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Abstract

Many objects can be represented as sets of
multi-dimensional points. A common ap-
proach to learning from these point sets is
to assume that each set is an 4.i.d. sam-
ple from an unknown underlying distribu-
tion, and then estimate the similarities be-
tween these distributions. In realistic situa-
tions, however, the point sets are often sub-
ject to sampling biases due to variable or in-
consistent observation actions. These biases
can fundamentally change the observed dis-
tributions of points and distort the results of
learning. In this paper we propose the use of
conditional divergences to correct these dis-
tortions and learn from biased point sets ef-
fectively. Our empirical study shows that the
proposed method can successfully correct the
biases and achieve satisfactory learning per-
formance.

1 Introduction

Traditional learning algorithms deal with fixed, finite
dimensional vectors/points, but many real objects are
actually sets of points that are multi-dimensional, real-
valued vectors. For instance, in computer vision an
image is often treated as a set of patches with each
patch described by a fixed length feature vector [IJ.
In monitoring problems, each sensor produces one set
of measurements for a particular region within a time
period. In a social network, a community is a set of
people. It is important to devise algorithms that can
effectively process and learn from these data.

A convenient and often adopted way to deal with point
sets is to construct a feature vector for each set so that
standard learning techniques can be applied. However,
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this conversion process often relies on human effort
and domain expertise and is prone to information loss.
Recently, several algorithms were proposed to directly
learn from point sets based on the assumption that
each set is a sample from an underlying distribution.
[2, B] proposed novel kernels between point sets based
on efficient and consistent divergence estimators. [4[5]
designed a class of set kernels based on the kernel em-
bedding of distributions. [6] [7] developed simple clas-
sifiers for point sets based on divergences between the
sets and the classes. Some parametric methods have
also been proposed [8, @]. These methods achieved
impressive empirical successes, thus showing the ad-
vantage of learning directly from point sets.

One factor that can significantly affect the effective-
ness of learning is sampling bias. Sampling bias comes
from the way we collect points from the underlying
distributions, and makes the observed sample not rep-
resentative of the true distribution. It undermines the
fundamental validity of learning because the points are
no longer iid samples from a distribution conditioned
only on the object’s type. Though it has been exten-
sively studied in statistics, this key problem has been
largely ignored by the previous research on learning
from sets. The goal of this paper is to alleviate the
impact of sampling bias when measuring similarities
between point sets.

We consider point sets with the following structure.
Let each point be described by two groups of random
variables: the independent variables (i.v.) and depen-
dent variables (d.v.). A point is collected by first speci-
fying the value of the i.v., and then observing a sample
from the distribution of the d.v. conditioned on the
given 4.v. Figure 1| shows a synthetic example where
the i.v. is sampled uniformly, and the d.v. is from the
Gaussian distribution whose mean is proportional to
the value of 4.v., forming the black line-shaped point
set. Many real world situations, including surveys and
mobile sensing, produce point sets of this type. In
patch-based image analysis, we first specify the loca-
tion of the patches as the i.v. and then extract their
features as the d.v. In traffic monitoring, a helicopter
is sent to specific locations at specific times (i.v.) and
measures the traffic volume (d.v.).
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Figure 1: The observation biases.

We assume that the sampling bias affects the way we
observe i.v. , yet the observation of d.v. given 4.v. re-
mains intact. This assumption is compatible with the
covariate shift model [I0, [IT]. As shown in Figure
an unbiased observer will sample 4.v. uniformly and get
the black set. Biased observers might focus more on
the smaller or larger values of the i.v. and create the
biased red and blue sets, where the curves show the
observed marginal densities of the i.v. The joint and
marginal distributions of the biased sets now look very
different from each other and the unbiased set. Never-
theless, no matter what the distribution of i.v. is, the
distribution of d.v. given i.v. is always the same Gaus-
sian that does not change with the observer. In traffic
monitoring, the helicopter may be tasked with other,
non-traffic, jobs that create different patrol schedules
each day, thus creating an uneven profile of the city’s
traffic. But the measured traffic volumes at the pa-
trolled locations are still accurate.

To correct sampling biases of this kind, we propose to
use conditional divergences. Existing divergence-based
methods use the joint distribution of the 4.v. and the
d.v. to measure the differences between point sets. On
the other hand, conditional divergences focus on the
conditional distributions of d.v. given i.v. and are in-
sensitive to the distribution of 7.v., which is distorted
by the sampling bias in our setting. As long as the
conditional distributions are intact, the conditional di-
vergences will be reliable. Moreover, it can be shown
that the divergence between joint distributions is a
special case of the conditional divergence. A fast and
consistent estimator is developed for the conditional
divergences. We also discuss specific examples of cor-
recting sampling biases, including some extreme cases.

We evaluate the effectiveness of conditional diver-
gences on both synthetic and real world data sets. On
synthetic data sets, we show that the proposed esti-
mator is accurate and the conditional divergences are
capable of correcting sampling biases. We also demon-
strate their performance on real-world climate and im-

age classification problems.

The rest of this paper is organized as follows. The
background and some related work is introduced in
Section [2| Section |3| defines the conditional divergence
and describes its properties and estimation. Section
describes how to use conditional divergence to correct
various sampling biases. In Section [5| we make a dis-
cussion about the conditional divergences. In Section
[l we evaluate the effectiveness of the proposed meth-
ods on both synthetic and real data sets. We conclude
the paper in Section

2 Background and Related Work

We consider a data set that consists of M point sets
{Gm}m=1,....m, and each point set G,, is a set of d-
dimensional vectors, G, = {Zmn}tn=1,.. Ny, Zmn €
R?. Each point Zmn, = [Tmn;Ymn] is @ concatenation
of two shorter vectors Z,, € R% and Ymn € R4 rep-
resenting the independent variables ¢.v. and the depen-
dent variables d.v. respectively. We assume that each
G, has an underlying distribution f,,(2) = fi.(z,y),
and the points {z,,,} are i.i.d. samples from f,,(2).
fm can be written as f,,,(z) = fm(y|x) frn(z). In the
context of image classification, each G,, is an image,
and x,,, is the location of the nth patch and y,,, is
the feature of that patch.

We can learn from these sets by estimating the diver-
gence between the f,,’s as the dissimilarity between
the G,,’s. Having the dissimilarities, various problems
can be solved by using similarity based learning algo-
rithms, including k-nearest neighbors (KNN), spectral
clustering [12], and support vector machines (SVM). In
this direction, several divergence-based methods have
been proposed [6, [3, 5], and both empirical and theo-
retical successes were achieved.

In the presence of sampling bias that affects the distri-
bution of i.v., fp,(z) is transformed into f],(z). Con-
sequently the observed G,,s represent the biased joint
distribution f (2) = fm(y|z)f},(z). Therefore naively
learning from the point sets using joint distributions
will lead us to the distorted f/,’s instead of the true
fm’s. To correct the sampling bias, we need to either
1) modify the point sets to restore f(z), or 2) use sim-
ilarity measures that are insensitive to f(z).

Existing correction methods often reweigh the points
in the training set so that its effective distribution
matches the distribution in the test set [I0 [IT] [I3].
Our proposed conditional divergences are insensitive
to the biased distributions of the independent variables
and thus robust against sampling biases.

Traditionally in statistics and machine learning, sam-
pling bias is considered between the training set and
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the test set. In contrast, we consider problems consist-
ing of a large number of point sets, and our goal is to
learn from the sets themselves. This extension raises
many important challenges, including how to find a
common basis to compare all pairs of distributions,
how to deal with unobserved segments of distributions,
and how to design efficient algorithms.

To our knowledge, this is first time sampling bias is ad-
dressed in the context of learning from sets of points.
Algorithms such as [2, B, [ [5, © [7, 9] all directly
compare the joint distributions of the observed points,
making them susceptible to sample bias. [14] proposed
the use of conditional divergence, yet sampling bias
was still not considered.

3 Conditional Divergences

We propose to measure the dissimilarity between two
distributions p(z) = p(x,y) and ¢(z) = ¢(x,y) us-
ing the conditional divergence (CD) based on the
Kullback-Leibler (KL) divergence:

CDe(w) (p(2)llg(2)) = Ec(a) [KL (p(ylz)llq(ylz))] (1)

where ¢(z) is a user-specified distribution over which
the expectation is taken. CD is the average KL diver-
gence between the conditional distributions p(y|z) and
q(y|x) over possible values of z, and ¢(x) can be consid-
ered as the importance of the divergences at different
2’s. CD’s definition is free of the i.v. distributions p(x)
and ¢(z), which are vulnerable to sampling biases. By
definition, CD has a lot in common with the KL diver-
gence: it is non-negative, and equals zero if and only if
p(y|x) = q(y|x) for every x within the support of ¢(z).
CD is also not a metric and not even symmetric.

In the form of , CD is hard to compute because
the divergences KL (p(y|z)||q(y|x)) are not available
for arbitrary continuous distributions. Also note that
¢(x) is a distribution specified by the user. To make
CD more accessible, we can rewrite it as

CDutay (0(2)][4(2)) @)
e [e@) (), )
=) {p@c) (l ) ! q<x>>]'

Now, CD is defined in terms of the density ratios of
the input distributions and the expectation over p(z).

An interesting case of occurs when we choose
c(x) = p(z), which gives the result

CDy () (p(2)la(2)) (3)
= KL(p(2)llq(2)) — KL(p()l|q(x)).

We can see this special CD is equal to the joint diver-
gence (divergence between joint distributions) minus

the divergence between the marginal distributions of
x. Intuitively, CD is removing the effect of p(z) and
q(x) from the joint divergence, so that the net results
are free from the sampling bias. Moreover, when p(x)
and ¢(z) are the same, KL(p(z)||g(z)) vanishes and
this CD equals the joint divergence. In other words,
when there is no sampling bias, CDy ) (p(2)]|q(2)) =
KL(p(2)llq(2))-

3.1 Estimation

In this section we give an estimator for CD . Sup-
pose we have two sets G, and G, with underlying dis-
tributions p(z) and ¢(z) respectively. We can approxi-
mate the expectation with the empirical mean and
estimated densities:

lq(2)) (4)
P(zp,n) —In P(zp,n)
W) )

q(2p,n)

where IV, is the size of G, p,§ are the estimates of
p,q.

¢(t) is an arbitrary input from the user and we can
see that its role is to reweight the log-density-ratios at
different points in G,. To generalize this notion, we
define the generalized conditional divergence (GCD)
and its estimator as the weighted average of the log-
density-ratios:

)
_ w(z np(zp,n) . np(xp’n)
_n:1 @) (1 q(zp,n) 1 Q(xp,n)>
GCD,, (p(2)|la(2)) (6)
N,

- - wlz nﬁ(zp,n) _ nf’(xp,n)

_n:I () (1 q(2p,n) 1 (j(xpn)>
w(zpn) =1, w(xpn) >0,

where w(z) is the weight function and the constraint
>, w(z,) =11is induced by the fact that

N, LM (@)

c(z
lim E w(x = lim —E e LA
Np—r00 1 ( pm) Np—00 Np 1 p(xp,n)

—E, {;g] - / ;g;p(x)daj — 1

To obtain the density estimates p,q, we use the k-
nearest-neighbor (KNN) based estimator [I5]. Let the
f(2) be the d-dimensional density function to be es-
timated and Z = {z,}n=1,. N € R¢ be samples from
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f(2). Then the density estimate at the point 2’ is

pn k
1) = N @ol @y

where ¢;(d) is the volume of the unit ball in the d-
dimensional space, and ¢z x(2z") denotes the distance
from 2’ to its kth nearest neighbor in Z (if 2’ is already
in Z then it is excluded). This estimator is chosen
over other options such as the kernel density estima-
tion because it is simple, fast, and leads to a provably
convergent estimator as shown below.

(7)

By plugging in into @, we can get the following
estimator for GCD:

—

GCDy, (p(2)llq(2)) (8)
N,

- 2 w(z n ¢Gq,k(zp,n) _ n ¢Gq,k(xp,n)

_; () (dl 0G,.k(2pn) o1 ¢>Gp,k($p,n))’

where d, is the dimensionality of the z. We can see
that the resulting estimator has a simple form and
can be calculated based only on the KNN statistics
¢, which are efficient to compute using space-dividing
trees or even approximate KNN algorithms such as
[16]. Also note that even though the estimator is
obtained using the density estimator , its final form
only involves simple combinations of the log-KINN-
statistics In@. Thus, this GCD estimator effectively
avoids explicit density estimation which is notoriously
difficult, especially in high dimensions.

More importantly, the GCD estimator has stronger
convergence properties than the density estimator
from which it is derived. Standard convergence results
have that the density estimator @ is statistically con-
sistent only if k/n — 0,k — oo simultaneously. How-
ever, for estimator convergence can be achieved
even for a fixed finite k. This means that we can al-
ways use a small k to keep the nearest neighbor search
fast and still get good estimates. Specifically, follow-
ing the work of [I7, [I§], the following theorem can be
proved:

Theorem 1. Suppose the density function pairs
(p(2),4q(2)) and (p(x),q(x)) are both 2-reqular (as de-
fined in [17]). Also suppose that the weight function
satisfies limy, 00 w(xpn) = 0,Yn. Then the estima-
tor is L? consistent for any fived k. That is

lim E [CTO\Dw(p(Z)Hq(Z)) — GODL(p(:)lla(=))]

Nyp,Ngq—o0

=0

The proof of Theorem [I] is similar to what was used
n [I7]. The condition lim w(z, ,) = 0 ensures that
Np—00

the weight function does not concentrate on only a

few points. We omit the detailed proof here. Note
that the convergence of GCD does not carry to CD

because the weight function w(zp,,) = % is no
p,n

longer deterministic. However, empirically we found

that exhibits the behavior of a consistent estimator

and produces satisfactory results.

4 Choosing ¢(x)

To use CD, we have to choose the appropriate c(z) or
w(z). When learning from point sets, it is preferable
to use the same c¢(x) to compute the CDs between
all pairs of sets, so that they have a common basis
to compare. However, this is not always necessary or
possible. Even though the choice of ¢(x) and w(z) can
be arbitrary, we consider 3 options below.

First, we can let ¢(x) oc 1 so that w(zpn) o< p~ (zp.1)
to treat every value of z equally. The disadvantage
is that p~'(z,,) has to be estimated, which is error
prone. We can also use ¢(z) = p(z) and w(xy,) x 1,
leading to . In this case, different pairs of sets
can have different ¢(z)’s. When the sampling bias is
small, these differences might be acceptable consid-
ering the possible errors in w(z) otherwise. Thirdly,
c(z) « p(z)g(z) and w(zp.,) x q(xp,) puts the focus
on regions where both p(x) and g(x) are high. It means
that we should put larger weights in dense regions and
avoid scarce regions to get reliable estimates.

One caveat is that the weight function and the log-
density-ratios in CD should not use the same density
estimate, otherwise the estimation errors will correlate
and cause systematic overestimations. Using different
estimators can help decouple the errors and avoid ac-
cumulation. In practice, we use the estimator with
a different k.

Some extreme cases of sampling biases are when whole
segments of the distribution are missing from the sam-
ple and therefore unobserved. Two sets can even have
disjoint supports of x. With the CD, we can choose
c(z) x p(x)q(x) or e(x) < I(p(x)q(x) > 0), where I(-)
is the indicator function, and only compare two sets
in their overlapping regions. The resulting quantity
may not be accurate with respect to the true unbiased
divergence, but it is still a valid measurement of the
differences between conditional distributions. When
f(y|z) only weakly depends on z, this estimate can be
an adequate approximation to the original divergence.
If f(y|x) varies drastically for different ’s without any
regularity then only comparing the overlapping regions
might be the best we can do.

When two sets have disjoint supports in x, no useful
information can be extracted and the corresponding
divergence has to be regarded as missing without fur-
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ther assumptions. Nevertheless, in our settings where
a large number of point sets are available, it is likely
that each set will share its support in z with at least
some others to provide a few reliable divergence esti-
mates. We might be able to infer the divergence be-
tween disjoint sets using the idea of triangulation. We
shall leave this possibility for future investigation.

5 Discussion

In CD, ¢(z) conveys prior knowledge about the impor-
tance of different x’s. It should be carefully chosen
based on the data, and poor results can happen when
the assumptions made in ¢(x) are not valid. For ex-
ample, ¢(x) o 1 assumes that all the z’s are equally
important. This could be a bad assumption when the
supports of two sets do not overlap, because at some
x’s one of the densities will be zero, making the condi-
tional densities f(y|x) not well-defined. Similar prob-
lems might occur in regions where one of the densities
is very low. Numerically the estimator can still work
but usually produces poor results. In this scenario,
c(x) o« p(x)q(x) suits the data better.

The CD estimator relies on the KNN statistics ¢
which is the distance between nearest neighbors. Usu-
ally we use Euclidean distance to measure the differ-
ence between points and find nearest neighbors. How-
ever, the estimator does not prevent the use of other
distances. In fact, [I5] shows that alternative distances
can be used and the consistency results will generally
still hold. A common choice of adaptive distance mea-
sure is the Mahalanobis distance [19], which is equiva-
lent to applying a linear transformation to the random
variables. It is even possible to learn the distance met-
ric for ¢ in a supervised way to maximize the learning
performance. We leave this possibility as future work.

The estimated conditional divergences can be used in
many learning algorithms to accomplish various tasks.
In this paper, we use kernel machines to classify point
sets as in [2) B]. Having the divergence estimates,
we convert them into Gaussian kernels and then use
SVM for classification. When constructing kernels, all
the divergences are symmetrized by taking the aver-
age u(p,q) = w. The symmetrized diver-
gences [ are then exponentiated to get the Gaussian
kernel k(p, q) = exp (—yu(p, ¢)) and the kernel matrix
K, where v is the width parameter. Unfortunately,
K usually does not represent a valid Mercer kernel
because the divergence is not a metric and random es-
timation errors exist. As a remedy, we discard the neg-
ative eigenvalues from the kernel matrix K to convert
it to its closest positive semi-definite (PSD) matrix K.
This K then is a valid kernel matrix and can be used
in an SVM for learning.

6 Experiments

We examine the empirical properties of the conditional
divergences and their estimators. The tested diver-
gences are listed below.

e Full D: Divergence between full unbiased sets as
the groundtruth.

e D: Divergence between biased sets.

e D-DV: Divergence between biased sets while ig-
noring the i.v..

¢ CD-P,CD-U,CD-PQ: conditional divergences
with c(z) « p(x),c(x) x 1,c¢(z) x p(x)q(z) re-
spectively between biased sets.

Full D, D, D-DV are estimated using the KL di-
vergence estimator proposed by [I7]. Unless stated
otherwise, we use k = 3 for GCD estimation using ,
and use k values between 30 and 50 to compute the
weight function.

We consider two types of sampling biases. The first
type creates different f(x)’s for different sets, yet they
still share the same support of x as the original un-
biased data. Based on the first type, the second type
of sampling bias is more extreme and can hide certain
segments of the true distributions, and thus causes dif-
ferent sets to have different supports of z. We call the
resulting test sets from these two sampling biases un-
even sets and partial sets respectively.

In order to evaluate the quality of the bias correction
by the CDs, we use controlled sampling biases in our
experiments. The original point set data are collected
from real problems without any sampling bias. Then
we resample each set to create artificial sampling bi-
ases. By doing this, we can compare the results using
the biased sets to the divergences using the unbiased
data which is the groundtruth.

An SVM is used to classify the point sets using the
method described in Section [o} When using the SVM,
we tune the width parameter v and the slack penalty
C by 3-fold cross-validation on the training set.

6.1 Synthetic Data

6.1.1 Estimation Accuracy

We generate synthetic data to test the accuracy of the
proposed conditional divergence estimators. The data
set consists of 2-dimensional (one as i.v. and one as
d.v.) Gaussian noise along two horizontal lines as the
two classes, as shown in Figure[2land[3] The Gaussians
have fixed spherical covariance, and the mean of the
blue class is slightly higher than the red class, result-
ing in an analytical KL divergence of 0.5. Then the
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i.v. (z axis) is resampled to create sampling bias and
the red and blue curves show the resulting marginal
densities frea(), fole(z). The task is to recover the
true divergence value 0.5 from this biased sample. We
vary the sample size to see the empirical convergence,
and the results of 10 random runs are reported. The
shortcut for this problem is to ignore the 4.v., but we
do not let the estimators take it and force them to
recover from the sampling bias.

Figure [2| shows the results on the uneven sets. As
expected, the joint divergences are corrupted by the
sampling bias and are far from the truth. The three
CDs all converge to the true value. Figure [3] shows
the results on the partial sets. The joint divergence
diverges in this case. CD-P and CD-U are closer but
not converging to the correct value, and the reason is
that the non-overlapping supports violate the assump-
tions made by them. CD-PQ successfully achieved the
true value. This shows the advantage of only measur-
ing CD within the overlapping region in this example.
Overall, the CDs are effective against sampling bias
and the estimators converge to the true values.

0.8r

0.6

Estimates

0.4

0.2

Sample Size

Figure 2: Divergences on the uneven synthetic data.

6.1.2 Handling Point Sets

Here we test the estimators using a large number of
point sets. The full data of two classes are shown in
Figure To create partial sets, we use a sliding
window, whose width is half of the data’s span, to
scan the full data and at each position put the points
within the window together as a set. The uneven sets
are then created by combining the partial sets with
a small number of random samples from the original
data. 100 sets are created for each class and each set

Estimates
5

10* 10
Sample Size

10° 10

Figure 3: Divergences on the partial synthetic data.

contains 200 — 300 points.

This data set is more challenging: the marginal dis-
tribution of d.v. cannot differentiate the two classes;
the conditional distributions f(y|z) are dependent on
x; near the center of the data the conditional distribu-
tions of the two classes are very close. The different
divergence matrices on the uneven sets are shown in
Figure[4] in which we sorted the sets according to their
classes and window positions to show the structures.
We see that the joint divergence is severely affected
by the sampling bias, while the CDs are quite insensi-
tive. The result of CD-U is especially impressive: the
similarity structure of the original data is perfectly re-
covered. Figure[5|shows the results on the partial sets.
The joint divergence is now dominated by the sampling
bias. CDs again are able to recover from this severe
disruption and achieve reasonable results. The result
of CD-PQ is the cleanest on this data set.

6.2 Season Classification

In this section we use the divergences in SVM to clas-
sify real world point sets generated by sensor net-
works. We gathered the data from the QCLCD climate
database at NCDC[[] We use a subset of QCLCD that
contains daily climatological data from May 2007 to
May 2013 measured by 1,164 weather stations in the
continental U.S. Each of these weather station pro-
duces various measurements such as the temperature,
humidity, precipitation, etc, at its location. We aggre-
gate these data into point sets, so that each set con-
tains the measurements from all stations in one week.

"http://www.ncdc.noaa.gov
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(a) Original data.

CD-U CD-PQ

(b) Divergences

Figure 5: Divergences on the partial sets. The goal is
to recover the “Full D” result shown in Figure @

We consider the problem of predicting the season of
a set based on the average temperature measurement.
Specifically, we want to know if a set corresponds to
Spring or Fall based on the average temperatures over
the U.S. Note that classifying Summer and Winter
would be too easy, while differentiating Spring and
Fall can be challenging since they have similar average
temperatures. Nevertheless, it is still possible based
on the geographical distribution of the temperatures.
Figure [6] shows the temperature maps in a first week
of March and a first week of November.

Again, we create uneven and partial sets based on the
original data by randomly positioning a full-width win-
dow whose height is 20% of the data’s vertical span,
as shown in Figure [f] This injection of sampling bias
is simulating the scenario where we only have a sen-
soring satellite orbiting parallel to the equator. In this
problem, the location is the .. and the temperature
is the d.v.. This procedure gives us 160 3-dimensional
(latitude, longitude, temperature) point sets with sizes
around 2, 000.

In each run, 20% of the random point sets are used for
training and the rest are used for testing. Classifica-
tion results of 10 runs are reported in Figure []] On
the uneven sets, we see that both CD-U and CD-PQ
are able to recover from the sampling bias and achieve
results that are only 3% worse than the full divergence.
On the partial sets, however, the performance CD-U

(c) Nov

(d) Nov - Uneven

Figure 6: Example temperature maps of the U.S. from
the QCLCD. (a) and (c) are the original data. (b) and
(d) are the artificially created uneven data.

dropped significantly. This indicates that it can be
risky to apply CD in regions where two sets do not
overlap. It is interesting to see that D-DV, which ig-
nores the locations, barely does better than random
since Spring and Fall indeed have similar tempera-
tures. Yet by considering the geographical distribution
of temperatures we can achieve 70% accuracy.

6.3 Image Classification

We can also use CDs to classify scene images. We con-
struct one point set for each image, where each point
describes one patch including its location (i.v.) and
the feature (d.v.). The OT [20] scene images are used,
which contain 2, 688 grayscale images of size 256 x 256
from 8 categories. The patches are sampled densely on
a grid and multiscale SIFT features are extracted using
VLFeat [2I]. The points are reduced to 20-dimensions
using PCA, preserving 70% of variance.

Again, we create both uneven and partial point sets
by randomly positioning a full-width window whose
height is 60% of the image. By doing this, the in-
jected sampling bias forces a set to focus on a specific
horizontal part of the scene. For instance in a beach
scene, the biased observer focuses either on the sky or
the sand, and only see a small part of the rest of the
scene. After the above processing, the full data set
contains 2,688 sets of 20-dimensional points, and the
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(b) QCLCD, partial.

Figure 7: Season classification results on the QCLCD
weather data.

sets’ sizes are around 1,600. In the biased data, each
partial set has about 950 points and each uneven set
has about 1,100. In each run, we randomly select 50
images per class for training and another 50 for testing.

Results of 10 random runs are shown in Figure [§| In
these results, CDs again successfully restore the accu-
racies to a high level even in the face of harsh sampling
biases. We see that CD-U impressively beats the other
methods by a large margin on the uneven sets, and is
only 1% worse than the full divergence. CD-PQ is the
best on partial sets. These results show the CDs’ cor-
rective power when the correct assumptions are made
about the sampling biases.

We also observe that CD-U and CD-P did not perform
well on the partial sets, which is expected since their
assumptions were invalid on the data. In general, the
impact of sampling bias on this data set is small (less
than 10% decrease in accuracies) because the patch
features (d.v.) only weakly depend on the patch loca-
tions (7.v.). In fact, many patch-based image analyses
such as [I] do not include the locations. This might
explain why both D-DV and D-P did reasonably well
in this task and the corrected results by CD-PQ are
only slightly better.
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Figure 8: Image classification results on OT.

7 Conclusion

In this paper we described various aspects of dealing
with sampling bias when learning from point sets. We
proposed the conditional divergence (CD) to measure
the difference between point sets and alleviate the im-
pact of sampling bias. An efficient and convergent esti-
mator of CD was provided. We then discussed how to
deal with various types of sampling biases using CD.
In the experiments we show that these methods are
effective against sampling bias on both synthetic and
real data.

Several directions can be explored in the future. We
can extend the definition of conditional divergence
from KL divergence to the more general Rényi diver-
gences. The generalized conditional divergences pro-
vide the possibility of learning the weights of the den-
sity ratios in a supervised ways in order to maximize
the discriminative power of the resulting divergences.
The distance between points used in estimating the
CDs could also be learned. Finally for extreme cases
that cause missing divergences, we may infer them by
exploiting the relationships among the sets using ma-
trix completion techniques.
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