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ABSTRACT
We develop an automated technique for detecting damped Ly α absorbers (DLAs) along
spectroscopic lines of sight to quasi-stellar objects (QSOs or quasars). The detection of DLAs
in large-scale spectroscopic surveys such as SDSS III sheds light on galaxy formation at high
redshift, showing the nucleation of galaxies from diffuse gas. We use nearly 50 000 QSO
spectra to learn a novel tailored Gaussian process model for quasar emission spectra, which
we apply to the DLA detection problem via Bayesian model selection. We propose models
for identifying an arbitrary number of DLAs along a given line of sight. We demonstrate our
method’s effectiveness using a large-scale validation experiment, with excellent performance.
We also provide a catalogue of our results applied to 162 858 spectra from SDSS-III data
release 12.

Key words: methods: statistical – intergalactic medium – quasars: absorption lines – galaxies:
statistics.

1 IN T RO D U C T I O N

The damped Ly α systems (DLAs; Wolfe et al. 1986; Wolfe,
Gawiser & Prochaska 2005) define the class of absorption-line sys-
tems discovered in the rest-frame UV spectra of distant quasars, with
H I column densities NH I > 2 × 1020 cm−2, as measured from the
analysis of damping wings in the Ly α profile. Recent spectroscopic
quasar surveys such as the Sloan Digital Sky Survey (SDSS; York
et al. 2000) have produced a vast sample of quasar spectra showing
Ly α absorption at z > 2. SDSS III has measured nearly 300 000
quasar spectra over its brief history. Even larger surveys, such as
the Dark Energy Spectroscopic Instrument (DESI1) survey, soon
plan to observe 1–2 million quasars. Finding DLAs in these surveys
has historically involved a combination of automated template fit-
ting and visual inspection, but visual inspection is clearly infeasible
with the size of upcoming data sets. Furthermore, SDSS data trades
off low signal-to-noise ratios (SNRs) for statistical power, making
detection of even distinctive signals such as DLAs substantially
harder, and making noise-induced systematic error hard to control.

There have been several previous DLA searches in SDSS.
These include a visual-inspection survey (Slosar et al. 2011),
visually guided Voigt-profile fitting (Prochaska, Herbert-Fort &
Wolfe 2005; Prochaska & Wolfe 2009) and two automated ap-
proaches: a template-matching approach (Noterdaeme et al. 2012),
and an unpublished machine-learning approach using Fisher dis-
criminant analysis (Carithers 2012). Although these methods have
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had some success in detecting large DLA catalogues, their reliance
entirely on templates made them subject to hard-to-quantify sys-
tematic biases. In particular, these methods lack an explicit global
model of quasar emission beyond simple continuum estimation, and
the lack of such a model may give rise to unexpected false positives.

We present a new, completely automated method based on a rig-
orous Bayesian model-selection framework. We model the quasar
spectra, including the continuum and non-DLA absorption, using
Gaussian process (GP; Rasmussen & Williams 2006) models with
a bespoke covariance function. Earlier catalogues are used as prior
information to train the covariance. We provide a catalogue of our
results on 162 858 QSOs with z ≥ 2.15 from data release 12 of
SDSS III, demonstrating that our method scales to very large data
sets, making it ideally suited for future surveys. Furthermore, as our
method relies on a well-defined probabilistic framework, it allows
us to estimate the probability that each system is indeed a DLA,
rather than a noise fluctuation, degrading gracefully for low-SNR
observations. This property allows us to obtain substantially more-
reliable measurements of the statistics of the DLA population in
situations with reliable uncertainties even where systematic uncer-
tainty dominates (Bird, Garnett & Ho 2017). We are also able to
extend our catalogue to high redshift even with low-quality data.

Our method is applicable not just to DLAs, but also to other
classes of absorption systems, such as Lyman limit systems and
metal absorbers, which we intend to examine in future work. We
focus on DLAs here both because of the large body of prior work
which enables us to thoroughly verify our catalogues, and the in-
trinsic importance of these systems.

DLAs are a direct probe of neutral gas at densities close to
those required to form stars (Cen 2012). The exact nature of the
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systems hosting DLAs was initially debated, with kinematic data
combined with simple semi-analytic models appearing to indi-
cate objects similar in size to present day star-forming galaxies
(Prochaska & Wolfe 1997; Jedamzik & Prochaska 1998; Maller
et al. 2001), whereas early simulations produced clumps closer in
size to dwarf galaxies (Haehnelt, Steinmetz & Rauch 1998; Okoshi
& Nagashima 2005). Recent numerical simulations are able to re-
produce most observations with neutral hydrogen clouds stretching
almost to the virial radius of objects larger than dwarfs, but smaller
than present day star-forming galaxies (Pontzen et al. 2008; Rah-
mati et al. 2013; Bird et al. 2015). Associated galactic stellar com-
ponents have been detected in a few, particularly neutral hydrogen
and metal-rich systems at low redshift (Le Brun et al. 1997; Rao
et al. 2003; Chen 2005). However, unbiased surveys have placed
strong upper limits on the star-formation rates of the median DLA
(Fumagalli et al. 2015), indicating that DLAs are associated with
low star-formation rate objects.

DLAs represent our only probe of small- to moderate-sized galax-
ies at high redshift, and are known to have dominated the neutral-gas
content of the Universe from redshift z = 5 (when the Universe was
1.2 Gyr old) to today (Gardner et al. 1997; Wolfe et al. 2005).
The neutral gas in these systems ultimately accretes on to galactic
haloes and fuels star formation. Thus, their abundance as a func-
tion of redshift provides strong constraints on models of galaxy
formation (Bird et al. 2014). Our work, including publicly available
software, will not only provide observers with a new automated tool
for detecting these objects, but also provide theorists with a reliable
catalogue on which to base theoretical models.

2 N OTATIO N

We will briefly establish some notation. Consider a QSO with red-
shift zQSO; we will always assume that zQSO is known, allowing
us to work in the quasar rest frame. We will notate a QSO’s true
emission spectrum by a function f : R → R, where f(λ) represents
the flux corresponding to rest wavelength λ. Without subscript, λ

will always refer to quasar rest wavelengths, λrest, rather than ob-
served wavelengths, λobs. Note that the spectral emission function f
is never directly observed, both due to measurement error and due
to absorption by intervening matter along the line of sight. We will
denote the observed flux by a corresponding function y(λ), which
will again be a function of the rest wavelengths.

Spectrographic observations of a QSO are made at a discrete set
of wavelengths λ, for which we observe a corresponding vector of
flux measurements y, where we have defined yi = y(λi). For a given
QSO, we will represent the set of observation locations and values
(λ, y) by D.

We will often encounter data with missing values due to
observation-dependent pixel masking. When required, we will rep-
resent these in the text with a special value called NaN (for ‘not a
number’). Calculations on data containing NaN s will always ignore
these values.

3 BAY ESIAN MODEL SELECTION

Our approach to DLA detection will depend on Bayesian model
selection, which will allow us to directly compute the probability
that a given quasar sightline contains a DLA. We will develop two
probabilistic models for a given set of spectroscopic observations
D: one for sightlines with intervening DLAs and one for those with-
out. Then, given the available data, we will compute the posterior

probability that the former model is correct. We will give a high-
level overview of Bayesian model selection below, then proceed to
describe our models for DLA detection below.

Let M be a probabilistic model, and let θ represent a vector of
parameters for this model (if any). Given a set of observed data
D and a set of candidate models {Mi} containing M, we wish to
compute the probability of M being the correct model to explain
D. The key quantity of interest to model selection is the so-called
model evidence:

p(D | M) =
∫

p(D | M, θ )p(θ | M) dθ, (1)

which represents the probability of having generating the observed
data with the model, after having integrated out any uncertainty in
the parameter vector θ . Given the model evidence, we can apply
Bayes’ rule to compute the posterior probability of the model given
the data:

Pr(M | D)=p(D | M) Pr(M)

p(D)
= p(D | M) Pr(M)∑

i p(D | Mi) Pr(Mi)
, (2)

where Pr(M) represents the prior probability of the model. Notice
that computing the posterior probability of M requires computing
the normalizing constant in the denominator.

We will develop two models for spectroscopic observations of
QSOs, M¬DLA, for lines of sight that do not contain intervening
DLAs, and MDLA, for those that do. Both of these models will rely
heavily on GPs, which we will introduce below.

4 G AU SSIAN PROCESSES

The main object of interest we wish to perform inference about is
a given QSO’s emission function f(λ). This is in general a compli-
cated function with no simple parametric form available, so we will
instead use nonparametric inference techniques to reason about it.
GPs provide a powerful nonparametric framework for modelling un-
known functions, which we will adopt. See Rasmussen & Williams
(2006) for an extensive introduction to GPs.

4.1 Definition and prior distribution

Let X be an arbitrary input space, for example the real line R, and
let f : X → R be a real-valued function on X we wish to model.
We will continue to use λ to indicate inputs to the function f. A GP
is an extension of the multivariate Gaussian distribution N (μ,�) to
infinite domains. Like the multivariate Gaussian distribution, a GP
is fully specified by its first two central moments: a mean function
μ(λ) and a positive semidefinite covariance function K(λ, λ′):2

μ(λ) = E[f (λ) | λ];

K(λ, λ′) = cov[f (λ), f (λ′) | λ, λ′].

The former describes the pointwise expected value of the function
and the latter describes the correlation around the mean. Given μ and
K, we may endow the function space f with a GP prior probability
distribution:

p(f ) = GP(f ; μ, K). (3)

2 A function K : X 2 → R is positive semidefinite if, for every finite subset
� = {λi}ni=1 ⊂ X , the n × n Gram matrix A, defined by Aij = K(λi, λj),
satisfies c�Ac ≥ 0 for all c ∈ R

n.
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The defining characteristic of a GP is that given a finite set of
inputs λ, the corresponding vector of function values f = f (λ) is
multivariate Gaussian distributed:

p( f ) = N ( f ; μ(λ), K(λ, λ)), (4)

where the mean vector and covariance matrix are derived simply by
evaluating the mean and covariance functions at the inputs λ, and
the multivariate Gaussian probability distribution function is given
by

N ( f ; μ, K) = 1√
(2π)d det K

exp

(
−1

2
( f − μ)�K−1( f − μ)

)
,

(5)

where d is the dimension of f .

4.2 Observation model

Consider a set of noisy observations D = (λ, y) made at input loca-
tions λ. Our GP prior on f implies a multivariate Gaussian distribu-
tion for the corresponding (unknown, so-called latent) function val-
ues f = f (λ), but does not specify the relationship between these
values and our observations y. Instead, we must further model the
mechanism generating our observations, which we will encode by
a distribution

p( y | λ, f ). (6)

In general, this can be any arbitrary probabilistic model, but here
we will assume additive Gaussian noise.

Given a single input location λ, we assume that the corresponding
observed value y is realized by corrupting the true value of the latent
function f(λ) by zero-mean additive Gaussian noise with known
variance σ (λ)2:

p(y | λ, f (λ), σ (λ)) = N (y; f (λ), σ (λ)2). (7)

We assume the noise process is independent for every λ, but note
that we do not make a homoskedasticity assumption; rather, we
allow the noise variance to depend on λ. This capability to handle
heteroskedastic noise is critical for the analysis of spectroscopic
measurements, where the noise associated with flux measurements
can vary widely as a function of wavelength.

Returning to our entire set of observationsD = (λ, y), we assume
that the noise variance associated with each of these measurements
is known and given by a corresponding vector v, with vi = σ (λi)2.
Given our model for individual observations (7) and the noise inde-
pendence assumption, the entire observation model is given by

p( y | λ, f , v) = N ( y; f , V), (8)

where V = diagv, and we use the diag notation applied to a vector
to refer to a square diagonal matrix with leading diagonal equal to
the specified vector.

4.2.1 Prior of noisy observations

Given a set of observations locations λ and a corresponding vec-
tor of noise variances v, we may use the above to compute the
prior distribution for a corresponding vector of observations y by
marginalizing the latent function values f :

p( y | λ, v) =
∫

p( y | λ, f , v)p( f | λ) d f

=
∫

N ( y; f , V) N ( f ; μ(λ), K(λ, λ)) d f

= N ( y; μ(λ), K(λ, λ) + V), (9)

where we have used the fact that Gaussians are closed under con-
volution to compute the integral in closed form.

In typical applications of GP inference, the prior mean function μ

and prior covariance function K would be selected from numerous
several off-the-shelf solutions available for this purpose; however,
none of these would be directly appropriate for modelling QSO
emission spectra, due to their somewhat complex nature. Typical
parametric covariance functions, for example, tend to be translation
invariant and encode strictly decreasing covariance as a function
of the distance between inputs.3 QSO emission spectra, however,
are neither stationary, nor should we expect the covariance to be
diagonal dominant. For example, strong off-diagonal correlations
must exist between potentially distant emission lines, such as mem-
bers of the Lyman series. Rather, below we will construct a cus-
tom GP prior distribution for modelling these spectra in the next
section.

5 LEARNI NG A G P PRI OR FOR Q SO SPECTRA

We wish to construct a GP prior for QSO spectra, specifically, those
that do not contain an intervening DLA along the line of sight. This
will form the basis for our null model M¬DLA. We will later extend
this to form our DLA model MDLA.

As described in the previous section, a GP is defined entirely by
its first two moments: a mean function μ(λ) and a covariance func-
tion K(λ, λ′). Therefore, our goal in this section will be to derive
reasonable prior choices for these functions. Due to the complex
structure of QSO emission spectra, our approach will be to make
as few assumptions as possible. Instead, we adopt a data-driven
approach and learn an appropriate model given over 48 000 exam-
ples contained in a previously compiled catalogue of quasar spectra
recorded by the BOSS spectrograph (Smee et al. 2013).

5.1 Data

Together, SDSS I, II (Abazajian et al. 2009) and III (Eisenstein
et al. 2011) used a drift-scanning mosaic CCD camera (Gunn
et al. 1998) to image over one-third of the sky (14 555 square de-
grees) in five photometric bandpasses (Fukugita et al. 1996; Smith
et al. 2002; Doi et al. 2010) to a limiting magnitude of r < 22.5 using
the dedicated 2.5-m Sloan Telescope (Gunn et al. 2006) located at
Apache Point Observatory in New Mexico.

The Baryon Oscillation Spectroscopic Survey (BOSS), a part of
the SDSS-III survey (Eisenstein et al. 2011), has obtained spectra
of 1.5 million galaxies approximately volume limited out to z ∼ 0.6
(Reid et al. 2016), and an additional 150 000 spectra of high-redshift
quasars and ancillary sources. BOSS has measured the characteristic
scale imprinted by baryon acoustic oscillations (BAOs) in the early
Universe from the spatial distribution of galaxies at z ∼ 0.5 and the
H I absorption lines in the intergalactic medium at z ∼ 2.3 (Anderson
et al. 2012, 2014; Aubourg et al. 2015). The quasar target selection
is described in Bovy et al. (2011) and Ross et al. (2012). Here, we
use data included in data releases 9 (DR9; Ahn et al. 2012) and data
releases 12 (DR12; Ahn et al. 2014) of SDSS III; in particular, we
primarily use the associated quasar catalogues from various data
releases4 (Pâris et al. 2012, 2014).

3 The Wiener process, modelling the sample paths of Brownian motion, is a
GP with such a covariance function.
4 http://www.sdss.org/dr12/algorithms/boss-dr12-quasar-catalog/
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5.1.1 Description of data

We used the QSO spectra from the BOSS DR9 Ly α forest sample
(Lee et al. 2013) to train our GP model. This sample comprises
54 468 QSO spectra with zQSO > 2.15 from the DR9 release appro-
priate for Ly α forest analysis. An analogous model built from the
entire DR12 sample will be published along with manuscript for
general-purpose use, along with the source code (in MATLAB) we
used to train our model and conduct our investigation.

The Ly α forest sample was augmented with a previously com-
piled ‘concordance’ DLA catalogue (Carithers 2012), combin-
ing the results of three previous DLA searches. These include a
visual-inspection survey (Slosar et al. 2011) and two previous au-
tomated approaches: a template-matching approach (Noterdaeme
et al. 2012), and an unpublished machine-learning approach us-
ing Fisher discriminant analysis (Carithers 2012). Any line of sight
flagged in at least two of these catalogues as containing a DLA is in-
cluded in the concordance catalogue. Both previous automated DLA
searches also produced estimates of the absorber redshift zDLA and
column density log10 NH I. The concordance catalogue also includes
these estimates for flagged sightlines; when a sightline is included
in both automated catalogues, the arithmetic mean of the associated
estimates was recorded. A total of 5854 lines of sight are flagged as
containing an intervening DLA in the catalogue (10.7 per cent).

5.2 Modelling decisions

To avoid effects due to redshift, we will build our emission model for
wavelengths in the rest frame of the QSO. Furthermore, to account
for arbitrary scaling of flux measurements, we will build a GP prior
for normalized flux. Specifically, given the observed flux of a QSO,
we normalize all flux measurements by dividing by the median flux
observed between 1310 Å and 1325 Å in the rest frame of the QSO,
a region redwards of the Ly α forest and void of major emission
features.

Because this study is concerned with identifying DLAs, we will
only model the flux bluewards of the Ly α emission in the rest frame
of a given QSO.5 Specifically, we model emissions in the range
spanning from the Lyman limit to the Ly α line in the QSO rest
frame.6 Our approach will be to learn a mean vector and covariance
matrix on a dense grid of wavelengths in this range, which we
will then interpolate as required by a particular set of observed
wavelengths.7 The chosen grid was the set of wavelengths

λ ∈ [911.75 Å, 1215.75 Å], (10)

with a linearly equal spacing of 	λ = 0.25 Å.8 This resulted in a
vector of input locations λ with |λ| = Npixels = 1 217 pixels.

5 One could consider an extension of our approach where metal absorption
lines corresponding to wavelengths redwards of Ly α were considered, re-
quiring modelling spectra over a larger range of wavelengths; however, we
will not do so here.
6 We stop at the Lyman limit to avoid being confused by the Lyman break
associated with Lyman limit systems.
7 Such interpolation introduces minor correlation between pixels; however,
this effect is unlikely to be large.
8 This represents about 3–4 times the maximum pixel separation of the
BOSS spectrograph; the minimum separation in a single BOSS spectrum’s
measured wavelengths is approximately (10log10 3600+0.0001 − 3600) Å ≈
0.83 Å. Note, however, that we have tens of thousands of observations
corresponding to each of the wavelengths in our chosen grid.

Given a GP prior for QSO emission spectra, p(f ) =
GP(f ; μ, K), the prior distribution for emissions on the chosen
grid λ, f = f (λ) is a multivariate Gaussian:

p( f | λ, zQSO) = N ( f ; μ, K), (11)

where μ = μ(λ) and K = K(λ, λ). Note that we must condition on
the QSO redshift zQSO because it is required for shifting into the
quasar rest frame.

As mentioned previously, however, we can never observe f di-
rectly, due to both measurement error and absorption by intervening
matter along the line of sight. The former can be handled easily for
our spectra by using the pipeline error estimates in the role of the
noise vector v (see Section 4.2). However, the latter is more prob-
lematic, especially in our chosen region, which includes the Ly α

forest. In principle, if we knew the exact nature of the interven-
ing matter, we could model this absorption explicitly; however,
this is unrealistic. We will instead model the effect of small ab-
sorption phenomena (absorption by objects with column density
below the DLA limit, log10 NH I < 20.3) by an additional additive
wavelength- and redshift-dependent Gaussian noise term, which we
will learn. Therefore, the characteristic ‘dips’ of the Ly α forest will
be modelled as noisy deviations from the true underlying smooth
continuum. Later, we will explicitly model larger absorption phe-
nomena (DLAs with log10 NH I ≥ 20.3) to build our DLA model
MDLA.

The mathematical consequence of this modelling decision is as
follows. Consider the arbitrary GP model in equation (11). We wish
to model the associated spectroscopic observation values on the
chosen grid, y = y(λ). Suppose that the measurement noise vec-
tor v = σ (λ)2 has been specified. During our exposition on GPs,
we described the additive Gaussian noise observation model (8).
The model we adapt here will involve a shared non-DLA absorp-
tion ‘noise’ vector ω, defined in the quasar rest frame, modelling
absorption deviations from the QSO continuum.

Due to the evolution of the Ly α forest flux with redshift, we ad-
ditionally incorporate a simple power-law redshift dependence into
this absorption noise model. Namely, the absorption noise standard
deviation we incorporate at an observed wavelength λobs is defined
to be

ω′(λobs, λrest) = ω(λrest)s(z(λobs))
2; (12)

s(z) = 1 − exp(−τ0(1 + z)β ) + c0, (13)

where ω(λrest) is the shared absorption noise corresponding to the
wavelength in the quasar rest frame, c0, τ 0 and β are constants, and
z(λobs) is the redshift of Ly α at the observed wavelength. Hence, our
model depends on the redshift of the quasar as well as the redshift
of Ly α along the line of sight.

The resulting observation model is

p( y | f , v, ω, zQSO,M¬DLA) = N ( y; f , � + V), (14)

where � = diagω′, and ω′ incorporates the redshift dependence
as defined above. Therefore, given our chosen grid λ, the prior
distribution of associated spectroscopic observations y is

p( y | v, ω, zQSO,M¬DLA) = N ( y; μ, K + � + V), (15)

derived analogously to equation (9). Our goal now is to learn ap-
propriate values for μ, K , ω, c0, τ 0 and β, which will fully specify
our null model M¬DLA.
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Figure 1. An illustration of the data preprocessing procedure for object SDSS 020712.80+052753.4, (plate, MJD, fibre) = (4401, 55510, 338); zQSO = 3.741.
This QSO is included in the DLA concordance catalogue with (zDLA, log10 NH I) = (3.283, 20.39), corresponding to central absorption wavelength
λobs = 5 206 Å or λrest = 1 098 Å in the QSO rest frame. The wavelengths are shifted to the QSO rest frame and pixels outside λrest ∈ [911.75 Å, 1215.75 Å]
are discarded. Finally, the flux and noise estimates are normalized by dividing by the median flux observed in the range of [1310 Å, 1325 Å]. The final result is
shown in (b).

5.3 Learning appropriate parameters

To build our null model, we took the Nspec = 48 614 spectra from
the BOSS DR9 Ly α forest sample that are putatively absent of
intervening DLAs. We prepared each of these spectra for processing
in an identical manner as follows:

(i) The augmented spectrum file was loaded and the (wavelength,
observed flux, pipeline noise variance) = (λ, y, v) measurements in
the chosen modelled region were extracted.

(ii) The wavelengths were shifted to the rest frame of the QSO.
(iii) Flux measurements with serious pixel mask bit flags (FULL-

REJECT, NOSKY, BRIGHTSKY, NODATA) set by the SDSS
pipeline were masked (replaced by NaN).

(iv) The flux normalizer was determined by examining the region
corresponding to [1310, 1325] Å in the rest frame of the quasar; the
median nonmasked value in this range was used for normalization.

(v) The flux and noise variance were normalized with the value
computed in the last step.

Finally, we linearly interpolated the resulting flux and noise vari-
ance measurements of each spectrum on to the chosen wavelength
grid λ. Note that this interpolation preserved NaN s; we did not
‘interpolate through’ masked pixels. We also did not extrapolate
beyond the range of wavelengths present in each spectrum. The
preprocessing procedure is illustrated in Fig. 1 on a spectrum we
will use as a running example.

We collect the resulting interpolated vectors into (Nspec × Npixels)
matrices Y and V, containing the normalized flux and noise variance
vectors, respectively. For QSO i, we will write yi and vi to represent

the corresponding observed flux and noise variance vectors and will
define Vi = diagvi .

Due to masked pixels and varying redshifts of each QSO, the Y
and V matrices contain numerous missing values, especially on the
blue end. Fig. 2 shows the portion of available data as a function of
wavelength.

5.3.1 Learning the mean

Identifying an appropriate mean vector μ is straightforward with so
many example spectra. We simply found the mean recorded value
for each rest wavelength in our grid across the available measure-
ments:

μj = 1

N¬NaN

∑
yij �=NaN

yij . (16)

Note that the sample mean is the maximum-likelihood estimator for
μ. The learned mean vector μ is plotted in Fig. 3. Several emission
features are obvious.

5.3.2 Learning the flux covariance and additional absorption
noise

We will use standard unconstrained optimization techniques to learn
the covariance matrix K and absorption ‘noise’ vector ω. Without
further structural assumptions on K, however, we would be forced
to learn N2

pixels ≈ 1.5 × 106 entries. Instead, we will use a low-rank
decomposition to limit the number of free variables in our model:

K = MM�, (17)
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Figure 2. The portion of missing pixels as a function of wavelength for the 48 614 QSOs in the BOSS DR9 Ly α forest sample used for learning our GP model.

Figure 3. The learned mean vector μ derived by taking the median across the stacked spectra. The vector has been smoothed with a 4-pixel (1 Å) boxcar
function for clarity on the blue end.

where M is an (Npixels × k) matrix with k � Npixels. This decom-
position guarantees that K will be positive semidefinite (and thus
a valid covariance matrix) for any M. Note that this decomposi-
tion is similar to that encountered in principal component analysis
(PCA); however, note that we do not constrain the columns of M
(the ‘eigenspectra’) to be orthogonal. Here, we took k = 20.

We assume that each of our measured flux vectors is an indepen-
dent realization drawn from a common observation prior (15):

p(Y | λ, V, M, ω, zQSO,M¬DLA) =
Nspec∏
i=1

N ( yi ; μ, K + � + Vi),

(18)

where zQSO is a vector concatenating the redshifts of the quasars,
and all NaN values are ignored in the computation. That is, in the
ith entry of the product, we only use the entries of μ, vi and w’, and
only the rows of M, corresponding to the nonmasked values in yi .

We define the log likelihood of the data, L, as a function of the
covariance parameters M and ω. To simplify the notation, we first
define the following quantities:

�i = K + � + Vi ; (19)

αi = �−1
i ( yi − μ). (20)

Now the log likelihood is

L(M, ω) = log p(Y | λ, V, M, ω, zQSO,M¬DLA)

=
Nspec∑
i=1

logN ( yi ; μ, �i)

=
Nspec∑
i=1

−1

2

(
α�

i ( yi − μ) + log det �i + Ni log 2π
)
, (21)

where Ni is the number of non-NaN pixels in yi . We will maximize
L(M, ω) with respect to the covariance parameters to derive our
model, giving the emission model most likely to have generated our
data. To enable unconstrained optimization, we parametrize the ω

parameter by its natural logarithm, guaranteeing every entry of ω is
positive after exponentiation. In the context of its role in our model,
this is equivalent to reasoning about the optical depth τ rather than
the absorption exp ( − τ ).

An important feature of our particular choice of model is that
we can compute the matrix inverse and the log determinant of
(K + � + V) quickly. Namely, this matrix has the form MM� + D,
where D is diagonal. We may apply the Woodbury identity to derive

(MM� + D)−1 = D−1 − D−1M(I + M�D−1M)−1M�D−1, (22)

where I is the identity matrix. Note the nominally Npixels × Npixels

inverse can be computed via a much less expensive k × k inverse.
Similarly, we may use the Sylvester determinant theorem to derive

log det(MM� + D) = log det D + log det(I + M�D−1M), (23)

again reducing the problem to a determinant on a k × k matrix.
To maximize our joint log likelihood, we applied the L-BFGS al-

gorithm, a quasi-Newton algorithm for unconstrained optimization.
The required partial derivatives are

∂Li

∂M
= (

αiα
�
i − �−1

i

)
M; (24)

∂Li

∂ log ω
= ω′ ◦ (

α2
i − diag�−1

i

)
, (25)

where ◦ is the Hadamard (element-wise) product, and we define
diag applied to a square matrix to return its leading diagonal as
a vector. The partial derivatives with respect to log c0, log τ 0 and
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Figure 4. (a) The first five columns of the learned M and (b) the learned absorption noise vector ω, both learned from the 48 614 QSOs in the BOSS DR9
Ly α forest sample. Both have been smoothed with a 4-pixel (1 Å) boxcar function for clarity on the blue end.

log β all have the same form:

∂Li

∂ log x
= α�

i

(
diag

∂ω′

∂x

)
αi +

(
∂ω′

∂x

)�
diag�−1; (26)

∂ω′

∂ log c0
= c0 ω ◦ s(z); (27)

∂ω′

∂ log τ0
= τ0 ω ◦ s(z) ◦ (1 + z)β ◦ exp(−τ0(1 + z)β ); (28)

∂ω′

∂ log β
= β log z ◦ ∂ω′

∂ log τ0
, (29)

where z is a vector of the Ly α redshifts corresponding to the ob-
servations, and the redshift contribution s is defined in equation
(13).

We learned the decomposed covariance matrix M, ω, c0, τ 0 and β

via L-BFGS on the selected training spectra. For this model learn-
ing phase only, we masked all pixels with noise variance larger
than unity after normalization (i.e. pixels with SNRs below approx-
imately 1). Note that these pixels were only masked here and at no
other point in this study. The initial value for M was taken to be
the top-20 principal components of Y, estimated entry-wise using
available data. Masking low-SNR pixels was required here because
PCA, in its most basic form, does not account for noise in measured
values, and our heteroskedastic noise is especially troublesome. The
initial value of each entry in ω was taken to be the sample variance
of the corresponding column of Y, ignoring NaN s.

The first five columns of the learned M and the learned absorption
noise vector ω are shown in Fig. 4. The corresponding covariance

Figure 5. The observation covariance matrix K corresponding to the
learned parameters shown in Fig. 4. The entries have been normalized to
give unit diagonal; the entries are therefore correlations rather than raw
covariances.

matrix MM� is shown in Fig. 5. Features corresponding to the
Lyman series are clearly visible, including strong off-diagonal cor-
relations between pairs of emission lines. At least seven members
of the Lyman series can be identified in the covariance entries cor-
responding to Ly α emission. This complex (and physically correct)
structure was automatically learned from the data. The parameters
for the redshift-dependent component of the absorption noise vector
were

c0 = 0.3371; τ0 = 0.01178; β = 1.797. (30)
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Figure 6. An example sample from our learned QSO emission spectrum model GP( f ; μ, K) (in red), and the corresponding sample after incorporating our
additional absorption correction into the model, a draw from p( y | λ, v,M¬DLA) = GP( y; μ, K + � + V) (in blue). Constant observation noise with variance
v = 0.12 was simulated for the y sample.

We have now fully specified our GP prior for QSO emission
spectra in the range of λ ∈ [911.75 Å, 1215.75 Å]. Fig. 6 demon-
strates our model by showing an example sample from the prior
distribution on QSO continuua f , as well as a corresponding sam-
ple from the prior distribution on observations y incorporating our
absorption ‘noise’ vector ω. The samples closely resemble actual
observations.

Note that to apply our model to observations corresponding to a
set of input wavelengths differing from the grid we used to learn
the model, we simply interpolate (linearly) the learned μ, K, and
ω on to the desired wavelengths. We may also account for redshift
trivially should we wish to work with observed rather than rest
wavelengths.

5.4 Model evidence

We note that our null model M¬DLA has no parameters. Consider
a set of observations of a QSO D = (λ, y) with known observation
noise variance vector v. The model evidence for M¬DLA given by
observations can be computed directly:

p(D | M¬DLA, v, zQSO) ∝ p( y | λ, v, zQSO,M¬DLA). (31)

The constant of proportionality is p(λ | M¬DLA), a quantity that we
do not model here. Rather, we will assume that p(λ | M) is constant
across models, causing it to cancel during the calculation of the
model posterior. Therefore, for the purposes of model comparison,
we need only to compute

p( y | λ, v, zQSO,M¬DLA) = N ( y; μ, K + � + V), (32)

where the μ, K and ω learned above have been interpolated on
to λ.

6 A G P M O D E L FO R Q S O SP E C T R A L
S I G H T L I N E S W I T H IN T E RV E N I N G D L A S

In the previous section, we learned an appropriate GP model for
QSO spectra without intervening DLAs, forming our null model
M¬DLA. Here, we will extend that model to create a model for
sightlines containing intervening DLAs. We will first fully describe
the model for spectra containing exactly one intervening DLA, then
extend this model to the case of two-or-more DLAs along a line of
sight. We will call our model for lines of sight containing exactly k
intervening DLAs MDLA(k); here we describe MDLA(1). Taking the
conjunction of these models {MDLA(i)}∞

i=1 gives our complete DLA
model MDLA.

Consider a quasar with redshift zQSO, and suppose that there
is an intervening DLA along the line of sight with redshift zDLA

and column density NH I. The effect of this on our observations
is to multiply the emitted flux f(λ) by an appropriate absorption
function:

y(λ) = f (λ) exp(−τ (λ; zDLA, NH I)) + ε, (33)

where ε is additive Gaussian noise due to measurement error and
τ is the absorption cross-section, which has a contribution corre-
sponding to each transition we wish to model. Here, we model
absorption for several members of the Lyman series:

τ (λ; zDLA, NH I) = NH I
πe2f λ′

mec
φ(v, b, γ ), (34)

where e is the elementary charge, λ′ is the transition wavelength
(λ′ = 1215.6701 Å for Ly α) and f is the oscillator strength of the
transition (f = 0.4164 for Ly α). The line profile function φ is a
Voigt profile, where v is the relative velocity:

v = c

(
λ

λ′(1 + zDLA)
− 1

)
, (35)

b/
√

2 is the standard deviation of the Gaussian (Maxwellian) broad-
ening contribution:

b =
√

2
kT

mp

, (36)

and γ is the width of the Lorenztian broadening contribution:

γ = �λ′

4π
, (37)

where � is a damping constant (� = 6.265 × 108 s−1 for Ly α). The
gas temperature T is fixed to 104 K. This imparts a thermal broaden-
ing of 13 km s−1, which is negligible compared to broadening of the
DLA profile from Lorentzian damping wings. We neglect broaden-
ing due to any turbulence of the gas within the DLA, which could
potentially contribute at lower column densities. We considered line
profiles corresponding to Ly α, β and γ absorption, which we may
compute for a given set of wavelengths given the known transition
parameters, the temperature T, and zDLA and NH I.

GPs provide a simple mechanism to model the multiplicative
effect introduced by the absorption function exp ( − τ ). Let a func-
tion f have a GP prior distribution p(f ) = GP(f ; μ, K), and let
a(λ) be a known function. Then the distribution of the product

MNRAS 472, 1850–1865 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/472/2/1850/4060725
by guest
on 31 January 2018



1858 R. Garnett et al.

Figure 7. An example sample from our model for QSO emission spectra with one DLA along the line of sight. Here, we simulate a QSO with zQSO = 2.5
with a DLA at zDLA = 2.2 and log10 NH I = 20.8. This sample corresponds to that in Fig. 6, but is instead drawn from the DLA model with the appropriate
absorption profile (plotted in grey). In (a), we show the entire simulated observations, and in (b) we show detail in the region of the Ly α absorption central
wavelength, with the continuum sample from Fig. 6 for comparison. Note that the full sample also reflects corresponding Ly β and Ly γ absorption.

g(λ) = a(λ)f(λ) is also a Gaussian process (GPs are closed under
affine transformations):

p(g) = GP(f ; μ′, K ′), (38)

where

μ′(λ) = a(λ)μ(λ); K ′(λ, λ′) = a(λ)K(λ, λ′)a(λ′). (39)

Therefore, given the parameters (zDLA, NH I) of a puta-
tive DLA, we compute the appropriate absorption function
exp (−τ (λ; zDLA, NH I)) and modify the null GP model from the
previous section as above. Specifically, consider observations of
a QSO sightline at rest wavelengths λ. Our model for the corre-
sponding emitted flux f remains as in equation (11). Given the
observation noise variance vector v, the prior for the observation
vector y without intervening DLAs is

p( y | λ, v, zQSO,M¬DLA) = N ( y; μ, K + � + V). (40)

Suppose now that we wish to model the observed flux with a DLA
at known redshift zDLA and column-density NH I. First, we compute
the theoretical absorption function with these parameters at λ; call
this vector a:

a = exp (−τ (λ; zDLA, NH I)) . (41)

Now, applying the result above, the prior for y with the specified
DLA is

p( y | λ, v, zQSO, zDLA, NH I,MDLA(1))

= N ( y; a ◦ μ, A(K + �)A + V) , (42)

where a = diagA.
Fig. 7 displays a draw from our DLA prior corresponding to the

null model sample in Fig. 6.

An important feature of this model is that it is not in any way
specific to DLAs, nor to data from the BOSS instrument. Our GP
model for quasar emission spectra could be modified in an iden-
tical manner to model observed flux associated with any desired
absorption feature.

6.1 Model evidence

Unlike our null model, which was parameter free, our DLA model
MDLA(1) contains two parameters describing a putative DLA: the
redshift zDLA and column density NH I. We will denote the model
parameter vector by θ = (zDLA, NH I). To compute the model evi-
dence, we must compute the following integral:

p(D | MDLA(1), v, zQSO) ∝ p( y | λ, v, zQSO,MDLA(1))

= ∫
p( y | λ, v, zQSO, θ,MDLA(1))p(θ | zQSO,MDLA(1)) dθ, (43)

where we have marginalized the parameters given a prior distribu-
tion p(θ | zQSO,MDLA(1)). Before we describe the approximation
of this integral, we will first describe the prior distribution used in
our experiments.

6.2 Parameter prior

First, we make the assumption that absorber redshift and column
density are conditionally independent given zQSO and that the col-
umn density is independent of the QSO redshift:

p(θ | zQSO,MDLA(1))

= p(zDLA | zQSO,MDLA(1))p(NH I | MDLA(1)). (44)
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For the distribution p(zDLA | zQSO,MDLA(1)), we define the follow-
ing range of allowable zDLA:

zmin = max

⎧⎪⎪⎨
⎪⎪⎩

λLy ∞
λLy α

(1 + zQSO) − 1 + 3000 km s−1/c

min λobs

λLy α

− 1
(45)

zmax = zQSO − 3000 km s−1/c; (46)

that is, we insist the absorber centre be within the range of observed
wavelengths (after restricting to λrest ∈ [911.75 Å, 1216.75 Å]). We
also apply a conservative cut-off of 3000 km s−1 in the immediate
vicinity of the QSO to avoid proximity ionization effects, and in the
immediate vicinity of the Lyman limit in the quasar rest frame (if
visible) to avoid problems caused by possible incorrect determina-
tion of zQSO.

Given these, we simply take a uniform prior distribution on this
range:

p(zDLA | zQSO,MDLA(1)) = U[zmin, zmax]. (47)

The column density prior p(NH I | MDLA) is slightly more com-
plicated. We first make a nonparametric estimate of the density,
given the examples contained in the DLA catalogue provided with
the BOSS DR9 Ly α forest sample. Due to the large dynamic range
of column densities, we instead choose a prior on its base-10 loga-
rithm, log10 NH I.

We use the reported log10 NH I values for the NDLA = 5854 DLAs
contained in the DR9 sample to make a kernel density estimate
of the density p(log10 NH I | MDLA(1)). Kernel density estimation
entails centring small so-called kernel functions on each observation
and summing them to form our estimate. Here, we selected the
univariate Gaussian probability density function for our kernels,
with bandwidth selected via a plug-in estimator. The final estimate
is

pKDE(log10 NH I | MDLA(1))

= 1

NDLA

NDLA∑
i=1

N (log10 NH I; �i, σ
2), (48)

where �i is the base-10 logarithm of the ith observed column density.
To account for some possible systematic bias in estimating this
distribution, such as preferred numbers during visual inspection
or underestimation of the probability of high-density systems due
to low sample size, we make two adjustments. First, we simplify
the form of the distribution by fitting a parametric prior to the
nonparametric kernel density estimate of the form

pKDE(log10 NH I = N | MDLA(1))≈
q(log10 NH I = N ) ∝ exp(aN2 + bN + c); (49)

the values we learned, via least-squares fitting to the log probability
over the range of log10 NH I ∈ [20, 22], were

a = −1.2695; b = 50.863; c = −509.33. (50)

Finally, to account for some possible observation bias in the con-
cordance catalogue, we take a mixture of this approximate column
density prior with a simple log-uniform prior over a wide dynamic
range:

p(log10 NH I | MDLA(1)) = αq(log10 NH I = N )

+ (1 − α)U[20, 23]. (51)

Here, the mixture coefficient α = 0.9 favours the data-driven prior.
The upper limit of log10 NH I = 23 is more than sufficient to model

Figure 8. The probability density function of the log column density prior
used in the experiments, p(log10 NH I | MDLA(1)).

all thus-far observed DLAs. The final prior p(log10 NH I | MDLA(1))
is shown in Fig. 8), showing the expected bias towards smaller
column densities.

6.3 Approximating the model evidence

Given our choice of parameter prior, the integral in equation (43) is
unfortunately intractable, so we will result to numerical integration.
In particular, we will use quasi-Monte Carlo (QMC) integration
(Caflisch 1998). In QMC, we select N parameter samples {θ i},
evaluate the model likelihood given each of these samples, and
approximate the integral in equation (43) by the sample mean:

p( y | λ, v, zQSO,MDLA(1))

≈ 1

N

N∑
i=1

p( y | λ, v, zQSO, θi ,MDLA(1)). (52)

This is the same estimator encountered in standard Monte Carlo
integration, which selects the samples by sampling independently
from the parameter prior p(θ | zQSO,MDLA(1)). QMC differs from
normal Monte Carlo integration in that the samples {θ i} are taken
from a so-called low-discrepancy sequence, which guarantees the
chosen samples are evenly distributed, leading to faster conver-
gence. Here, we used N = 10 000 samples generated from a scram-
bled Halton sequence (Kocis & Whiten 1997) to define our pa-
rameter samples. Note that the Halton sequence gives values ap-
proximately uniformly distributed on the unit square [0, 1]2, which
(after a trivial transformation) agrees in density with our redshift
prior p(zDLA | zQSO,MDLA(1)), but not our column density prior
p(log10 NH I | MDLA(1)). To correct for this, we used inverse trans-
form sampling to endow the generated samples with the appropriate
distribution. For the inverse transformation, we used the approxi-
mated inverse cumulative distribution function corresponding to our
prior in equation (51).

Note that we can use the same technique to approximate other
quantities of interest. For example, if we wish to restrict our
search to only DLAs with a certain minimum column density (e.g.
log10 NH I > 22), we can simply discard all parameter samples out
of range, giving an unbiased estimate of the desired integral:∫ zmax

zmin

∫ ∞

22
p( y | λ, v, zQSO, θ,MDLA(1))

×p(θ | zQSO,MDLA(1)) dzDLA dlog10 NH I. (53)

Note such estimators will, however, have higher variance due to the
discarded parameter samples.
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6.4 Multiple DLAS

While the catalogue we produce considers only one DLA per sight-
line, our model for QSO sightlines containing DLAs can readily
model sightlines containing two or more intervening DLAs. Again,
given the parameters (zDLA, NH I) of each absorber along the line
of sight, we may compute the corresponding absorption function a
and compute the observation posterior as in equation (42).

Let MDLA(k) represent a model explaining exactly k DLAs along
the line of sight; we described MDLA(1) in the preceding sections.
The model evidence integral (43) for MDLA(k) remains the same;
however, θ will have dimension 2k. Furthermore, we must consider
the joint parameter prior p(θ | MDLA(k)).

We propose a (nearly) independent prior between each set of
DLA parameters; the dependence will be discussed later. Rather
than generating a 2k-dimensional low-discrepancy sequence these
parameters, we propose a stepwise approach. Given a spectrum, we
first use the MDLA(1) parameter samples {θ i} described above to
approximate the model evidence (43). We can then approximate the
posterior distribution of the single-DLA parameters by normaliza-
tion:

p(θ | zQSO,D,MDLA(1)) ∝ p( y | λ, v, zQSO, θi ,MDLA(1)). (54)

We may decompose the MDLA(2) parameters as θ = [θ1, θ2]�,
where each θ i component describes a single DLA. We propose the
following prior for the MDLA(2) model:

(p(θ1, θ2 | zQSO,D,MDLA(2))

= p(θ1 | zQSO,D,MDLA(1))p(θ2 | zQSO,MDLA(1)). (55)

That is, we use the posterior probabilities from the analysis of the
MDLA(1) model as the prior for the parameters of one of the DLAs
when considering the MDLA(2) model. The prior for the parameters
of the other DLA remains the noninformative prior as described
above. For modelsMDLA(k) with k > 2, we apply a similar approach,
where we combine a noninformative prior for θ k with an informed
prior for {θi}k−1

i=1 :

p
({θ} | zQSO,D,MDLA(k)

)
= p

({θi}k−1
i=1 |zQSO,D,MDLA(k−1)

)
p(θk |zQSO,MDLA(1)). (56)

We do suggest injecting a small amount of dependence between
the DLA parameters; specifically, any samples where any pair of
zDLA values correspond to a small relative velocity should be dis-
carded to avoid samples describing two discrete DLAs in the same
region of space.

In practice, the above scheme can be realized by first process-
ing the spectrum with model MDLA(1); we then approximate the
θ1 posterior by renormalizing. To process the spectrum with model
MDLA(2), we loop through the generated samples, each providing
θ2. For each sample, we sample a corresponding θ1 sample from
the approximate posterior. If the zDLA values are too close, we dis-
card the sample; otherwise, we have a valid θ sample with which
to approximate the model evidence for MDLA(2). For MDLA(k), we
proceed in a similar way, using some minor bookkeeping to approx-
imate the {θi}k−1

i=1 posterior.
Note that the catalogue we produce considers only MDLA(1) to

maintain statistical reliability with the low-SNR spectra from SDSS;
however, the techniques we introduce are not tied to any particular
source of data.

Figure 9. The redshift-dependent model prior Pr(MDLA | zQSO) com-
puted from the BOSS DR9 Ly α forest sample with parameter
z′ = 30 000 km s−1/c.

7 MO D EL PR IO R

Given a set of spectroscopic observations D, our ultimate goal
is to compute the probability the QSO sightline contains a DLA:
p(MDLA | D). As described above, the Bayesian model selec-
tion approach requires two components: the data-independent prior
probability that sightline contains a DLA, Pr(MDLA), and the abil-
ity to compute the ratio of model evidences p(D | M¬DLA) and
p(D | MDLA). The GP model built above allows us to compute the
latter; in this section, we focus on the former.

Only approximately 10 per cent of the QSO sightlines in the DR9
release contain DLAs. A simple approach to prior specification
would be to use a fixed value of Pr(MDLA) ≈ 1

10 . However, it is less
likely to observe a DLA in low-redshift QSOs due to the wavelength
coverage of the SDSS and BOSS spectrographs being limited to
λobs = 3800 Å and λobs = 3650 Å, respectively, on the blue end.
Therefore, here we will use a slightly more sophisticated approach
and derive a redshift-dependent prior Pr(MDLA | zQSO).

Our prior is simple and data driven. Consider a QSO with redshift
zQSO. Let N be the number of QSOs in the training sample with
redshift less than zQSO + z′, where z′ is a small constant. Here, we
took z′ = 30 000 km s−1/c. Let M be the number of the sightlines of
these containing DLAs within the range of quasar rest wavelengths
we search here. We define

Pr(MDLA | zQSO) = M

N
. (57)

The constant z′ serves to ensure that QSOs with very small redshift
have sufficient data for estimating the prior. The resulting prior
Pr(MDLA | zQSO) calculated from the DR9 sample is plotted in
Fig. 9.

If we wish to break down our DLA prior Pr(MDLA | zQSO) into
its component parts, for example to find Pr(MDLA(1) | zQSO), we
assume that DLA occurrence is independent. If M

N
of sightlines

contain at least one DLA, then M2

N2 contain at least two DLAs, etc.,
giving

Pr(MDLA(k) | zQSO) ≈
(

M

N

)k

−
(

M

N

)k+1

. (58)
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8 EXAMPLE

We have now developed all of the mathematical machinery required
to compute the posterior odds that a given quasar sightline contains
an intervening DLA, given a set of noisy spectroscopic observations
D. Briefly, we summarize the steps below, using the example from
Fig. 1. We limit this example to searching for a single DLA, using
only MDLA(1).

Consider a quasar with known redshift zQSO, and suppose we
have made spectroscopic observations of the object D = (λ, y),
with known observation noise variance vector v. First, we compute
the prior probability of the DLA model MDLA, Pr(MDLA | zQSO)
(57). This allows us to compute the prior odds in favour of the DLA
model:

Pr(MDLA | zQSO)

Pr(M¬DLA | zQSO)
= Pr(MDLA | zQSO)

1 − Pr(MDLA | zQSO)
. (59)

For our example, Pr(MDLA | zQSO) = 10.3%, giving prior odds of
0.114 (9-to-1 against the DLA model). Next, we compute the Bayes
factor in favour of the DLA model:

p( y | λ, v, zQSO,MDLA(1))

p( y | λ, v, zQSO,M¬DLA)
. (60)

See equation (32) for how to compute the model likelihood for
the null model and equation (43) for our approximation to the
DLA model likelihood. For our DLA example, the Bayes factor
overwhelmingly supports the DLA model, with a value of exp (96)
≈ 5 × 1041. The computation of the Bayes factor is illustrated
in Fig. 10, which shows the prior GP mean for the null model
(Fig. 10a), the log likelihoods for the DLA model parameter samples
(Fig. 10b), and the prior GP mean for the best DLA model parameter
sample (Fig. 10c).

Finally, the posterior odds in favour of the sightline containing
an intervening DLA is the product of equations (59) and (60).
In practice, due to the typically large dynamic range of these
quantities, it is numerically more convenient to compute the log
odds. The log odds in favour of MDLA for the example from
Fig. 1 are 94 nats,9 and the probability of the sightline contain-
ing a DLA is effectively unity. The DLA parameter sample with the
highest likelihood was (zDLA, log10 NH I) = (3.285, 20.33), closely
matching the values reported in the DLA concordance catalogue
(zDLA, log10 NH I) = (3.283, 20.39).

We may also compute the evidence for higher order models to
derive a posterior distribution over the number of DLAs. In this case,
the log model evidences for models MDLA(2), MDLA(3), MDLA(4)

and MDLA(5) are −840, −977, −1141 and −1385, respectively,
incorporating the model prior (57) and normalizing the single-DLA
model dominates.

9 C ATA L O G U E

To verify the validity of our proposed method, we computed the
posterior probability of MDLA for 162 858 quasar sightlines in the
DR12Q release of SDSS III. Our catalogue and data products will
be made available publicly at http://tiny.cc/dla_catalog_gp_dr12q,
and the code to reproduce the entire catalogue from raw
SDSS spectra will be posted under a permissive license at
https://github.com/rmgarnett/gp_dla_detection.

9 Nats are the logarithmic unit analogous to bits or dex corresponding to the
base of the natural logarithm.

The full DR12Q catalogue contains 297 301 quasars, to which
we applied the following cuts:

(i) We eliminate low-redshift (zQSO < 2.15) quasars. A total of
113 030 quasars in DR12Q satisfy this removal condition.

(ii) We eliminate broad absorption line (BAL) quasars, deter-
mined by the BAL visual inspection survey results in the BAL_VI
field of the catalogue. A total of 29 580 quasars in DR12Q satisfy
this removal condition.

(iii) We eliminate quasars that we cannot normalize due to no
nonmasked pixels in the range of λrest ∈ [1310, 1325] Å. A total of
125 quasars in DR12Q satisfy this removal condition.

(iv) We eliminate quasars that have fewer than 200 nonmasked
pixels in the range of λrest ∈ [911.75, 1216.75] Å. A total of 35
quasars in DR12Q satisfy this removal condition.

For each of the remaining spectra, we computed the posterior
probability of the M¬DLA and MDLA(1) models, given the obser-
vations, as described in the previous sections. We produce a full
catalogue of our results, comprising two tables, the first rows of
which are shown in Tables 1 and 2. The full catalogue will be
available electronically alongside this manuscript.

When computing the likelihoods for the DLA model, we
convolved the computed Voigt profile corresponding to each
parameter sample with a Gaussian broadening profile with
FWHM = c/2000 = 150 km s−1, corresponding to the BOSS in-
strument’s spectral resolution of R ≈ 2 000.

For each analysed spectrum , the result catalogue includes the
following:

(i) The range of redshifts searched for DLAs, [zmin, zmax]
(ii) The log model prior, log Pr(M | zQSO), for each model con-

sidered
(iii) The log model evidence, log p( y | λ, v, zQSO,M), for each

model considered
(iv) The model posterior, Pr(M | D, zQSO)
(v) The MAP estimates of the MDLA(1) model’s parameters.

9.1 Running time

The running time of our approach allows it to easily scale to ex-
tremely large surveys and/or larger sample sizes. Our implemen-
tation is able to compute the model posterior over M¬DLA and
MDLA(1) in 0.5–2 seconds per spectrum on a standard Apple iMac
desktop machine. For each spectrum, we must compute 10 001 log
likelihoods of the form (32) [one for (32) and 10 000 for theMDLA(1)

model (43)]; however, the low-rank structure of our covariance al-
lows us to compute each rapidly using the identities in equations
(22) and (23).

9.2 Analysis of results

To evaluate our results, we examined the ranking induced on the
sightlines by the log posterior odds in favour of the DLA model
MDLA. If our method is performing correctly, true DLAs should be
at the top of this list, above the non-DLA-containing sightlines. To
visualize the quality of our ranking, we created a receiver-operating
characteristic (ROC) plot, which, for every possible threshold on the
log posterior odds, plots the false-positive rate (portion of non-DLAs
with larger posterior odds) against the true positive rate (portion of
DLAs with larger posterior odds).

Notice that creating an ROC plot requires knowledge of the
ground-truth labels for each of our objects, which of course we

MNRAS 472, 1850–1865 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/472/2/1850/4060725
by guest
on 31 January 2018

http://tiny.cc/dla_catalog_gp_dr12q
https://github.com/rmgarnett/gp_dla_detection


1862 R. Garnett et al.

Figure 10. An illustration of the proposed DLA-finding procedure for the quasar sightline in Fig. 1. Panel (a) shows the normalized flux with the prior GP mean
for our learned null model M¬DLA. Panel (b) shows the log likelihoods for each of the parameter samples used to approximate the marginal likelihood of our
DLA model MDLA. Panel (c) shows the normalized flux with the prior GP mean associated with the best DLA sample, (zDLA, log10 NH I) = (3.285, 20.33).
Notice the Ly β absorption feature corresponding to this sample.

Table 1. The 297 301 objects in the SDSS-III DR12Q catalogue and the results of our cuts.

Thing id SDSS name Plate MJD fibre ID Right ascension Declination zQSO SNR Cut flags

268514930 000000.45+174625.4 6173 56238 0528 0.0018983 +17.7737391 2.3091 0.7795 0000

(297 300 rows removed)

do not have. Instead, we use the DLA concordance catalogue dis-
tributed with the BOSS DR9 Ly α forest catalogue as surrogate
ground truth and restrict our analysis to lines of sight that both ap-
pear in that catalogue and were not removed by our cuts. A total
of 54 360 objects comprise this intersection (99.9 per cent of the
catalogue). The resulting ROC plot is displayed in Fig. 11. The
top 1 per cent, 2 per cent, 5 per cent, 10 per cent and 20 per cent of
our ranked list, respectively, recover 42.7 per cent, 57.5 per cent,

77.0 per cent, 89.1 per cent and 96.8 per cent of the DLAs listed in
the concordance catalogue. Thus, even presorting the list by the
posterior probability of MDLA can dramatically speed up visual
inspection.

A useful summary of the ROC plot is the area under the curve
(AUC) statistic. The AUC has a natural interpretation: if we select a
positive example and a negative example uniformly at random from
those available, the AUC is the probability that the positive example
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Table 2. The 162 858 objects in the SDSS-III DR12Q catalogue processed by our proposed GP DLA detection method, and a summary of derived
quantities of interest.

Search range Model prior Model evidence

Thing id zmin zmax log Pr(M¬DLA | zQSO) log Pr(MDLA | zQSO) log p( y | λ, v, zQSO,M¬DLA) log p( y | λ, v, zQSO,MDLA(1))

268514930 1.9654 2.2989 -0.03081 −3.49537 −1.04359e+03 −1.04256e+03

Model posterior arg max
θ

p( y | λ, v, zQSO,MDLA(1))

Pr(M¬DLA | D, zQSO) Pr(MDLA | D, zQSO) zDLA log10 NH I

9.19661e-001 8.03389e-002 2.2160 20.0077

(162 857 rows removed)
Note: The first nine columns match Table 1 for the included objects (those with all cut flags equal to zero).

Figure 11. The ROC plot for the ranking of the 54 360 QSO sightlines
contained in the BOSS DR9 Ly α forest sample (that were not filtered by
our cuts), induced by the log posterior odds of containing a DLA. Ground-
truth labellings were derived from the corresponding DLA concordance
catalogue.

would be ranked higher than the negative example. For the DR9
DLA concordance catalogue surrogate, our AUC was 95.8 per cent.
Clearly our approach is effective at identifying DLAs.

An important caveat to all of the results above is that none of
the surrogates is likely to represent the true ground truth, and many
‘false positive’ sightlines could in fact contain as yet undiscovered
DLAs. Fig. 12 gives an example of such a ‘false positive,’ showing
the spectrum not contained in the DLA concordance catalogue that
we rank the highest according to our model posterior ranking.

In fact, this spectrum appears to contain two DLAs along the line
of sight. As a demonstration of our ability to detect multiple DLAs,
we reprocessed this spectrum using the two-DLA model MDLA(2).
The data overwhelmingly support MDLA(2) over either MDLA(1)

or M¬DLA; Pr(MDLA(2) | D, zQSO) = 1−2.1 × 10−22. Despite this
line of sight not appearing in the DR9Q DLA concordance cat-
alogue, we do note that it was flagged during the DR12Q visual
inspection.

We have visually inspected several of these ‘confident false pos-
itives’; of the top 30 such examples, 29 appear to contain large
absorption features at the location indicated by the maximum like-

lihood parameter sample. The other is a very low-SNR spectrum
that appears not to have been normalized satisfactorily.

The observation corresponding to our most egregious false neg-
ative, i.e. the spectrum flagged in the concordance catalogue that
we assign the greatest confidence to being DLA free, is SDSS
081807.84+520935.1. There is a DLA along this line of sight, but
outside the range of redshifts we search.

9.3 DLA parameter estimation analysis

The main goal of our DLA-detection method is to rank QSO sight-
lines by their probability of containing DLAs. The computation of
the evidence of our DLA model MDLA requires averaging over
many samples of the DLA parameters (zDLA, log10 NH I). We may
use these samples to further derive point estimates of these param-
eters for presumed DLAs, if desired. The simplest approach is to
report the sample with the highest likelihood:

arg max
θi

p( y | λ, v, zQSO, θi ,MDLA); (61)

this represents the maximum a posteriori (MAP) estimate of the
parameters. We analyse the behaviour of the MAP estimate by
comparing it with the reported values in the DR9 concordance DLA
catalogue.

The MAP estimates of the absorber redshift zDLA are remarkably
close to the catalogue figures. The median difference between the
two is −2.7 × 10−4 (−80.6 km s−1) and the interquartile range
is 2.5 × 10−3 (742 km s−1). Fig. 13(a) displays a kernel density
estimate of the distribution of the difference between the MAP zDLA

estimates and the values reported in the concordance catalogue.
Examining the larger ‘errors’ in our estimation of zDLA, we make

an interesting observation that several zDLA values reported in the
concordance catalogue correspond exactly to the central wavelength
of Ly β absorption for our redshift estimates. There does not seem
to be an obvious pattern in the reverse direction, indicating that our
method is less susceptible that previous techniques to mistaking
Ly β absorption for Ly α absorption. Unlike previous approaches,
which involve Voigt profile fitting to Ly α absorption only, we model
the entire spectrum jointly, as well as the entire absorption profile
corresponding to a given set of object parameters. Samples in-
correctly setting zDLA corresponding to a Ly β absorption feature
should explain the observed spectrum worse than a sample set-
ting zDLA corresponding to a Ly α absorption feature, which in our
set-up can better explain both the larger Ly α absorption and the
corresponding Ly β feature.
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Figure 12. The spectrum appearing in the BOSS DR9 Ly α forest sample, not contained in the corresponding DLA concordance catalogue, with the highest
posterior probability of containing an DLA according to our model. The object is SDSS 170023.94+205331.7, (plate, MJD, fibre) = (4175, 55680, 764),
zQSO = 2.4852. We overwhelmingly believe there to be two DLAs along the line of sight; Pr(MDLA(2) | D, zQSO) = 1−2.1 × 10−22. The prior means
corresponding to the highest likelihood parameter sample for MDLA(1) and MDLA(2) are plotted, corresponding to (zDLA, log10 NH I) = (2.1717, 21.414) and
(zDLA, log10 NH I) = {(2.1715, 21.519), (2.3179, 20.075)}.

Figure 13. Kernel density estimate of the difference between the MAP estimates of the DLA parameters (zDLA, log10 NH I) for DLAs listed in the BOSS DR9
Ly α forest sample, against the catalogue-reported values.

The MAP estimates of the log column density log10 NH I show
more variation with the catalogue figures. The median difference
between the two is quite small, only 0.030 dex. The interquartile
range, however, is nontrivial at approximately 0.27 dex. Fig. 13(b)
displays a kernel density estimate of the distribution of the difference
between the MAP log10 NH I values and the values reported in the
concordance catalogue.

In practice, for suspected DLAs, we suggest standard procedures
for Voigt-profile fitting, if an accurate estimate of the parameters
is desired. Our DLA-detection procedure is primarily concerned
with the evidence contained in the entire set of parameter samples,
and the MAP estimate carries no special significance. In particular,
several parameter ranges might have large likelihood, corresponding
to several potential absorption features. The MAP estimate alone
cannot convey such information.
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