
Event Detection Using Kademlia DHT Network in
Distributed Active Data Management Systems

Besim Avci, Saurabh Kadekodi, Arindam Paul

ABSTRACT
Event detection plays a crucial role in active data man-
agement, since it is the first component of Event, Con-
dition, Action (ECA) rules. In the case of distributed
databases, a responsive fully distributed event detection
scheme is yet to be proposed. In this work, we try to
achieve a fully distributed reactive event detection mech-
anism by utilizing a DHT overlay network, namely Kadem-
lia.

1. PROBLEM STATEMENT
In many real world applications, scientific discov-

eries, and like require collecting data. However, han-
dling big chunks of data is most of the time grue-
some. People want to interpret the data to a mean-
ingful subset by defining events of interests, which
happen randomly. Examples would be a leakage in
a nuclear plant, or a spike in Facebook shares in the
stock market. Also, in an event driven architecture
or an active database, there is the concept of rules,
which consist of three parts;

• Event: The signal that triggers the execution
of the rule

• Condition: The logical test that causes the ac-
toin to be carried out, provided Event already
occurred.

• Action: The part that consists of invocations
in the system, like updates.

Basically, action part of a rule executes if condition
holds, provided event has already happened. There-
fore, detection of events holds a great deal of im-
portance. Since in any architecture that is tightly
coupled with events, a robust event detection mech-
anism is required. To this end, there has been many
research attempts to capture an efficient event de-
tection mechanism [7].

First and foremost, an event specification language
is necessary to properly define the domain of events,
and also to model a system where primitive events

can be combined into more complex events. In this
paper, we are using a previously defined event speci-
ficaiton language, called Snoop [3].

In fully distributed data management systems, which
is our relevant use case, every single node is able to
detect an event – either externally or internally. In
addition to detection of events, every single node
is able to subscribe itself to certain events by giv-
ing an event definition in the semantics we define.
These properties make the system fully distributed
with no centralized mechanism. The main challenge
of this work is to inform occurrences of events to in-
terested parties with least communication and data
overhead.

What separates our work from a publish/subscribe
mechanism is that not all event definitions are com-
posed of one simple, primitive event. Events that
nodes are interested in will be mostly composite events
(events that are constituted by primitive events and
event operators) as defined in [3]. This behaviour
will make the system much more complicated than
a publish/subscribe scheme in the sense that events
sources are unknown and there can be multiple sources
of events.

2. PRIOR WORK AND PRELIMINERIES
In order to detect, combine, and manage events,

a robust expressive event specification language is
needed. Thus, we use Snoop semantics [3] for event
expressions. However, we limit the event operators
to 3; ’and’, ’or’, ’seq’, all of which will be explained
later.

Snoop has two main event types; primitive and
composite. Primitive events are pre-defined in the
system and they are atomic, happen at a time in-
stant and can occur multiple times. Composite events,
on the other hand, are the events that constitutes
multiple events combined with event operators. Com-
posite events can get as complicated as it gets by
definition.

The event operators that can be used in our sys-

1



tem to make up a composite event are as follows;

1. AND (4): Conjunction of two events E1 and
E2, denoted by E1 4 E2. (E1 4 E2) occurs
when both E1 and E2 occurs regardless of the
order of occurrence.

2. OR (5): Disjunction of two events E1 and E2,
denoted by E1 5 E2. (E1 5 E2) occurs when
either E1 or E2 occurs.

3. SEQ (;): Sequence of two events E1 and E2,
denoted by E1;E2. (E1;E2) occurs when E2

occurs provided E1 has already occurred.

Event Represenations.
Every event occurrence is denoted by its event

type and event occurrence. For example, the first
occurrence of an event type E1 is represented by e11,
second occurrence of the same event type e21. Briefly,
subscript represents event type and super-script rep-
resents relative time of the occurrence with respect
to other occurrences of the same event type.

Parameter Context.
One can take the operators and event occurrences

and detect the occurrences of composite events by
using boolean algebraic operations. For instance,
given the history of events

{{e11}, {e21}, {e12}, {e13}, {e22}, {e14}, {e23}, {e24}}

and the composite event definition

((E1 4 E2);E3; (E2 4 E4))

using boolean algebra, the composite event occurs
16 times, with occurrences like;

{{e11, e12, e13, e12, e14}, {e11, e12, e13, e12, e24}, · · · ,
{e21, e22, e23, e22, e24}}

However, not all 16 occurrences will make sense, and
many of them will be unnecessary in most cases.
Thus, the authors in [4] propose parameter contexts,
which imply different composite event detection mech-
anisms. They propose 4 different parameter contexts
to put composite event occurrences into meaningful
shape. For this purpose they name the primitive
event that starts the whole composite event as ini-
tiator and the one that finishes as terminator. Pa-
rameter contexts they introduce are as follows;

1. Recent: The most recent occurrence of the ini-
tiator is used for detection. A typical use case
would be that of sensor networks, where only
the last measurement is needed.

2. Chronicle: For this context, initiator and ter-
minator pair is unique. The oldest initiator
and oldest terminator are paired and flushed
from the system, very much like applications
where there is a causal dependency; for e.g. bug
report-release.

3. Continuous: In this context, each initiator starts
the detection of the event. This context is use-
ful for trend analysis and forecasting applica-
tions where composite event detection along a
moving time window needs to be supported.

4. Cumulative: All the constituents events are ac-
cumulated for the detection of the composite
events, as in banking applications where a cus-
tomer may withdraw multiple times in a given
day, and at the end of the day balance is cal-
culated by accumulating withdraw events.

Hence, different occurrences of the same compos-
ite event may happen for different parameter con-
texts. Note that parameter contexts are tailored for
the most common use cases.

Last but not least, a composite event in the net-
work is parsed into subevents and a detection tree is
formed to hierarchically detect the composite event
by starting from the leaves, which are primitive events,
and going upwards in the tree. A sample tree can
be seen in Figure 1. Note that parameter contexts
need to be applied in every single node of the tree
except for the leaves.

Figure 1: Detection Tree

Moreover, there has been a lot of research inter-
est in publish subscribe systems in the last decade.
One of the milestone systems is SCRIBE [2]. Which
basically uses a DHT network to create a applica-
tion level multi-cast messaging capability. Another

2



set of research attempts that focus on a DHT overlay
network are Meghdoot [5] and Willow [8]. These sys-
tems let nodes publish events and from a given value-
key mapping, data (or message) is sent to the respec-
tive DHT nodes and subscribers to these nodes re-
ceive data through these nodes, conserving anonymity
of both publishers and subscribers. The approach
taken in these efforts are same as ours, except for one
difference; multiple level of abstraction. To state it
differently, we are mapping the composite event de-
tection tree for the whole DHT network, thus any
publish event will follow multiple hops in the net-
works. Benefits of this approach will be discussed in
the next section.

3. RESEARCH APPROACH
Our work is noteworthy in that we map the event

detection nodes to Kademlia network nodes, which
in turn helps us decrease the communication over-
head in the network in comparison to conventional
publish/subscribe applications. Also, in our system,
every node is able to inject an event occurrence and
every node is allowed to inject a composite event
definition to be notified in case of occurrence.

In addition, we incorporated a time-to-live (TTL)
parameter in the system. As the name suggests, a
definition injector can define for how long it wants
to be notified. Whenever TTL runs out in the sys-
tem, node automatically unsubscribes itself and all
detection tree nodes. Obviously, the algorithm is
safe enough to keep the connections for other event
detections. Lastly, TTL can be set as forever, which
means injector will be notified for occurrences for-
ever.

Main characteristic of our work is that we store
event occurrences of an event type in the respective
Kademlia node. The way to do so goes by mapping
SHA-1 of events to network node ids. Therefore, a
node will be responsible for occurrences of event type
E1, and another node will be responsible for event
type E2. Furthermore, all of the event detection tree
nodes will be mapped to some node id using SHA-
1, which will fall into key space of a network node.
Hence, while a network node records occurrences of
E1, another node will be recording, (E1 4 E2) oc-
currences for instance.

All primitive events are pre-defined in the system,
so whenever a node injects an event, it knows the
type of the event but nothing else. Also, a node can
inject a composite (can be primitive) event defini-
tion and wait to be notified upon occurrence. When-
ever a network node injects an event definition, it is
parsed in the very same node and a detection tree
is formed. Then, every network node, which cor-

responds to a tree node, is wired to its parent re-
cursively. A simple publish/subscribe mechanism is
used in this phase.

Execution Flow
In this section, we will describe how an event detec-
tion happens in the network from event definition in-
jection to terminator event occurrence. Event injec-
tors’ job is simple: whenever an event occurs, insert
it to the network by finding its respective Kadem-
lia node. Event definition is a bit different, though.
Event expression along with parameter context is
specified, followed by parsing and wiring. An exam-
ple execution flow is as follows;

1. Definition is inserted and parsed in the node.

2. Detection tree is created and all respective nodes
are wired together by subscription mechanism.

3. Primitive event occurred.

4. Event sources notify the respective Kademlia
nodes.

5. Event nodes notify whoever is subscribed to
them (parent nodes in the trees).

6. Step 5 is repeated until root

7. Event definition injector is notified about the
occurrence of the event.

The whole execution flow can be seen in Figure 2.

Figure 2: Execution Flow in Key Space

3



Event Node
The term ’event node’ refers to Kademlia nodes which
cover the key space where SHA-1 of a particular
event falls into. It could be a primitive event or
a composite event. To manage the subscriptions in
an event node, there is a map structure, where there
is subscriber id, parameter context, and a buffer for
each subscription. On event occurrence, event node
goes through its subscription list and notifies ev-
eryone in the list if necessary. Parameter context
plays a crucial role in an event node, especially if
node is responsible for a composite event, because
depending on the parameter context different oc-
currences may be fired with the same constituent
events. Therefore, for each subscriber, event occur-
rence is calculated based on parameter context and
a fire message is sent to the initial subscriber.

4. RESULTS
Our system is running successfully when multiple

kademlia nodes are spawned over one physical ma-
chine, and also scales well for a small set of machines.
At this point in time, we do not put these numbers as
we are currently testing only over a small number of
machines, a load really unrealistic for a proper work-
ing system. Rather, our implementation is more of
a proof of concept and unique in its own area. One
thing to compare against could be how our project
behaves against traditional publish/ subscribe algo-
rithms. Our project will suffer from latency since we
make every event occurrence jump over the network
for how deep it is in the detection tree. On the other
hand, our work saves communication overhead and
relieves congestion in the nodes which are responsi-
ble for primitive events.

5. LESSONS LEARNED AND
FUTURE WORK

This project helped us better understand the us-
age of a distributed hash table system–yeses and
noes. One of the chief assumptions in this project
was the resilience of the system. We assumed a
system where node failures do not happen. How-
ever, replicating data and subscription over couple
of nodes and performing a protocol similar to Paxos
[6] will enable system to handle node failures. This
is the main thing that has been left as a future work.
Another future work would be detecting events that
already happened before the definition of the com-
posite event. Our current implementation has the
foundation for this feature, since we record every
occurrence of an event, but we did not implement
resilience, so this does not allow us to include his-

tory detection feature at the moment. Finally, new
approach for event detection has emerged recently
–events over time. This new approach assumes that
events happen over time, not atomically. As it is
explained in the paper [1], it is a simple extension
to our proposed approach.

The hardest hurdle we encountered was when a
node is notified about occurrence of an event through
publish rpc. Since we hold a buffer for each compos-
ite event, and there is a different composite event
and operator for every subscriber, and every event
occurrence can be involved in many composite events,
everything gets complicated. If we knew it was going
to be this complicated we could have done a better
design from the beginning rather than solving the
problems as they emerge.

Another future work would be the comparison of
this implementation against conventional publish/
subscribe methods. Obviously, conventional pub-
lish/ subscribe systems will have lower latency in
detection of composite events. On the other hand,
publish/subscribe systems will create higher commu-
nication overhead and depending on the frequency
of event occurrences, it will make some nodes, the
ones responsible for primitive events, very congested
in terms of network usage. In short, this can be a
nice extension to this project since it will lay out
how one system is better than the other.

6. SUMMARY AND CONCLUSIONS
Event detection has received attention in active

data management context recently, and many re-
search attempts tried to handle event detection com-
ponent. In this paper, we tried to tackle the prob-
lem of event detection in distributed systems where
any node can insert events or be interested in cer-
tain events. This makes our system completely dis-
tributed, and it can be utilized very well in certain
use cases, for e.g. sensor networks. Also, using a
DHT is one of the most effective solutions to com-
munication in unorganized distributed systems, and
it really helped us in handling the communication
medium. All in all, this project really made us bet-
ter enthusiasts for distributed systems.

7. REFERENCES
[1] Raman Adaikkalavan and Sharma

Chakravarthy. Snoopib: interval-based event
specification and detection for active databases.
Data Knowl. Eng., 59(1):139–165, October
2006.

[2] Miguel Castro, Peter Druschel, Anne-Marie
Kermarrec, and Antony Rowstron. Scribe: A
large-scale and decentralized application-level

4



multicast infrastructure. IEEE Journal on
Selected Areas in Communications (JSAC,
20:2002, 2002.

[3] S. Chakravarthy and D. Mishra. Snoop: an
expressive event specification language for
active databases. Data Knowl. Eng., 14(1):1–26,
November 1994.

[4] Sharma Chakravarthy, V. Krishnaprasad, Eman
Anwar, and S.-K. Kim. Composite events for
active databases: Semantics, contexts and
detection. In Proceedings of the 20th
International Conference on Very Large Data
Bases, VLDB ’94, pages 606–617, San
Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[5] Abhishek Gupta, Ozgur D. Sahin, Divyakant
Agrawal, and Amr El Abbadi. Meghdoot:
content-based publish/subscribe over p2p
networks. In Proceedings of the 5th
ACM/IFIP/USENIX international conference
on Middleware, Middleware ’04, pages 254–273,
New York, NY, USA, 2004. Springer-Verlag
New York, Inc.

[6] Leslie Lamport. Paxos made simple. ACM
SIGACT News, 32, 2001.

[7] David Tam, Reza Azimi, and Hans arno
Jacobsen. Building content-based
publish/subscribe systems with distributed
hash tables. In In International Workshop On
Databases, Information Systems and
Peer-to-Peer Computing, pages 138–152, 2003.

[8] Robbert van Renesse and Adrian Bozdog.
Willow: Dht, aggregation, and
publish/subscribe in one protocol. In
Proceedings of the Third international
conference on Peer-to-Peer Systems, IPTPS’04,
pages 173–183. Springer-Verlag, 2004.

5


