choose the node with highest scorei at each iteration.

There are many possibilities for defining IM . The entropy in fi would be an obvious choice,
however that does a poor job of capturing how much effect node i has on the rest of the graph and
especially how much it will increase the number of positives we find in the future after observing
yi. We can consider Σi∈Ufi as an indication of the number of positives we will find in the future.
Therefore, we propose to explicitly condition on the expected value of yi and measure its potential
to increase values of f in the unlabeled part of the graph. We propose:

IM
(t)
i = P (y

(t)
i = 1|L(t))

∑
j∈{U(t)\i}

(P (y
(t+1)
j = 1|yi = 1, L(t))−P (y

(t)
j = 1|L(t))) = fi

∑
j∈{U(t)\i}

(f ′
j−fj)

where f is the original prediction for each node and f ′ is the prediction conditioned on adding node i
to the training set with label yi = 1. Note that we do not condition on seeing yi = 0. Intuitively you
might want to set up the impact criterion to marginalize over the unknown outcome. However, doing
that would correspond to estimating the change in expected number of positives in this neighborhood
under the assumption that your policy will continue choosing nodes in this neighborhood even if it
sees a negative outcome. This is not the policy we will follow. If a negative is observed, the policy
will move to some other part of the graph. By doing it the way we propose we are representing
both the unknown outcome and the decision that will follow (i.e. to continue choosing nodes in this
neighborhood or not).

This impact factor is heuristic and computing the true future expected increase in positives chosen is
just as computationally intractable as implementing the full optimal policy. However, this definition
of IM is able to tractably imitate a full look ahead by computing the full impact over all the nodes
in the graph through the model. An example is enlightening. Imagine a graph of many separate
components, each of which is a clique of widely varying size. A smart exploration algorithm would
take samples from the cliques in descending order of their sizes. Observe that a truncated lookahead
of k steps is only able to distinguish the value between cliques of size less than k. All cliques of
size k or greater will look equal to the truncated look ahead algorithm. Such an algorithm will
explore somewhat randomly until there are only cliques of size smaller than k left and suffer poor
performance as a result. Our proposed IM , however, will exactly give all the nodes scores in
proportion to their clique’s size and it will make good exploration choices from the beginning.

Evaluation of the objective function requires repeated conditioning on single new label observations,
which would require O(n3) time if we apply the criterion naively. We can reduce the computation
by following the efficient update procedure suggested in [7] which will reduce the cost to O(n2) if
we have already computed the matrix inversion at the very beginning.

4 Experimental Results

Data and Experimental Setting. We demonstrate our approach on two real-world datasets. (1)
A citation network with 14,117 nodes (papers) and 42,019 edges (citation links, undirected) from
citeseer, consisting of papers from the top 10 venues in Computer Science. The 1844 NIPS papers
are labeled as targets. (2) 5271 webpages related to Programming Languages from Wikipedia with
undirected links as edges. For each webpage we precompute its topic vector using the software
available at [8]. 202 webpages highly related to “object oriented programming” are labeled as
targets. Then we perform 20 random trials using a single randomly chosen positive node to initialize
each trial. The averaged number of positives found as a function of iteration number is recorded.

3

We set η = 0.5 for both datasets, π is set to the true prior proportion of positives, and ω0 is set to
1/n, where n is the number of nodes. We test α = {0, 10−4, 10−3, 10−2, 10−1}.
Baselines. We compare our approach with several baselines. (1) Uncertainty Sampling. We use our
proposed f function as an approximation of P (yi = 1|L) and query the node with f value closest to
0.5. (2) Modified Upper Confidence Bound. UCB is not a natural fit but we modify UCB1 proposed
in [5]. We assume that at first each node has been ’pulled’ once and the prior is the information we
get. We use our proposed f as the current estimation xj , and count the number of queried neighbors
of node j as nj . (3) 2-step lookahead from [1]. (4) Harmonic Function (fu as proposed in [3]).

Results. Figure 1 shows the performance of our proposed model (with its best value of α) compared
with the baselines on the two datasets. The results indicate that our proposed model has a clear
advantage over baseline methods. The similar performance between our model and uncertainty
sampling after about 600 iterations in the right figure is due to the low proportion of targets in the
graph (the score falls below 0.5). Figure 2 shows the more detailed results of carrying out paired
t-tests among some of the competitive methods.

Figure 1: Proposed Model vs. Harmonic Function, Uncertainty Sampling, Upper Confidence Bound, Random
Sampling, 2-step lookahead on the citation network (left) and wikipedia dataset (right).

Figure 2: Difference in the number of positives found on the citation (left) and wiki (right) data by (1) Proposed
model with α > 0 and (2) Harmonic Function, compared to proposed model with α = 0 (the zero line).

5 Future Work Discussion

There could be some possible extensions of this work. For example, setting α remains an unresolved
issue. An automated method might consider a budget, B, of remaining choices to be made and set
it accordingly. A reasonable setting might be α ∼ (B− |L|)/B, where |L| is the size of labeled set.
Alternatively, we might follow the form of the UCB algorithms and determine an adaptive value of
α that allows us to derive regret bounds. However, doing so may be challenging given the fact that
UCB methods are based on repeated arm pulls, while active search is not.

4

References

[1] R. Garnett, Y. Krishnamurthy, X. Xiong, J. Schneider, R. Mann. (2012) Bayesian Optimal Active Search
and Surveying. ICML.

[2] M. Szummer, T. Jaakkola. (2001) Partial Labeled Classification with Markov Random Walks. NIPS.

[3] X. Zhu, Z. Ghahramani, J. Lafferty. (2003) Semi-supervised Learning Using Gaussian Fields and Harmonic
Functions. ICML.

[4] A. Kuwadekar, J. Neville. (2011) Relational Active Learning for Joint Collective Classification Models.
ICML.

[5] P. Auer, N. Cesa-Bianchi, P. Fischer. (2002) Finite-time Analysis of the Multiarmed Bandit Problem.
Machine Learning, 27.

[6] N. Srinivas, A. Krause, S. Kakade, M. Seeger. (2010) Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design. ICML.

[7] X. Zhu, J. Lafferty, and Z. Ghahramani. (2003) Combining active learning and semi-supervised learning
using Gaussian fields and harmonic functions. ICML workshop on The Continuum from Labeled to Unlabeled
Data in Machine Learning and Data Mining.

[8] A. McCallum, ”MALLET: A Machine Learning for Language Toolkit.”, mallet.cs.umass.edu, 2002.

5

